Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

TIMELINE

Treatment of multiple sclerosis — success from bench to bedside

Abstract

The modern era of multiple sclerosis (MS) treatment began 25 years ago, with the approval of IFNβ and glatiramer acetate for the treatment of relapsing–remitting MS. Ten years later, the first monoclonal antibody, natalizumab, was approved, followed by a third important landmark with the introduction of oral medications, initially fingolimod and then teriflunomide, dimethyl fumarate and cladribine. Concomitantly, new monoclonal antibodies (alemtuzumab and ocrelizumab) have been developed and approved. The modern era of MS therapy reached primary progressive MS in 2018, with the approval of ocrelizumab. We have also learned the importance of starting treatment early and the importance of clinical and MRI monitoring to assess treatment response and safety. Treatment decisions should account for disease phenotype, prognostic factors, comorbidities, the desire for pregnancy and the patient’s preferences in terms of acceptable risk. The development of treatment for MS during the past 25 years is a fantastic success of translational medicine.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of developments in the treatment of multiple sclerosis.

References

  1. 1.

    The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43, 655–661 (1993).

    Google Scholar 

  2. 2.

    Jacobs, L. D. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann. Neurol. 39, 285–294 (1996); erratum 40, 480 (1996).

    CAS  PubMed  Google Scholar 

  3. 3.

    PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 352, 1498–1504 (1998).

    Google Scholar 

  4. 4.

    Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. Neurology 45, 1268–1276 (1995).

    CAS  PubMed  Google Scholar 

  5. 5.

    Comi, G., Filippi, M. & Wolinsky, J. S. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging—measured disease activity and burden in patients with relapsing multiple sclerosis. Ann. Neurol. 49, 290–297 (2001).

    CAS  PubMed  Google Scholar 

  6. 6.

    O’Connor, P. et al. 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 8, 889–897 (2009).

    PubMed  Google Scholar 

  7. 7.

    Mikol, D. D. et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif versus Glatiramer Acetate in relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 7, 903–914 (2008).

    CAS  PubMed  Google Scholar 

  8. 8.

    Savale, L., Chaumais, M. C., O’Connell, C., Humbert, M. & Sitbon, O. Interferon-induced pulmonary hypertension: an update. Curr. Opin. Pulm. Med. 22, 415–420 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Yamazaki, Y. et al. An autopsy case of fulminant hepatitis in a patient with multiple sclerosis treated by interferon-beta-1a. Intern. Med. 56, 1897–1901 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Calabresi, P. A. et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 13, 657–665 (2014).

    CAS  PubMed  Google Scholar 

  11. 11.

    Khan, O. et al. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann. Neurol. 73, 705–713 (2013).

    CAS  PubMed  Google Scholar 

  12. 12.

    Bell, C. et al. Development of Glatopa® (Glatiramer acetate): the first FDA-approved generic disease-modifying therapy for relapsing forms of multiple sclerosis. J. Pharm. Pract. 31, 481–488 (2018).

    PubMed  Google Scholar 

  13. 13.

    Merkel, B., Butzkueven, H., Traboulsee, A. L., Havrdova, E. & Kalincik, T. Timing of high-efficacy therapy in relapsing-remitting multiple sclerosis: a systematic review. Autoimmun. Rev. 16, 658–665 (2017).

    PubMed  Google Scholar 

  14. 14.

    Akaishi, T. & Nakashima, I. Efficiency of antibody therapy in demyelinating diseases. Int. Immunol. 29, 327–335 (2017).

    CAS  PubMed  Google Scholar 

  15. 15.

    Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    CAS  PubMed  Google Scholar 

  16. 16.

    Kleinschmidt-DeMasters, B. K. & Tyler, K. L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N. Engl. J. Med. 353, 369–374 (2005).

    CAS  PubMed  Google Scholar 

  17. 17.

    Langer-Gould, A., Atlas, S. W., Green, A. J., Bollen, A. W. & Pelletier, D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med. 353, 375–381 (2005).

    CAS  PubMed  Google Scholar 

  18. 18.

    Singer, B. A. The role of natalizumab in the treatment of multiple sclerosis: benefits and risks. Ther. Adv. Neurol. Disord. 10, 327–336 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ho, P. R. et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol. 16, 925–933 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Vellinga, M. M., Castelijns, J. A., Barkhof, F., Uitdehaag, B. M. & Polman, C. H. Postwithdrawal rebound increase in T2 lesional activity in natalizumab-treated MS patients. Neurology 70, 1150–1151 (2008).

    CAS  PubMed  Google Scholar 

  21. 21.

