Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Promises and limitations of immune cell-based therapies in neurological disorders

Abstract

The healthy immune system has natural checkpoints that temper pernicious inflammation. Cells mediating these checkpoints include regulatory T cells, regulatory B cells, regulatory dendritic cells, microglia, macrophages and monocytes. Here, we highlight discoveries on the beneficial functions of regulatory immune cells and their mechanisms of action and evaluate their potential use as novel cell-based therapies for brain disorders. Regulatory immune cell therapies have the potential not only to mitigate the exacerbation of brain injury by inflammation but also to promote an active post-injury brain repair programme. By harnessing the reparative properties of these cells, we can reduce over-reliance on medications that mask clinical symptoms but fail to impede or reverse the progression of brain disorders. Although these discoveries encourage further testing and genetic engineering of regulatory immune cells for the clinical management of neurological disorders, a number of challenges must be surmounted to improve their safety and efficacy in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms underlying regulatory T cell-mediated neuroprotection or regeneration.
Fig. 2: Timeline of some seminal findings in adoptive cell therapies.

Similar content being viewed by others

References

  1. Hu, X. et al. Microglial and macrophage polarization-new prospects for brain repair. Nat. Rev. Neurol. 11, 56–64 (2015).

    Article  PubMed  Google Scholar 

  2. Fu, Y., Liu, Q., Anrather, J. & Shi, F. D. Immune interventions in stroke. Nat. Rev. Neurol. 11, 524–535 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    Article  PubMed  CAS  Google Scholar 

  4. Li, P. et al. Adoptive regulatory T cell therapy protects against cerebral ischemia. Ann. Neurol. 74, 458–471 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ren, X. et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J. Neurosci. 31, 8556–8563 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mohammad, M. G. et al. Immune cell trafficking from the brain maintains CNS immune tolerance. J. Clin. Invest. 124, 1228–1241 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hu, X. et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43, 3063–3070 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. Wang, J. et al. Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front. Cell Neurosci. 9, 361 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Dombrowski, Y. et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20, 674–680 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Koutrolos, M., Berer, K., Kawakami, N., Wekerle, H. & Krishnamoorthy, G. Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS. Acta Neuropathol. Commun. 2, 163 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. McGeachy, M. J., Stephens, L. A. & Anderton, S. M. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 175, 3025–3032 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Chi, Y. et al. Novel role of aquaporin-4 in CD4+ CD25+ T regulatory cell development and severity of Parkinson’s disease. Aging Cell 10, 368–382 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Dansokho, C. et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139, 1237–1251 (2016).

    Article  PubMed  Google Scholar 

  15. Zhao, W., Beers, D. R., Liao, B., Henkel, J. S. & Appel, S. H. Regulatory T lymphocytes from ALS mice suppress microglia and effector T lymphocytes through different cytokine-mediated mechanisms. Neurobiol. Dis. 48, 418–428 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Baruch, K. et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun. 6, 7967 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Kleinschnitz, C. et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121, 679–691 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tullius, S. G. et al. NAD+ protects against EAE by regulating CD4+ T cell differentiation. Nat. Commun. 5, 5101 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Kleinschnitz, C. et al. Early detrimental T cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115, 3835–3842 (2010).

    Article  PubMed  CAS  Google Scholar 

  20. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Gelderblom, M. et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 120, 3793–3802 (2012).

    Article  PubMed  CAS  Google Scholar 

  22. Shevach, E. M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    Article  PubMed  CAS  Google Scholar 

  23. Gondek, D. C. et al. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells. J. Immunol. 181, 4752–4760 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. Garin, M. I. et al. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109, 2058–2065 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Huang, C. T. et al. Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. Read, S. et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol. 177, 4376–4383 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. Sauer, A. V. et al. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood 119, 1428–1439 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Andre, S., Tough, D. F., Lacroix-Desmazes, S., Kaveri, S. V. & Bayry, J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am. J. Pathol. 174, 1575–1587 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J. Exp. Med. 202, 1075–1085 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhou, K. et al. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3beta/PTEN axis. J. Cereb. Blood Flow Metab. 37, 967–979 (2017).

    Article  PubMed  CAS  Google Scholar 

  32. Mao, L. et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain 140, 1914–1931 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saino, O. et al. Immunodeficiency reduces neural stem/progenitor cell apoptosis and enhances neurogenesis in the cerebral cortex after stroke. J. Neurosci. Res. 88, 2385–2397 (2010).

    PubMed  CAS  Google Scholar 

  34. Pang, X. & Qian, W. Changes in regulatory T-cell levels in acute cerebral ischemia. J. Neurol. Surg. A Cent. Eur. Neurosurg. 78, 374–379 (2017).

    Article  PubMed  Google Scholar 

  35. Golshayan, D. et al. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 109, 827–835 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Zhang, H. et al. Sequential monitoring and stability of ex vivo-expanded autologous and nonautologous regulatory T cells following infusion in nonhuman primates. Am. J. Transplant. 15, 1253–1266 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hippen, K. L. et al. Umbilical cord blood regulatory T cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood 112, 2847–2857 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dijke, I. E. et al. Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am. J. Transplant 16, 58–71 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Shevach, E. M. Application of IL-2 therapy to target T regulatory cell function. Trends Immunol. 33, 626–632 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim, B. S. et al. Treatment with agonistic DR3 antibody results in expansion of donor Tregs and reduced graft-versus-host disease. Blood 126, 546–557 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Biswas, M. et al. Synergy between rapamycin and FLT3 ligand enhances plasmacytoid dendritic cell-dependent induction of CD4+CD25+FoxP3+ Treg. Blood 125, 2937–2947 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. Kasagi, S. et al. In vivo-generated antigen-specific regulatory T cells treat autoimmunity without compromising antibacterial immune response. Sci. Transl Med. 6, 241ra78 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yoon, J. et al. FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T and B cell responses to FVIII. Blood 129, 238–245 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fransson, M. et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J. Neuroinflammation 9, 112 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Matsushita, T., Yanaba, K., Bouaziz, J. D., Fujimoto, M. & Tedder, T. F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest. 118, 3420–3430 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Matsushita, T., Horikawa, M., Iwata, Y. & Tedder, T. F. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J. Immunol. 185, 2240–2252 (2010).

    Article  PubMed  CAS  Google Scholar 

  49. Lundy, S. K. et al. Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B cell subsets. Neurol. Neuroimmunol. Neuroinflamm. 3, e211 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ray, A., Basu, S., Williams, C. B., Salzman, N. H. & Dittel, B. N. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J. Immunol. 188, 3188–3198 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. Lee, K. M. et al. TGF-beta-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance. Eur. J. Immunol. 44, 1728–1736 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Korniotis, S. et al. Treatment of ongoing autoimmune encephalomyelitis with activated B cell progenitors maturing into regulatory B cells. Nat. Commun. 7, 12134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hori, S., Haury, M., Coutinho, A. & Demengeot, J. Specificity requirements for selection and effector functions of CD25+4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc. Natl Acad. Sci. USA 99, 8213–8218 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Matsumoto, M. et al. The calcium sensors STIM1 and STIM2 control B cell regulatory function through interleukin-10 production. Immunity 34, 703–714 (2011).

    Article  PubMed  CAS  Google Scholar 

  56. Yu, P. et al. Specific T regulatory cells display broad suppressive functions against experimental allergic encephalomyelitis upon activation with cognate antigen. J. Immunol. 174, 6772–6780 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. Miyao, T. et al. Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36, 262–275 (2012).

    Article  PubMed  CAS  Google Scholar 

  58. Chen, W. J. et al. Human umbilical vein endothelial cells promote the inhibitory activation of CD4(+)CD25(+)Foxp3(+) regulatory T cells via PD-L1. Atherosclerosis 244, 108–112 (2016).

    Article  PubMed  CAS  Google Scholar 

  59. Bedke, T., Pretsch, L., Karakhanova, S., Enk, A. H. & Mahnke, K. Endothelial cells augment the suppressive function of CD4+ CD25+ Foxp3+ regulatory T cells: involvement of programmed death-1 and IL-10. J. Immunol. 184, 5562–5570 (2010).

    Article  PubMed  CAS  Google Scholar 

  60. Taflin, C. et al. Human endothelial cells generate Th17 and regulatory T cells under inflammatory conditions. Proc. Natl Acad. Sci. USA 108, 2891–2896 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 10, 1178–1184 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gabrysova, L. et al. Integrated T cell receptor and costimulatory signals determine TGF-beta-dependent differentiation and maintenance of Foxp3+ regulatory T cells. Eur. J. Immunol. 41, 1242–1248 (2011).

    Article  PubMed  CAS  Google Scholar 

  63. Korn, T. et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 105, 18460–18465 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rosser, E. C. et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1beta and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 22, 516–523 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549–559 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bailey-Bucktrout, S. L. et al. Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J. Immunol. 180, 6457–6461 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. Irla, M. et al. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity. J. Exp. Med. 207, 1891–1905 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Obregon, C., Kumar, R., Pascual, M. A., Vassalli, G. & Golshayan, D. Update on dendritic cell-induced immunological and clinical tolerance. Front. Immunol. 8, 1514 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Raich-Regue, D., Glancy, M. & Thomson, A. W. Regulatory dendritic cell therapy: from rodents to clinical application. Immunol. Lett. 161, 216–221 (2014).

    Article  PubMed  CAS  Google Scholar 

  71. Getts, D. R. et al. Microparticles bearing encephalitogenic peptides induce T cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30, 1217–1224 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Maldonado, R. A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl Acad. Sci. USA 112, E156–E165 (2015).

    Article  PubMed  CAS  Google Scholar 

  73. Terness, P. et al. Mitomycin C-treated dendritic cells inactivate autoreactive T cells: toward the development of a tolerogenic vaccine in autoimmune diseases. Proc. Natl Acad. Sci. USA 105, 18442–18447 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hirata, S. et al. Prevention of experimental autoimmune encephalomyelitis by transfer of embryonic stem cell-derived dendritic cells expressing myelin oligodendrocyte glycoprotein peptide along with TRAIL or programmed death-1 ligand. J. Immunol. 174, 1888–1897 (2005).

    Article  PubMed  CAS  Google Scholar 

  75. Maus, M. V. et al. Adoptive immunotherapy for cancer or viruses. Annu. Rev. Immunol. 32, 189–225 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lin, Y. & Okada, H. Cellular immunotherapy for malignant gliomas. Expert Opin. Biol. Ther. 16, 1265–1275 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kumar, A. A., Kumar, S. R., Narayanan, R., Arul, K. & Baskaran, M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp. Clin. Transplant. 7, 241–248 (2009).

    PubMed  Google Scholar 

  78. Martinez, H. R. et al. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 11, 26–34 (2009).

    Article  PubMed  CAS  Google Scholar 

  79. Rosado-de-Castro, P. H., de Carvalho, F. G., de Freitas, G. R., Mendez-Otero, R. & Pimentel-Coelho, P. M. Review of preclinical and clinical studies of bone marrow-derived cell therapies for intracerebral hemorrhage. Stem Cells Int. 2016, 4617983 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sharma, A. et al. A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Stem Cells Int. 2015, 905874 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bhasin, A. et al. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. J. Stem Cells Regen. Med. 8, 181–189 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Li, P. et al. Essential role of program death 1-ligand 1 in regulatory T cell-afforded protection against blood-brain barrier damage after stroke. Stroke 45, 857–864 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Singh, V. et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36, 7428–7440 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Trzonkowski, P. et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin. Immunol. 133, 22–26 (2009).

    Article  PubMed  CAS  Google Scholar 

  86. Riley, J. L., June, C. H. & Blazar, B. R. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity 30, 656–665 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl Med. 7, 315ra189 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Brunstein, C. G. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117, 1061–1070 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Theil, A. et al. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease. Cytotherapy 17, 473–486 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Alsuliman, A. et al. A robust, good manufacturing practice-compliant, clinical-scale procedure to generate regulatory T cells from patients with amyotrophic lateral sclerosis for adoptive cell therapy. Cytotherapy 18, 1312–1324 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Eliseeva, D. D. et al. [The treatment by expanded ex vivo autologous regulatory T cells CD4+CD25+FoxP3+CD127low restores the balance of immune system in patients with remitting-relapsing multiple sclerosis]. Zh. Nevrol. Psikhiatr Im S. S. Korsakova 116, 54–62 (2016).

    Article  PubMed  CAS  Google Scholar 

  92. Romano, M., Tung, S. L., Smyth, L. A. & Lombardi, G. Treg therapy in transplantation: a general overview. Transpl. Int. 30, 745–753 (2016).

    Article  CAS  Google Scholar 

  93. Lindner, S. et al. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. 73, 2468–2479 (2013).

    Article  PubMed  CAS  Google Scholar 

  94. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Benham, H. et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci. Transl Med. 7, 290ra87 (2015).

    Article  PubMed  CAS  Google Scholar 

  96. Raiotach-Regue, D. et al. Stable antigen-specific T cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. Eur. J. Immunol. 42, 771–782 (2012).

    Article  PubMed  CAS  Google Scholar 

  97. Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tey, S. K. Adoptive T cell therapy: adverse events and safety switches. Clin. Transl Immunology 3, e17 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Seifert, H. A. et al. Sex differences in regulatory cells in experimental stroke. Cell. Immunol. 318, 49–54 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Garg, S. K. et al. Aging is associated with increased regulatory T cell function. Aging Cell 13, 441–448 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Walsh, J. T. & Kipnis, J. Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends Mol. Med. 17, 541–547 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA 106, 1903–1908 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Gol-Ara, M., Jadidi-Niaragh, F., Sadria, R., Azizi, G. & Mirshafiey, A. The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis 2012, 805875 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zohar, Y. et al. CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. J. Clin. Invest. 124, 2009–2022 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Akane, K., Kojima, S., Mak, T. W., Shiku, H. & Suzuki, H. CD8+CD122+CD49dlow regulatory T cells maintain T cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 113, 2460–2465 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Dai, H. et al. Cutting edge: programmed death-1 defines CD8+CD122+ T cells as regulatory versus memory T cells. J. Immunol. 185, 803–807 (2010).

    Article  PubMed  CAS  Google Scholar 

  109. Iwata, Y. et al. Characterization of a rare IL-10-competent B cell subset in humans that parallels mouse regulatory B10 cells. Blood 117, 530–541 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Blair, P. A. et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 32, 129–140 (2010).

    Article  PubMed  CAS  Google Scholar 

  111. Yan, J. et al. Frequency and function of regulatory T cells after ischaemic stroke in humans. J. Neuroimmunol. 243, 89–94 (2012).

    Article  PubMed  CAS  Google Scholar 

  112. Chan, A., Yan, J., Csurhes, P., Greer, J. & McCombe, P. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: effect on outcome. J. Neuroimmunol. 286, 42–47 (2015).

    Article  PubMed  CAS  Google Scholar 

  113. Yan, J. et al. Immune activation in the peripheral blood of patients with acute ischemic stroke. J. Neuroimmunol. 206, 112–117 (2009).

    Article  PubMed  CAS  Google Scholar 

  114. Huan, J. et al. Decreased FOXP3 levels in multiple sclerosis patients. J. Neurosci. Res. 81, 45–52 (2005).

    Article  PubMed  CAS  Google Scholar 

  115. Pellicano, M. et al. Immune profiling of Alzheimer patients. J. Neuroimmunol. 242, 52–59 (2012).

    Article  PubMed  CAS  Google Scholar 

  116. Saunders, J. A. et al. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J. Neuroimmune Pharmacol. 7, 927–938 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rosenkranz, D. et al. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J. Neuroimmunol. 188, 117–127 (2007).

    Article  PubMed  CAS  Google Scholar 

  118. Mikulkova, Z., Praksova, P., Stourac, P., Bednarik, J. & Michalek, J. Imbalance in T cell and cytokine profiles in patients with relapsing-remitting multiple sclerosis. J. Neurol. Sci. 300, 135–141 (2011).

    Article  PubMed  CAS  Google Scholar 

  119. Beers, D. R. et al. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight 2, e89530 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Henkel, J. S. et al. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med. 5, 64–79 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. Pelidou, S. H. et al. High levels of IL-10 secreting cells are present in blood in cerebrovascular diseases. Eur. J. Neurol. 6, 437–442 (1999).

    Article  PubMed  CAS  Google Scholar 

  122. Huang, W. et al. Identification of distinct monocyte phenotypes and correlation with circulating cytokine profiles in acute response to spinal cord injury: a pilot study. PM R. 6, 332–341 (2014).

    Article  PubMed  Google Scholar 

  123. Cho, K. Y. et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J. Stroke Cerebrovasc. Dis. 22, 910–918 (2013).

    Article  PubMed  Google Scholar 

  124. Li, P. et al. C-C chemokine receptor type 5 (CCR5)-mediated docking of transferred Tregs protects against early blood-brain barrier disruption after stroke. J. Am. Heart Assoc. 6, e006387 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Li, P. et al. Adoptive regulatory T cell therapy preserves systemic immune homeostasis after cerebral ischemia. Stroke 44, 3509–3515 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Brea, D. et al. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia. J. Cell. Mol. Med. 18, 1571–1579 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kohm, A. P., Carpentier, P. A., Anger, H. A. & Miller, S. D. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 4712–4716 (2002).

    Article  PubMed  CAS  Google Scholar 

  128. Zhang, X. et al. IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. Int. Immunol. 16, 249–256 (2004).

    Article  PubMed  CAS  Google Scholar 

  129. Mao, L. L. et al. Adoptive regulatory T cell therapy attenuates perihematomal inflammation in a mouse model of experimental intracerebral hemorrhage. Cell. Mol. Neurobiol. 37, 919–929 (2017).

    Article  PubMed  CAS  Google Scholar 

  130. Wang, Y. et al. Adoptive regulatory T cell therapy attenuates subarachnoid hemor-rhage-induced cerebral inflammation by suppressing TLR4/NF-B signaling pathway. Curr. Neurovasc. Res. 13, 121–126 (2016).

    Article  PubMed  CAS  Google Scholar 

  131. Reynolds, A. D., Banerjee, R., Liu, J., Gendelman, H. E. & Mosley, R. L. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J. Leukoc. Biol. 82, 1083–1094 (2007).

    Article  PubMed  CAS  Google Scholar 

  132. Reynolds, A. D. et al. Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J. Immunol. 184, 2261–2271 (2010).

    Article  PubMed  CAS  Google Scholar 

  133. Bodhankar, S., Chen, Y., Vandenbark, A. A., Murphy, S. J. & Offner, H. IL-10-producing B cells limit CNS inflammation and infarct volume in experimental stroke. Metab. Brain Dis. 28, 375–386 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Bodhankar, S. et al. Regulatory CD8(+)CD122 (+) T cells predominate in CNS after treatment of experimental stroke in male mice with IL-10-secreting B cells. Metab. Brain Dis. 30, 911–924 (2015).

    Article  PubMed  CAS  Google Scholar 

  135. Bodhankar, S., Chen, Y., Vandenbark, A. A., Murphy, S. J. & Offner, H. Treatment of experimental stroke with IL-10-producing B cells reduces infarct size and peripheral and CNS inflammation in wild-type B cell-sufficient mice. Metab. Brain Dis. 29, 59–73 (2014).

    Article  PubMed  CAS  Google Scholar 

  136. Chen, Y. et al. Intrastriatal B cell administration limits infarct size after stroke in B cell deficient mice. Metab. Brain Dis. 27, 487–493 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Pennati, A. et al. Regulatory B cells induce formation of IL-10-expressing T cells in mice with autoimmune neuroinflammation. J. Neurosci. 36, 12598–12610 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

X.H. is supported by grants from the US National Institutes of Health (NIH) (NS094573 and NS092618). R.K.L. is supported by the NIH (1R15NS093539). A.W.T. is supported by the NIH (1R01AI118777 and U19AI131453). J.C. is supported by grants from the NIH (NS105430, NS095671, NS095029 and NS089534), the US Veterans Affairs (VA) Merit Review awards (I01BX003377 and I01BX002495) and the VA Senior Research Career Scientist Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review and editing of the manuscript before submission. X.H., R.K.L., A.W.T., F.Y., Y.X. and J.C. researched and wrote the article. X.H., R.K.L., A.W.T. and J.C. contributed substantially to the discussion of content.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Leak, R.K., Thomson, A.W. et al. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 14, 559–568 (2018). https://doi.org/10.1038/s41582-018-0028-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0028-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing