Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurofilaments as biomarkers in neurological disorders

Abstract

Neuroaxonal damage is the pathological substrate of permanent disability in various neurological disorders. Reliable quantification and longitudinal follow-up of such damage are important for assessing disease activity, monitoring treatment responses, facilitating treatment development and determining prognosis. The neurofilament proteins have promise in this context because their levels rise upon neuroaxonal damage not only in the cerebrospinal fluid (CSF) but also in blood, and they indicate neuroaxonal injury independent of causal pathways. First-generation (immunoblot) and second-generation (enzyme-linked immunosorbent assay) neurofilament assays had limited sensitivity. Third-generation (electrochemiluminescence) and particularly fourth-generation (single-molecule array) assays enable the reliable measurement of neurofilaments throughout the range of concentrations found in blood samples. This technological advancement has paved the way to investigate neurofilaments in a range of neurological disorders. Here, we review what is known about the structure and function of neurofilaments, discuss analytical aspects and knowledge of age-dependent normal ranges of neurofilaments and provide a comprehensive overview of studies on neurofilament light chain as a marker of axonal injury in different neurological disorders, including multiple sclerosis, neurodegenerative dementia, stroke, traumatic brain injury, amyotrophic lateral sclerosis and Parkinson disease. We also consider work needed to explore the value of this axonal damage marker in managing neurological diseases in daily practice.

Key points

  • Neuronal damage and loss are the pathological substrates of permanent disability in various acute and chronic neurological disorders.

  • Levels of neurofilament proteins increase in cerebrospinal fluid (CSF) and in the blood upon neuroaxonal damage.

  • First-generation (immunoblot) and second-generation (enzyme-linked immunosorbent assay) neurofilament assays captured only the tip of the iceberg in disease.

  • Third-generation (electrochemiluminescence) and fourth-generation (single-molecule array) assays permit highly sensitive, longitudinal detection of blood neurofilament levels even in mild disease and in healthy controls.

  • Multicentre studies are underway to consolidate neurofilaments as biomarkers that reflect brain tissue damage, enabling longitudinal monitoring of disease activity and drug effects in clinical trials in neurological diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and assembly of neurofilaments.
Fig. 2: Neurofilament release after axonal damage.

Similar content being viewed by others

References

  1. Deisenhammer, F. et al. EFNS guidelines on disease-specific CSF investigations. Eur. J. Neurol. 16, 760–770 (2009).

    CAS  PubMed  Google Scholar 

  2. Petzold, A., Keir, G., Green, A. J., Giovannoni, G. & Thompson, E. J. A specific ELISA for measuring neurofilament heavy chain phosphoforms. J. Immunol. Methods 278, 179–190 (2003).

    CAS  PubMed  Google Scholar 

  3. Petzold, A., Rejdak, K. & Plant, G. T. Axonal degeneration and inflammation in acute optic neuritis. J. Neurol. Neurosurg. Psychiatry 75, 1178–1180 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gaiottino, J. et al. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS ONE 8, e75091 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuhle, J. et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J. Neurol. Neurosurg. Psychiatry 86, 273–279 (2015).

    PubMed  Google Scholar 

  6. Gisslen, M. et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3, 135–140 (2016). This study was the first time that NfL was measured with a single-molecule array assay and showed that CSF and plasma concentrations were highly correlated, indicating that plasma NfL concentration is a promising marker in HIV-associated brain damage.

    PubMed  Google Scholar 

  7. Kuhle, J. et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. 54, 1655–1661 (2016).

    CAS  PubMed  Google Scholar 

  8. Disanto, G. et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 81, 857–870 (2017). This study was the first in which serum NfL levels in MS were measured with a Simoa assay; higher CSF and serum levels and clinical and MRI disease activity were associated with higher risk of relapses and disability worsening.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan, A., Rao, M. V., Veeranna & Nixon, R. A. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb. Perspect. Biol. 9, a018309 (2017). This paper provides a comprehensive and detailed overview of the structure and biological roles of the neurofilament proteins.

    PubMed  PubMed Central  Google Scholar 

  10. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    CAS  PubMed  Google Scholar 

  11. Petzold, A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J. Neurol. Sci. 233, 183–198 (2005).

    CAS  PubMed  Google Scholar 

  12. Herrmann, H. & Aebi, U. Intermediate filaments: structure and assembly. Cold Spring Harb. Perspect. Biol. 8, a018242 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Nixon, R. A. & Sihag, R. K. Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci. 14, 501–506 (1991).

    CAS  PubMed  Google Scholar 

  14. Beck, R., Deek, J. & Safinya, C. R. Structures and interactions in ‘bottlebrush’ neurofilaments: the role of charged disordered proteins in forming hydrogel networks. Biochem. Soc. Trans. 40, 1027–1031 (2012).

    CAS  PubMed  Google Scholar 

  15. Barry, D. M. et al. Expansion of neurofilament medium C terminus increases axonal diameter independent of increases in conduction velocity or myelin thickness. J. Neurosci. 32, 6209–6219 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rao, M. V. et al. The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J. Cell Biol. 163, 1021–1031 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown, R. H. Jr & Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 377, 1602 (2017).

    PubMed  Google Scholar 

  18. Rosengren, L. E., Karlsson, J. E., Karlsson, J. O., Persson, L. I. & Wikkelso, C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J. Neurochem. 67, 2013–2018 (1996).

    CAS  PubMed  Google Scholar 

  19. Norgren, N., Karlsson, J. E., Rosengren, L. & Stigbrand, T. Monoclonal antibodies selective for low molecular weight neurofilaments. Hybrid. Hybridomics 21, 53–59 (2002). This paper provides a seminal description of NfL‑specific monoclonal antibodies that are now used in most studies.

    CAS  PubMed  Google Scholar 

  20. Norgren, N., Rosengren, L. & Stigbrand, T. Elevated neurofilament levels in neurological diseases. Brain Res. 987, 25–31 (2003).

    CAS  PubMed  Google Scholar 

  21. Petzold, A. et al. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain 134, 464–483 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. Zucchi, E. et al. A motor neuron strategy to save time and energy in neurodegeneration: adaptive protein stoichiometry. J. Neurochem. https://doi.org/10.1111/jnc.14542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Petzold, A., Keir, G., Warren, J., Fox, N. & Rossor, M. N. A systematic review and meta-analysis of CSF neurofilament protein levels as biomarkers in dementia. Neurodegener. Dis. 4, 185–194 (2007).

    CAS  PubMed  Google Scholar 

  24. Petzold, A. et al. Neurofilament ELISA validation. J. Immunol. Methods 352, 23–31 (2010). This study was an evaluation of the most widely used NfL ELISA kit across 35 different laboratories, and identified that a lack of accurate and consistent protein standards is the main reason for a poor inter-laboratory coefficient of variation.

    CAS  PubMed  Google Scholar 

  25. Kuhle, J. et al. A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein. J. Neuroimmunol. 220, 114–119 (2010).

    CAS  PubMed  Google Scholar 

  26. Kuhle, J. et al. Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology 76, 1206–1213 (2011).

    CAS  PubMed  Google Scholar 

  27. Kuhle, J. et al. Serum neurofilament is associated with progression of brain atrophy and disability in early MS. Neurology 88, 826–831 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010). This study provided the initial description of the high-sensitivity, fourth-generation Simoa assay technology that enables reliable quantification of NfL in serum and plasma samples.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuhle, J. et al. Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Mult. Scler. 22, 1550–1559 (2016).

    CAS  PubMed  Google Scholar 

  30. Piehl, F. et al. Plasma neurofilament light chain levels in patients with MS switching from injectable therapies to fingolimod. Mult. Scler. 24, 1046–1054 (2018).

    CAS  PubMed  Google Scholar 

  31. Bacioglu, M. et al. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron 91, 56–66 (2016).

    CAS  PubMed  Google Scholar 

  32. Wilke, C. et al. Neurofilament light chain in FTD is elevated not only in cerebrospinal fluid, but also in serum. J. Neurol. Neurosurg. Psychiatry 87, 1270–1272 (2016).

    PubMed  Google Scholar 

  33. Weydt, P. et al. Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann. Neurol. 79, 152–158 (2016). This study of asymptomatic and symptomatic ALS mutation carriers and family controls showed that blood NfL levels are normal in the asymptomatic stage and increase at the time of early symptom onset, thereby linking NfL to the symptomatic phase of ALS.

    CAS  PubMed  Google Scholar 

  34. Lu, C. H. et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84, 2247–2257 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Meeter, L. H. et al. Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann. Clin. Transl Neurol. 3, 623–636 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Novakova, L. et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology 89, 2230–2237 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Martinez-Morillo, E. et al. Neurofilament medium polypeptide (NFM) protein concentration is increased in CSF and serum samples from patients with brain injury. Clin. Chem. Lab. Med. 53, 1575–1584 (2015).

    CAS  PubMed  Google Scholar 

  38. Barro, C. et al. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain 141, 2382–2391 (2018).

    Google Scholar 

  39. Yilmaz, A. et al. Neurofilament light chain protein as a marker of neuronal injury: review of its use in HIV-1 infection and reference values for HIV-negative controls. Expert. Rev. Mol. Diagn. 17, 761–770 (2017).

    CAS  PubMed  Google Scholar 

  40. Reiber, H. Flow rate of cerebrospinal fluid (CSF) — a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J. Neurol. Sci. 122, 189–203 (1994).

    CAS  PubMed  Google Scholar 

  41. Idland, A. V. et al. CSF neurofilament light levels predict hippocampal atrophy in cognitively healthy older adults. Neurobiol. Aging 49, 138–144 (2017).

    CAS  PubMed  Google Scholar 

  42. Szaro, B. G. & Strong, M. J. Post-transcriptional control of neurofilaments: new roles in development, regeneration and neurodegenerative disease. Trends Neurosci. 33, 27–37 (2010).

    CAS  PubMed  Google Scholar 

  43. Mattsson, N., Andreasson, U., Zetterberg, H. & Blennow, K. Alzheimer’s Disease Neuroimaging Initiative. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 74, 557–566 (2017). In this paper, plasma NfL was associated with Alzheimer disease diagnosis and cognitive performance, suggesting that NfL is a noninvasive biomarker for this disease.

    PubMed  PubMed Central  Google Scholar 

  44. Bischof, A. et al. Serum neurofilament light chain: a biomarker of neuronal injury in vasculitic neuropathy. Ann. Rheum. Dis. 77, 1093–1094 (2017).

    PubMed  Google Scholar 

  45. Sandelius, A. et al. Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology 90, e518–e524 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brownlee, W. J., Hardy, T. A., Fazekas, F. & Miller, D. H. Diagnosis of multiple sclerosis: progress and challenges. Lancet 389, 1336–1346 (2017).

    PubMed  Google Scholar 

  47. Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Huizinga, R., Gerritsen, W., Heijmans, N. & Amor, S. Axonal loss and gray matter pathology as a direct result of autoimmunity to neurofilaments. Neurobiol. Dis. 32, 461–470 (2008).

    CAS  PubMed  Google Scholar 

  49. Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).

    CAS  PubMed  Google Scholar 

  50. Kuhlmann, T., Lingfeld, G., Bitsch, A., Schuchardt, J. & Bruck, W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125, 2202–2212 (2002).

    PubMed  Google Scholar 

  51. Tallantyre, E. C. et al. Clinico-pathological evidence that axonal loss underlies disability in progressive multiple sclerosis. Mult. Scler. 16, 406–411 (2010).

    PubMed  Google Scholar 

  52. Rocca, M. A. et al. Brain MRI atrophy quantification in MS: From methods to clinical application. Neurology 88, 403–413 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Lycke, J. N., Karlsson, J. E., Andersen, O. & Rosengren, L. E. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 64, 402–404 (1998). This work identified for the first time that neurofilament levels in CSF could be a biomarker in MS.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Norgren, N. et al. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63, 1586–1590 (2004).

    CAS  PubMed  Google Scholar 

  55. Teunissen, C. E. et al. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72, 1322–1329 (2009).

    CAS  PubMed  Google Scholar 

  56. Khalil, M. et al. CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome. Mult. Scler. 19, 436–442 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Arrambide, G. et al. Neurofilament light chain level is a weak risk factor for the development of MS. Neurology 87, 1076–1084 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Petzold, A. et al. CSF neurofilament levels: a potential prognostic marker in Guillain-Barre syndrome. Neurology 67, 1071–1073 (2006).

    CAS  PubMed  Google Scholar 

  59. Petzold, A., Steenwijk, M. D., Eikelenboom, J. M., Wattjes, M. P. & Uitdehaag, B. M. Elevated CSF neurofilament proteins predict brain atrophy: a 15-year follow-up study. Mult. Scler. 22, 1154–1162 (2016).

    CAS  PubMed  Google Scholar 

  60. Gunnarsson, M. et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann. Neurol. 69, 83–89 (2011). This longitudinal study showed a treatment effect of natalizumab on CSF levels of NfL in relapsing–remitting MS, regardless of previous treatment and whether patients experienced a relapse in the 3 months before natalizumab treatment.

    CAS  PubMed  Google Scholar 

  61. Kuhle, J. et al. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology 84, 1639–1643 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Novakova, L. et al. Cerebrospinal fluid biomarkers of inflammation and degeneration as measures of fingolimod efficacy in multiple sclerosis. Mult. Scler. 23, 62–71 (2017).

    CAS  PubMed  Google Scholar 

  63. Novakova, L. et al. Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing-remitting multiple sclerosis. J. Neurochem. 141, 296–304 (2017).

    CAS  PubMed  Google Scholar 

  64. Axelsson, M. et al. Immunosuppressive therapy reduces axonal damage in progressive multiple sclerosis. Mult. Scler. 20, 43–50 (2014).

    CAS  PubMed  Google Scholar 

  65. Romme Christensen, J. et al. Natalizumab in progressive MS: results of an open-label, phase 2A, proof-of-concept trial. Neurology 82, 1499–1507 (2014).

    CAS  PubMed  Google Scholar 

  66. Malmestrom, C., Haghighi, S., Rosengren, L., Andersen, O. & Lycke, J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61, 1720–1725 (2003).

    CAS  PubMed  Google Scholar 

  67. Rosengren, L. E., Karlsson, J. E., Sjogren, M., Blennow, K. & Wallin, A. Neurofilament protein levels in CSF are increased in dementia. Neurology 52, 1090–1093 (1999).

    CAS  PubMed  Google Scholar 

  68. Sjogren, M. et al. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology 54, 1960–1964 (2000).

    CAS  PubMed  Google Scholar 

  69. Olsson, B. et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 15, 673–684 (2016).

    CAS  PubMed  Google Scholar 

  70. Mattsson, N. et al. Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Mol. Med. 8, 1184–1196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zetterberg, H. Neurofilament light: a dynamic cross-disease fluid biomarker for neurodegeneration. Neuron 91, 1–3 (2016).

    CAS  PubMed  Google Scholar 

  72. Zetterberg, H. et al. Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression. JAMA Neurol. 73, 60–67 (2015).

    Google Scholar 

  73. Rohrer, J. D. et al. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 87, 1329–1336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Skillback, T. et al. CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology 83, 1945–1953 (2014).

    PubMed  Google Scholar 

  75. Pijnenburg, Y. A., Verwey, N. A., van der Flier, W. M., Scheltens, P. & Teunissen, C. E. Discriminative and prognostic potential of cerebrospinal fluid phosphoTau/tau ratio and neurofilaments for frontotemporal dementia subtypes. Alzheimers Dement. (Amst.) 1, 505–512 (2015).

    Google Scholar 

  76. Andreasson, U., Blennow, K. & Zetterberg, H. Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimers Dement. (Amst.) 3, 98–102 (2016).

    Google Scholar 

  77. Weston, P. S. J. et al. Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration. Neurology 89, 2167–2175 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Hansson, O. et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology 88, 930–937 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Steinacker, P. et al. Neurofilament as a blood marker for diagnosis and monitoring of primary progressive aphasias. Neurology 88, 961–969 (2017).

    CAS  PubMed  Google Scholar 

  80. Steinacker, P. et al. Neurofilaments in blood and CSF for diagnosis and prediction of onset in Creutzfeldt-Jakob disease. Sci. Rep. 6, 38737 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nylen, K. et al. CSF -neurofilament correlates with outcome after aneurysmal subarachnoid hemorrhage. Neurosci. Lett. 404, 132–136 (2006).

    CAS  PubMed  Google Scholar 

  82. Lewis, S. B., Wolper, R. A., Miralia, L., Yang, C. & Shaw, G. Detection of phosphorylated NF-H in the cerebrospinal fluid and blood of aneurysmal subarachnoid hemorrhage patients. J. Cereb. Blood Flow Metab. 28, 1261–1271 (2008).

    CAS  PubMed  Google Scholar 

  83. Zanier, E. R. et al. Neurofilament light chain levels in ventricular cerebrospinal fluid after acute aneurysmal subarachnoid haemorrhage. J. Neurol. Neurosurg. Psychiatry 82, 157–159 (2011).

    CAS  PubMed  Google Scholar 

  84. Traenka, C. et al. Serum neurofilament light chain levels are associated with clinical characteristics and outcome in patients with cervical artery dissection. Cerebrovasc. Dis. 40, 222–227 (2015).

    PubMed  Google Scholar 

  85. Gattringer, T. et al. Serum neurofilament light is sensitive to active cerebral small vessel disease. Neurology 89, 2108–2114 (2017). This study provided evidence of a possible role for serum NfL as a marker of ongoing cerebral small vessel disease and for the occurrence of new vascular MRI lesions, even when these lesions are clinically silent.

    PubMed  Google Scholar 

  86. Bergman, J. et al. Neurofilament light in CSF and serum is a sensitive marker for axonal white matter injury in MS. Neurol. Neuroimmunol. Neuroinflamm. 3, e271 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Blennow, K. et al. Traumatic brain injuries. Nat. Rev. Dis. Primers 2, 16084 (2016).

    PubMed  Google Scholar 

  88. McKee, A. C. et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 131, 75–86 (2016).

    CAS  PubMed  Google Scholar 

  89. Dekosky, S. T., Blennow, K., Ikonomovic, M. D. & Gandy, S. Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat. Rev. Neurol. 9, 192–200 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zetterberg, H. et al. Neurochemical aftermath of amateur boxing. Arch. Neurol. 63, 1277–1280 (2006).

    PubMed  Google Scholar 

  91. Neselius, S. et al. CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS ONE 7, e33606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shahim, P. et al. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci. Rep. 6, 36791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Al Nimer, F. et al. Comparative assessment of the prognostic value of biomarkers in traumatic brain injury reveals an independent role for serum levels of neurofilament light. PLoS ONE 10, e0132177 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Shahim, P., Zetterberg, H., Tegner, Y. & Blennow, K. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports. Neurology 88, 1788–1794 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Oliver, J. M. et al. Serum neurofilament light in american football athletes over the course of a season. J. Neurotrauma 33, 1784–1789 (2016).

    PubMed  Google Scholar 

  96. Al-Chalabi, A. et al. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol. 15, 1182–1194 (2016).

    PubMed  Google Scholar 

  97. Brettschneider, J., Petzold, A., Sussmuth, S. D., Ludolph, A. C. & Tumani, H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66, 852–856 (2006).

    CAS  PubMed  Google Scholar 

  98. Zetterberg, H., Jacobsson, J., Rosengren, L., Blennow, K. & Andersen, P. M. Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur. J. Neurol. 14, 1329–1333 (2007).

    CAS  PubMed  Google Scholar 

  99. Mendonca, D. M. et al. Neurofilament heavy subunit in cerebrospinal fluid: a biomarker of amyotrophic lateral sclerosis? Amyotroph. Lateral Scler. 12, 144–147 (2011).

    PubMed  Google Scholar 

  100. McCombe, P. A. et al. Serial measurements of phosphorylated neurofilament-heavy in the serum of subjects with amyotrophic lateral sclerosis. J. Neurol. Sci. 353, 122–129 (2015).

    CAS  PubMed  Google Scholar 

  101. Li, S. et al. Phosphorylated neurofilament heavy chain levels in paired plasma and CSF of amyotrophic lateral sclerosis. J. Neurol. Sci. 367, 269–274 (2016).

    CAS  PubMed  Google Scholar 

  102. Steinacker, P. et al. Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J. Neurol. Neurosurg. Psychiatry 87, 12–20 (2016).

    PubMed  Google Scholar 

  103. De, S. M. et al. Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 89, 367–373 (2017).

    Google Scholar 

  104. Poesen, K. et al. Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease. Neurology 88, 2302–2309 (2017).

    CAS  PubMed  Google Scholar 

  105. Oeckl, P. P. et al. Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph. Lateral. Scler. Frontotemporal Degener. 17, 404–413 (2016).

    CAS  PubMed  Google Scholar 

  106. Gendron, T. F. et al. Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann. Neurol. 82, 139–146 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lehmer, C. et al. Poly-GP in cerebrospinal fluid links C9orf72-associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol. Med. 9, 859–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Feneberg, E. et al. Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology 90, e22–e30 (2018).

    CAS  PubMed  Google Scholar 

  109. Boylan, K. B. et al. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 84, 467–472 (2013).

    PubMed  Google Scholar 

  110. Menke, R. A. et al. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann. Clin. Transl Neurol. 2, 748–755 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H. & Strong, M. J. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 1305, 168–182 (2009).

    CAS  PubMed  Google Scholar 

  112. Halbgebauer, S., Ockl, P., Wirth, K., Steinacker, P. & Otto, M. Protein biomarkers in Parkinson’s disease: focus on cerebrospinal fluid markers and synaptic proteins. Mov. Disord. 31, 848–860 (2016).

    CAS  PubMed  Google Scholar 

  113. Eusebi, P. et al. Diagnostic utility of cerebrospinal fluid alpha-synuclein in Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 32, 1389–1400 (2017).

    CAS  PubMed  Google Scholar 

  114. Holmberg, B., Rosengren, L., Karlsson, J. E. & Johnels, B. Increased cerebrospinal fluid levels of neurofilament protein in progressive supranuclear palsy and multiple-system atrophy compared with Parkinson’s disease. Mov. Disord. 13, 70–77 (1998).

    CAS  PubMed  Google Scholar 

  115. Brettschneider, J. et al. Neurofilament heavy-chain NfH(SMI35) in cerebrospinal fluid supports the differential diagnosis of Parkinsonian syndromes. Mov. Disord. 21, 2224–2227 (2006).

    PubMed  Google Scholar 

  116. Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452 (2012).

    PubMed  Google Scholar 

  117. Magdalinou, N. K. et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 86, 1240–1247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rojas, J. C. et al. Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann. Clin. Transl Neurol. 3, 216–225 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Byrne, L. M. et al. Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol. 16, 601–609 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wild, E. J., Petzold, A., Keir, G. & Tabrizi, S. J. Plasma neurofilament heavy chain levels in Huntington’s disease. Neurosci. Lett. 417, 231–233 (2007).

    CAS  PubMed  Google Scholar 

  121. Constantinescu, R., Romer, M., Oakes, D., Rosengren, L. & Kieburtz, K. Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat. Disord. 15, 245–248 (2009).

    PubMed  Google Scholar 

  122. Niemela, V., Landtblom, A. M., Blennow, K. & Sundblom, J. Tau or neurofilament light -which is the more suitable biomarker for Huntington’s disease? PLoS ONE 12, e0172762 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Cousins, D. A. & Grunze, H. Interpreting magnetic resonance imaging findings in bipolar disorder. CNS Neurosci. Ther. 18, 201–207 (2012).

    PubMed  Google Scholar 

  124. Jakobsson, J. et al. Elevated concentrations of neurofilament light chain in the cerebrospinal fluid of bipolar disorder patients. Neuropsychopharmacology 39, 2349–2356 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Isgren, A. et al. Markers of neuroinflammation and neuronal injury in bipolar disorder: relation to prospective clinical outcomes. Brain Behav. Immun. 65, 195–201 (2017).

    PubMed  Google Scholar 

  126. Steinacker, P. et al. Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: Data from the German MND-net. Amyotroph. Lateral. Scler. Frontotemporal. Degener. 18, 112–119 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.O. is supported by the German Federal Ministry for Education and Research (German FTLD consortium), the Thierry Latran Foundation and the ALS association. H.Z. is supported by grants from the Swedish Research Council, the European Research Council and the Knut and Alice Wallenberg Foundation. K.B. is supported by grants from the Swedish Research Council, the Swedish Alzheimer Association, the Swedish Brain Foundation and the Torsten Söderberg Foundation. J.K. is supported by grants from the Swiss National Science Foundation (320030_160221). F.P. is supported by grants from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding authors

Correspondence to Michael Khalil or Jens Kuhle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, M., Teunissen, C.E., Otto, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 14, 577–589 (2018). https://doi.org/10.1038/s41582-018-0058-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0058-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research