    O’Connor, P. W. et al. Disease activity return during natalizumab treatment interruption in patients with multiple sclerosis. Neurology 76, 1858–1865 (2011).

    PubMed  Google Scholar 

  22. 22.

    Vidal-Jordana, A. et al. Significant clinical worsening after natalizumab withdrawal: predictive factors. Mult. Scler. 21, 780–785 (2015).

    CAS  PubMed  Google Scholar 

  23. 23.

    Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    CAS  PubMed  Google Scholar 

  24. 24.

    Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    US Food & Drug Administration. FDA expands approval of Gilenya to treat multiple sclerosis in pediatric patients. FDA https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm607501.htm (2018).

  26. 26.

    Berger, J. R. Classifying PML risk with disease modifying therapies. Mult. Scler. Relat. Disord. 12, 59–63 (2017).

    PubMed  Google Scholar 

  27. 27.

    Ghadiri, M. et al. Reconstitution of the peripheral immune repertoire following withdrawal of fingolimod. Mult. Scler. 23, 1225–1232 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Karlsson, G. et al. Pregnancy outcomes in the clinical development program of fingolimod in multiple sclerosis. Neurology 82, 674–680 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Cohen, J. A. et al. Ozanimod versus interferon β-1a: clinical and MRI results of RADIANCE part B - A 2-year phase 3 trial in relapsing multiple sclerosis. Mult. Scler. 23, 976–1023 (2017).

    Google Scholar 

  30. 30.

    Comi, G. et al. Ozanimod demonstrates efficacy and safety in a phase 3 trial of relapsing multiple sclerosis (SUNBEAM) [abstract 232]. Mult. Scler. 23, 8–84 (2017).

    Google Scholar 

  31. 31.

    Confavreux, C. et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 247–256 (2014).

    CAS  PubMed  Google Scholar 

  32. 32.

    O’Connor, P. et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 365, 1293–1303 (2011).

    PubMed  Google Scholar 

  33. 33.

    Miller, A. E. et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 977–986 (2014).

    CAS  PubMed  Google Scholar 

  34. 34.

    Vermersch, P. et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult. Scler. 20, 705–716 (2014).

    CAS  PubMed  Google Scholar 

  35. 35.

    Dubey, D. et al. Dimethyl fumarate in relapsing-remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert Rev. Neurother. 15, 339–346 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Gold, R. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    CAS  PubMed  Google Scholar 

  37. 37.

    Fox, R. J. et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367, 1087–1097 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Gieselbach, R. J. et al. Progressive multifocal leukoencephalopathy in patients treated with fumaric acid esters: a review of 19 cases. J. Neurol. 264, 1155–1164 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Tintore, M. & Sastre-Garriga, J. Multiple sclerosis: dimethyl fumarate is coming of age. Nat. Rev. Neurol. 12, 436–437 (2016).

    CAS  PubMed  Google Scholar 

  40. 40.

    Warnke, C., Wiendl, H., Hartung, H. P., Stuve, O. & Kieseier, B. C. Identification of targets and new developments in the treatment of multiple sclerosis—focus on cladribine. Drug Des. Devel. Ther. 4, 117–126 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Brousil, J. A., Roberts, R. J. & Schlein, A. L. Cladribine: an investigational immunomodulatory agent for multiple sclerosis. Ann. Pharmacother. 40, 1814–1821 (2006).

    CAS  PubMed  Google Scholar 

  42. 42.

    Giovannoni, G. et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med. 362, 416–426 (2010).

    CAS  PubMed  Google Scholar 

  43. 43.

    Cook, S. et al. Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine tablets treating multiple sclerosis orallY) study. Mult. Scler. 17, 578–593 (2011).

    CAS  PubMed  Google Scholar 

  44. 44.

    Giovannoni, G. et al. Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: results from the randomized extension trial of the CLARITY study. Mult. Scler. https://doi.org/10.1177/1352458517727603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    De Stefano, N. et al. Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Mult. Scler. 24, 222–226 (2018).

    PubMed  Google Scholar 

  46. 46.

    Leist, T. P. et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 13, 257–267 (2014).

    CAS  PubMed  Google Scholar 

  47. 47.

    Pakpoor, J. et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol. Neuroimmunol. Neuroinflamm. 2, e158 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chitnis, T. et al. PARADIGMS: a randomised double-blind study of fingolimod versus interferon ß-1a in paediatric multiple sclerosis [abstract]. ECTRIMS 276 http://onlinelibrary.ectrims-congress.eu/ectrims/2017/ACTRIMS-ECTRIMS2017/202640/tanuja.chitnis.paradigms.a.randomised.double-blind.study.of.fingolimod.versus.html (2017).

  49. 49.

    Cohen, J. A. et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380, 1819–1828 (2012).

    CAS  PubMed  Google Scholar 

  50. 50.

    Coles, A. J. et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380, 1829–1839 (2012).

    CAS  PubMed  Google Scholar 

  51. 51.

    Hartung, H. P., Aktas, O. & Boyko, A. N. Alemtuzumab: a new therapy for active relapsing-remitting multiple sclerosis. Mult. Scler. 21, 22–34 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Havrdova, E. et al. Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 89, 1107–1116 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Blasco, M. R., Ramos, A., Malo, C. G. & Garcia-Merino, A. Acute pneumonitis and pericarditis related to alemtuzumab therapy in relapsing-remitting multiple sclerosis. J. Neurol. 264, 168–169 (2017).

    PubMed  Google Scholar 

  54. 54.

    Holmoy, T., von der Lippe, H. & Leegaard, T. M. Listeria monocytogenes infection associated with alemtuzumab - a case for better preventive strategies. BMC Neurol. 17, 65 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Gold, R. et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet 381, 2167–2175 (2013).

    CAS  PubMed  Google Scholar 

  56. 56.

    Kappos, L. et al. Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 373, 1418–1428 (2015).

    CAS  PubMed  Google Scholar 

  57. 57.

    Giovannoni, G. et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECTION): a multicentre, randomised, double-blind extension trial. Lancet Neurol. 13, 472–481 (2014).

    CAS  PubMed  Google Scholar 

  58. 58.

    Hauser, S. L. et al. B cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    CAS  PubMed  Google Scholar 

  59. 59.

    Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    CAS  PubMed  Google Scholar 

  60. 60.

    Hughes, S. PML reported in patient receiving ocrelizumab. Medscape http://www.medscape.com/viewarticle/880654 (2017).

  61. 61.

    Bohra, C., Sokol, L. & Dalia, S. Progressive multifocal leukoencephalopathy and monoclonal antibodies: a review. Cancer Control 24, 1073274817729901 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    CAS  PubMed  Google Scholar 

  63. 63.

    Bourdette, D. Rituximab for treating multiple sclerosis: off-label but on target. Neurology 87, 2070–2071 (2016).

    PubMed  Google Scholar 

  64. 64.

    Granqvist, M. et al. Comparative effectiveness of rituximab and other initial treatment choices for multiple sclerosis. JAMA Neurol. 75, 320–327 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Goodkin, D. E. et al. Low-dose (7.5 mg) oral methotrexate reduces the rate of progression in chronic progressive multiple sclerosis. Ann. Neurol. 37, 30–40 (1995).

    CAS  PubMed  Google Scholar 

  66. 66.

    Freedman, M. S. et al. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology 77, 1551–1560 (2011).

    CAS  PubMed  Google Scholar 

  67. 67.

    Hommes, O. R. et al. Intravenous immunoglobulin in secondary progressive multiple sclerosis: randomised placebo-controlled trial. Lancet 364, 1149–1156 (2004).

    CAS  PubMed  Google Scholar 

  68. 68.

    Kapoor, R. et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 9, 681–688 (2010).

    CAS  PubMed  Google Scholar 

  69. 69.

    Zajicek, J. et al. Effect of dronabinol on progression in progressive multiple sclerosis (CUPID): a randomised, placebo-controlled trial. Lancet Neurol. 12, 857–865 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Rice, G. P., Filippi, M. & Comi, G. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology 54, 1145–1155 (2000).

    CAS  PubMed  Google Scholar 

  71. 71.

    European Study Group on Interferon β-1b in Secondary Progressive MS. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. Lancet 352, 1491–1497 (1998).

    Google Scholar 

  72. 72.

    La Mantia, L. et al. Interferon beta for secondary progressive multiple sclerosis: a systematic review. J. Neurol. Neurosurg. Psychiatry 84, 420–426 (2013).

    PubMed  Google Scholar 

  73. 73.

    Miller, D. H. & Leary, S. M. Primary-progressive multiple sclerosis. Lancet Neurol. 6, 903–912 (2007).

    PubMed  Google Scholar 

  74. 74.

    Hartung, H. P. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360, 2018–2025 (2002).

    PubMed  Google Scholar 

  75. 75.

    Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon-Beta-1a in MS (SPECTRIMS) Study Group. Randomized controlled trial of interferon- beta-1a in secondary progressive MS: clinical results. Neurology 56, 1496–1504 (2001).

    Google Scholar 

  76. 76.

    Lublin, F. et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 387, 1075–1084 (2016).

    CAS  PubMed  Google Scholar 

  77. 77.

    Kapoor, R. et al. Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension. Lancet Neurol. 17, 405–415 (2018).

    CAS  PubMed  Google Scholar 

  78. 78.

    Romme Christensen, J. et al. Natalizumab in progressive MS: results of an open-label, phase 2A, proof-of-concept trial. Neurology 82, 1499–1507 (2014).

    CAS  PubMed  Google Scholar 

  79. 79.

    Gajofatto, A. Spotlight on siponimod and its potential in the treatment of secondary progressive multiple sclerosis: the evidence to date. Drug Des. Devel Ther. 11, 3153–3157 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Kappos, L. et al. Efficacy of siponimod in secondary progressive multiple sclerosis: results of the phase 3 study (CT.002). Neurology 88 (Suppl. 16), CT.002 (2017).

    Google Scholar 

  81. 81.

    Chataway, J. et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 383, 2213–2221 (2014).

    CAS  PubMed  Google Scholar 

  82. 82.

    Fox, R. J. et al. Design, rationale, and baseline characteristics of the randomized double-blind phase II clinical trial of ibudilast in progressive multiple sclerosis. Contemp. Clin. Trials 50, 166–177 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Colligan, E., Metzler, A. & Tiryaki, E. Shared decision-making in multiple sclerosis. Mult. Scler. 23, 185–190 (2017).

    PubMed  Google Scholar 

  84. 84.

    Ingwersen, J., Aktas, O. & Hartung, H. P. Advances in and algorithms for the treatment of relapsing-remitting multiple sclerosis. Neurotherapeutics 13, 47–57 (2016).

    CAS  PubMed  Google Scholar 

  85. 85.

    Miller, A. E. Multiple sclerosis should be treated using a step-down strategy rather than a step-up strategy-Commentary. Mult. Scler. 22, 1402–1404 (2016).

    PubMed  Google Scholar 

  86. 86.

    Trojano, M. et al. Treatment decisions in multiple sclerosis - insights from real-world observational studies. Nat. Rev. Neurol. 13, 105–118 (2017).

    PubMed  Google Scholar 

  87. 87.

    Comi, G., Radaelli, M. & Soelberg Sorensen, P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet 389, 1347–1356 (2017).

    PubMed  Google Scholar 

  88. 88.

    Gafson, A., Craner, M. J. & Matthews, P. M. Personalised medicine for multiple sclerosis care. Mult. Scler. 23, 362–369 (2017).

    PubMed  Google Scholar 

  89. 89.

    Naismith, R. T. Multiple sclerosis should be treated using a step-down strategy rather than a step-up strategy-NO. Mult. Scler. 22, 1400–1402 (2016).

    PubMed  Google Scholar 

  90. 90.

    Ransohoff, R. M., Hafler, D. A. & Lucchinetti, C. F. Multiple sclerosis-a quiet revolution. Nat. Rev. Neurol. 11, 134–142 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Schwartzbach, C. J. et al. Lesion remyelinating activity of GSK239512 versus placebo in patients with relapsing-remitting multiple sclerosis: a randomised, single-blind, phase II study. J. Neurol. 264, 304–315 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Scolding, N. J. et al. Cell-based therapeutic strategies for multiple sclerosis. Brain 140, 2776–2796 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Montalban, X. et al. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult. Scler. 24, 96–120 (2018).

    PubMed  Google Scholar 

  94. 94.

    Montalban, X. et al. ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis. Eur. J. Neurol. 25, 215–237 (2018).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Mar Tintore.

Ethics declarations

Competing interests

M.T. has received compensation for consulting services and speaking honoraria from Almirall, Bayer Schering Pharma, Biogen, Genzyme, Merck-Serono, Novartis, Roche, Sanofi-Aventis and Teva. A.V.-J. has received speaking honoraria and consulting fees from Novartis, Roche and Sanofi-Aventis. J.S.-G. has received compensation from Almirall (speaking honoraria and consulting services), Biogen, Genzyme, Novartis and Merck (travel expenses and accommodation, speaking honoraria and participation in advisory boards), Celgene (travel expenses and accommodation and participation in advisory boards), Teva (speaking honoraria, travel expenses and accommodation) and Roche (travel expenses and accommodation).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tintore, M., Vidal-Jordana, A. & Sastre-Garriga, J. Treatment of multiple sclerosis — success from bench to bedside. Nat Rev Neurol 15, 53–58 (2019). https://doi.org/10.1038/s41582-018-0082-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing