Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multidimensional communication in the microenvirons of glioblastoma

Abstract

Glioblastomas are heterogeneous and invariably lethal tumours. They are characterized by genetic and epigenetic variations among tumour cells, which makes the development of therapies that eradicate all tumour cells challenging and currently impossible. An important component of glioblastoma growth is communication with and manipulation of other cells in the brain environs, which supports tumour progression and resistance to therapy. Glioblastoma cells recruit innate immune cells and change their phenotype to support tumour growth. Tumour cells also suppress adaptive immune responses, and our increasing understanding of how T cells access the brain and how the tumour thwarts the immune response offers new strategies for mobilizing an antitumour response. Tumours also subvert normal brain cells — including endothelial cells, neurons and astrocytes — to create a microenviron that favours tumour success. Overall, after glioblastoma-induced phenotypic modifications, normal cells cooperate with tumour cells to promote tumour proliferation, invasion of the brain, immune suppression and angiogenesis. This glioblastoma takeover of the brain involves multiple modes of communication, including soluble factors such as chemokines and cytokines, direct cell–cell contact, extracellular vesicles (including exosomes and microvesicles) and connecting nanotubes and microtubes. Understanding these multidimensional communications between the tumour and the cells in its environs could open new avenues for therapy.

Key Points

  • Glioblastomas use numerous forms of communication to hijack many different cell types in the brain environs to support tumour progression.

  • Communication routes include secreted proteins and molecules, gap junctions between cells, extracellular vesicles, tunnelling nanotubes and microtubes.

  • Tumour cells co-opt microglia and infiltrating macrophages for their own benefit through the release of cytokines and extracellular vesicles.

  • Glioblastomas and pericytes generate a state of reduced T cell effector function that is commonly referred to as T cell exhaustion or dysfunction.

  • The interaction of tumour cells with normal brain cells, such as neurons, is not unidirectional, and neuronal activity is subverted to promote glioblastoma progression.

  • Comprehension and disruption of tumour directives in the glioblastoma microenvironment could improve therapeutic intervention for these lethal tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glioblastoma microenvironment.
Fig. 2: Routes of communication between tumour cells and cells in their environs
Fig. 3: Interactions between glioma and TAMs.
Fig. 4: T lymphocytes in the glioblastoma environment.

Similar content being viewed by others

References

  1. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    Article  PubMed  CAS  Google Scholar 

  2. Jhaveri, N., Chen, T. C. & Hofman, F. M. Tumor vasculature and glioma stem cells: contributions to glioma progression. Cancer Lett. 380, 545–551 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. See, A. P., Parker, J. J. & Waziri, A. The role of regulatory T cells and microglia in glioblastoma-associated immunosuppression. J. Neurooncol. 23, 405–412 (2015).

    Article  CAS  Google Scholar 

  4. Roesch, S., Rapp, C., Dettling, S. & Herold-Mende, C. When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int. J. Mol. Sci. 19, E436 (2018).

    Article  PubMed  Google Scholar 

  5. Okolie, O. et al. Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol. 18, 1622–1633 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Pencheva, N. et al. Identification of a druggable pathway controlling glioblastoma invasiveness. Cell Rep. 20, 48–60 (2017).

    Article  PubMed  CAS  Google Scholar 

  7. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Boussiotis, V. A. & Charest, A. Immunotherapies for malignant glioma. Oncogene 15, 1121–1141 (2017).

    Google Scholar 

  10. Thuringer, D. et al. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions. Oncotarget 7, 73925–73934 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Hong, X., Sin, W. C., Harris, A. L. & Naus, C. C. Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 6, 15566–15577 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Balça-Silva, J. et al. The expression of connexins and SOX2 reflects the plasticity of glioma stem-like cells. Transl Oncol. 10, 555–569 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tkach, M. & Théry, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. Maas, S. L., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Minciacchi, V. R. et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6, 11327–11341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rilla, K. et al. Hyaluronan production enhances shedding of plasma membrane-derived microvesicles. Exp. Cell Res. 319, 2006–2018 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Lai, C. P. et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8, 483–494 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fonseca, P., Vardaki, I., Occhionero, A. & Panaretakis, T. Metabolic and signaling functions of cancer cell-derived extracellular vesicles. Int. Rev. Cell. Mol. Biol. 326, 175–199 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. D’Asti, E., Chennakrishnaiah, S., Lee, T. H. & Rak, J. Extracellular vesicles in brain tumor progression. Cell. Mol. Neurobiol. 36, 383–407 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. Redzic, J., Balaj, L., van der Vos, K. & Breakefield, X. O. Extracellular RNA mediates and marks cancer progression. Semin. Cancer Biol. 28, 14–23 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Wang, X., Veruki, M. L., Bukoreshtliev, N. V., Hartveit, E. & Gerdes, H. H. Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc. Natl Acad. Sci. USA 107, 17194–17199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vignais, M. L., Caicedo, A., Brondello, J. M. & Jorgensen, C. Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int. 2017, 6917941 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015).

    PubMed  CAS  Google Scholar 

  24. Weil, S. et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 19, 1316–1326 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. van der Vos, K. E. et al. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol. 18, 58–69 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chen, Z. et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77, 2266–2278 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. V. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Müller, A., Brandenburg, S., Turkowski, K., Müller, S. & Vajkoczy, P. Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int. J. Cancer 137, 278–288 (2015).

    Article  PubMed  CAS  Google Scholar 

  32. Hambardzumyan, D., Gutmann, D. H. & Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20–27 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li, W. & Graeber, M. B. The molecular profile of microglia under the influence of glioma. Neuro Oncol. 14, 958–978 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhou, W. et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat. Cell Biol. 17, 170–182 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Alieva, M. et al. Preventing inflammation inhibits biopsy-mediated changes in tumor cell behavior. Sci. Rep. 7, 7529 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chang, A. L. et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76, 5671–5682 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wurdinger, T., Deumelandt, K., van der Vliet, H. J., Wesseling, P. & de Gruijl, T. D. Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochim. Biophys. Acta 1846, 560–575 (2014).

    PubMed  CAS  Google Scholar 

  38. de Vrij, J. et al. Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. Int. J. Cancer 137, 1630–1642 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Ransohoff, R. M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991 (2016).

    Article  PubMed  CAS  Google Scholar 

  40. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gabrusiewicz, K. et al. Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS ONE 6, e23902 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Szulzewsky, F. et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS ONE 10, e0116644 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kim, C. C., Nakamura, M. C. & Hsieh, C. L. Brain trauma elicits non-canonical macrophage activation states. J. Neuroinflamm. 13, 117 (2016).

    Article  CAS  Google Scholar 

  45. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Du, R. et al. Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GB. Neuro Oncol. 10, 254–264 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hu, F. et al. Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro Oncol. 17, 200–210 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. Brandenburg, S. et al. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol. 131, 365–378 (2016).

    Article  PubMed  CAS  Google Scholar 

  49. Nijaguna, M. B. et al. Glioblastoma-derived macrophage colony-stimulating factor (MCSF) induces microglial release of insulin-like growth factor-binding protein 1 (IGFBP1) to promote angiogenesis. J. Biol. Chem. 290, 23401–23415 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chen, X. et al. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res. 74, 7285–7297 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Fossati, G. et al. Neutrophil infiltration into human gliomas. Acta Neuropathol. 98, 349–354 (1999).

    Article  PubMed  CAS  Google Scholar 

  52. Põlajeva, J. et al. Mast cell accumulation in glioblastoma with a potential role for stem cell factor and chemokine CXCL12. PLoS ONE 6, e25222 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  PubMed  CAS  Google Scholar 

  54. Sionov, R. V., Fridlender, Z. G. & Granot, Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 8, 125–158 (2015).

    Article  PubMed  CAS  Google Scholar 

  55. Põlajeva, J. et al. Glioma-derived macrophage migration inhibitory factor (MIF) promotes mast cell recruitment in a STAT5-dependent manner. Mol. Oncol. 8, 50–58 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Roy, A. et al. Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells. Oncotarget 6, 23647–23661 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Attarha, S., Roy, A., Westermark, B. & Tchougounova, E. Mast cells modulate proliferation, migration and stemness of glioma cells through downregulation of GSK3β expression and inhibition of STAT3 activation. Cell. Signal. 37, 81–92 (2017).

    Article  PubMed  CAS  Google Scholar 

  58. Compston, A. & Coles, A. Multiple sclerosis. Lancet 372, 1502–1517 (2008).

    Article  PubMed  CAS  Google Scholar 

  59. Dalmau, J. & Rosenfeld, M. R. Paraneoplastic syndromes of the CNS. Lancet Neurol. 7, 327–340 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Berger, J. R. & Koralnik, I. J. Progressive multifocal leukoencephalopathy and natalizumab—unforeseen consequences. N. Engl. J. Med. 353, 414–416 (2005).

    Article  PubMed  CAS  Google Scholar 

  61. Calzascia, T. et al. Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22, 175–184 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

    Article  PubMed  CAS  Google Scholar 

  63. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lohr, J. et al. Effector T cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin. Cancer Res. 17, 4296–4308 (2011).

    Article  PubMed  CAS  Google Scholar 

  65. Kim, Y. H. et al. Tumour-infiltrating T cell subpopulations in glioblastomas. Br. J. Neurosurg. 26, 21–27 (2012).

    Article  PubMed  Google Scholar 

  66. Kmiecik, J. et al. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J. Neuroimmunol. 264, 71–83 (2013).

    Article  PubMed  CAS  Google Scholar 

  67. Han, S. et al. Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br. J. Cancer 110, 2560–2568 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Donson, A. M. et al. Increased immune gene expression and immune cell infiltration in high-grade astrocytoma distinguish long-term from short-term survivors. J. Immunol. 189, 1920–2197 (2012).

    Article  PubMed  CAS  Google Scholar 

  69. Cserr, H. F. & Knopf, P. M. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today 13, 507–512 (1992).

    Article  PubMed  CAS  Google Scholar 

  70. Reboldi, A. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

    Article  PubMed  CAS  Google Scholar 

  71. Schwyzer, M. & Fontana, A. Partial purification and biochemical characterization of a T cell suppressor factor produced by human glioblastoma cells. J. Immunol. 134, 1003–1009 (1985).

    PubMed  CAS  Google Scholar 

  72. Masson, F. et al. Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J. Immunol. 179, 845–853 (2007).

    Article  PubMed  CAS  Google Scholar 

  73. Thomas, D. A. & Massagué, J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. Weller, M. et al. CD95-dependent T cell killing by glioma cells expressing CD95 ligand: more on tumor immune escape, the CD95 counterattack, and the immune privilege of the brain. Cell Physiol. Biochem. 7, 282–288 (1997).

    Article  CAS  Google Scholar 

  75. Berghoff, A. S. et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 17, 1064–1075 (2015).

    Article  PubMed  CAS  Google Scholar 

  76. Wainwright, D. A. et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin. Cancer Res. 18, 6110–6121 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  PubMed  CAS  Google Scholar 

  78. Valdor, R. et al. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells. Oncotarget 8, 68614–68626 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Speiser, D. E., Ho, P. C. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 16, 599–6110 (2016).

    Article  PubMed  CAS  Google Scholar 

  80. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bauer, C. A. et al. Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. J. Clin. Invest. 124, 2425–2450 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Park, B. V. et al. TGFβ1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov. 6, 1366–1381 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Spranger, S. et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl Med. 5, 200ra116 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Parsa, A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 13, 84–88 (2007).

    Article  PubMed  CAS  Google Scholar 

  87. Reardon, D. A. et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol. Res. 4, 124–135 (2016).

    Article  PubMed  CAS  Google Scholar 

  88. Snyder, A., Wolchok, J. D. & Chan, T. A. Genetic basis for clinical response to CTLA-4 blockade. N. Engl. J. Med. 372, 783 (2015).

    Article  PubMed  Google Scholar 

  89. Daud, A. I. et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447–3452 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Omuro, A. et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase 1 cohorts of CheckMate 143. Neuro. Oncol. 20, 674–686 (2017).

    Article  PubMed Central  Google Scholar 

  91. Reardon, D. A. et al. OS10.3 randomized phase 3 study evaluating the efficacy and safety of nivolumab versus bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro. Oncol. 19 (Suppl. 3), iii21 (2017).

    Article  PubMed Central  Google Scholar 

  92. Long, G. V. et al. A randomized phase II study of nivolumab or nivolumab combined with ipilimumab in patients (pts) with melanoma brain metastases (mets): the Anti-PD1 Brain Collaboration (ABC) (abstract 9508). J. Clin. Oncol. 35 (Suppl. 15), 9508 (2017).

    Article  Google Scholar 

  93. Sharma, A. & Shiras, A. Cancer stem cell-vascular endothelial cell interactions in glioblastoma. Biochem. Biophys. Res. Commun. 473, 688–692 (2016).

    Article  PubMed  CAS  Google Scholar 

  94. Treps, L., Perret, R., Edmond, S., Ricard, D. & Gavard, J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J. Extracell. Vesicles 6, 1359479 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rupp, T. et al. Tenascin-C orchestrates glioblastoma angiogenesis by modulation of pro- and anti-angiogenic signaling. Cell Rep. 17, 2607–2619 (2016).

    Article  PubMed  CAS  Google Scholar 

  96. Soda, Y. et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl Acad. Sci. USA 108, 4274–4280 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Guelfi, S., Duffau, H., Bauchet, L., Rothhut, B. & Hugnot, J. P. Vascular transdifferentiation in the CNS: a focus on neural and glioblastoma stem-like cells. Stem Cells Int. 2016, 2759403 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mei, X., Chen, Y. S., Chen, F. R., Xi, S. Y. & Chen, Z. P. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro Oncol. 19, 1109–1118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hu, B. et al. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell 167, 1281–1295.e1218 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Peterson, T. E. et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc. Natl Acad. Sci. USA 113, 4470–4475 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Watkins, S. et al. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat. Commun. 5, 4196 (2014).

    Article  PubMed  CAS  Google Scholar 

  102. Wen, L. et al. VEGF-mediated tight junctions pathological fenestration enhances doxorubicin-loaded glycolipid-like nanoparticles traversing BBB for glioblastoma-targeting therapy. Drug Deliv. 24, 1843–1855 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  103. Treps, L. et al. Extracellular vesicle-transported semaphorin3A promotes vascular permeability in glioblastoma. Oncogene 35, 2615–2623 (2016).

    Article  PubMed  CAS  Google Scholar 

  104. Xu, B. et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Rep. 27, 882–897 (2017).

    Article  CAS  Google Scholar 

  105. Miller, J. J. & Wen, P. Y. Emerging targeted therapies for glioma. Expert Opin. Emerg. Drugs 21, 441–452 (2016).

    Article  PubMed  CAS  Google Scholar 

  106. Buckingham, S. C. et al. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17, 1269–1274 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Sattler, R. et al. Increased expression of glutamate transporter GLT-1 in peritumoral tissue associated with prolonged survival and decreases in tumor growth in a rat model of experimental malignant glioma. J. Neurosurg. 119, 878–886 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Vazana, U. et al. Glutamate-mediated blood-brain barrier opening: implications for neuroprotection and drug delivery. J. Neurosci. 36, 7727–7739 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Wei, Z. et al. Full-coverage landscape of extracellular RNAs, coding and non-coding, released by human glioma stem cells. Nat. Commun. https://doi.org/10.1038/s41467-017-01196-x (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kim, H. et al. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc. Natl Acad. Sci. USA 107, 2183–2188 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Teplyuk, N. M. et al. MicroRNA-10b inhibition reduces E2F1-mediated transcription and miR-15/16 activity in glioblastoma. Oncotarget 6, 3770–3783 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat. Rev. Neurosci. 8, 368–378 (2007).

    Article  PubMed  CAS  Google Scholar 

  113. Absalon, S., Kochanek, D. M., Raghavan, V. & Krichevsky, A. M. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J. Neurosci. 33, 14645–14659 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Takano, T. et al. Glutamate release promotes growth of malignant gliomas. Nat. Med. 7, 1010–1015 (2001).

    Article  PubMed  CAS  Google Scholar 

  115. Ishiuchi, S. et al. Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J. Neurosci. 27, 7987–8001 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  116. El-Habr, E. A. et al. A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathol. 133, 645–660 (2017).

    Article  PubMed  CAS  Google Scholar 

  117. Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Venkatesh, H. S. et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Li, F., Liu, X., Sampson, J. H., Bigner, D. D. & Li, C. Y. Rapid reprogramming of primary human astrocytes into potent tumor-initiating cells with defined genetic factors. Cancer Res. 76, 5143–5150 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Jahani-Asl, A. et al. Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. Nat. Neurosci. 19, 798–806 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Biasoli, D. et al. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy. Oncogenesis 3, e123 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lemée, J. M., Clavreul, A. & Menei, P. Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone. Neuro Oncol. 17, 1322–1332 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Mangiola, A. et al. Gene expression profile of glioblastoma peritumoral tissue: an ex vivo study. PLoS ONE 8, e57145 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Leiss, L. et al. Tumour-associated glial host cells display a stem-like phenotype with a distinct gene expression profile and promote growth of GB xenografts. BMC Cancer 17, 108 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Iwadate, Y., Fukuda, K., Matsutani, T. & Saeki, N. Intrinsic protective mechanisms of the neuron-glia network against glioma invasion. J. Clin. Neurosci. 26, 19–25 (2016).

    Article  PubMed  CAS  Google Scholar 

  126. El Fatimy, R., Subramanian, S., Uhlmann, E. J. & Krichevsky, A. M. Genome editing reveals glioblastoma addiction to microRNA-10b. Mol. Ther. 25, 368–378 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Yuan, J. X., Bafakih, F. F., Mandell, J. W., Horton, B. J. & Munson, J. M. Quantitative analysis of the cellular microenvironment of glioblastoma to develop predictive statistical models of overall survival. J. Neuropathol. Exp. Neurol. 75, 1110–1123 (2016).

    Article  PubMed  CAS  Google Scholar 

  128. Rath, B. H., Fair, J. M., Jamal, M., Camphausen, K. & Tofilon, P. J. Astrocytes enhance the invasion potential of glioblastoma stem-like cells. PLoS ONE 8, e54752 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Roos, A., Ding, Z., Loftus, J. C. & Tran, N. L. Molecular and microenvironmental determinants of glioma stem-like cell survival and invasion. Front. Oncol. 7, 120 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Asslaber, M. et al. Native oligodendrocytes in astrocytomas might inhibit tumor proliferation by WIF1 expression. J. Neuropathol. Exp. Neurol. 76, 16–26 (2017).

    PubMed  Google Scholar 

  131. Peferoen, L., Kipp, M., van der Valk, P., van Noort, J. M. & Amor, S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141, 302–313 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  PubMed  CAS  Google Scholar 

  134. Dinkins, M. B., Dasgupta, S., Wang, G., Zhu, G. & Bieberich, E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 35, 1792–1800 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Phuyal, S., Hessvik, N. P., Skotland, T., Sandvig, K. & Llorente, A. Regulation of exosome release by glycosphingolipids and flotillins. FEBS J. 281, 2214–2227 (2014).

    Article  PubMed  CAS  Google Scholar 

  137. Atai, N. A. et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J. Neurooncol 115, 343–351 (2013).

    Article  PubMed  CAS  Google Scholar 

  138. Jansen, F. et al. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis. Arterioscler Thromb. Vasc. Biol. 32, 1925–1935 (2012).

    Article  PubMed  CAS  Google Scholar 

  139. Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ulrich, T. A., de Juan Pardo, E. M. & Kumar, S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69, 4167–4174 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Nuti, E. et al. Bifunctional inhibitors as a new tool to reduce cancer cell invasion by impairing MMP-9 homodimerization. ACS Med. Chem. Lett. 8, 293–298 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Barker, H. E., Paget, J. T., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an ivy foundation early phase clinical trials consortium phase II study. Neuro Oncol. 18, 557–564 (2016).

    Article  PubMed  Google Scholar 

  146. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Prins, R. M. et al. Gene expression profile correlates with T cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin. Cancer Res. 17, 1603–1615 (2011).

    Article  PubMed  CAS  Google Scholar 

  148. Reardon, D. A. et al. Randomized phase 3 study evaluating the efficacy and safety of nivolumab versus bevacizumab in patients with recurrent glioblastoma: checkmate 143. Neuro. Oncol. 19 (suppl. 3), iii21 (2017).

    Article  PubMed Central  Google Scholar 

  149. Sampson, J. H. et al. A randomized, phase 3, open-label study of nivolumab versus temozolomide (TMZ) in combination with radiotherapy (RT) in adult patients (pts) with newly diagnosed, O-6-methylguanine DNA methyltransferase (MGMT)-unmethylated glioblastoma (GBM): CheckMate-498. J. Clin. Oncol. 34 (Suppl. 15), TPS2079 (2016).

    Article  Google Scholar 

  150. Weller, M. et al. A randomized phase 2, single-blind study of temozolomide (TMZ) and radiotherapy (RT) combined with nivolumab or placebo (PBO) in newly diagnosed adult patients (pts) with tumor O6-methylguanine DNA methyltransferase (MGMT)-methylated glioblastoma (GBM)—CheckMate-548. Ann. Oncol. 27 (Suppl. 6), 356TiP (2016).

    Google Scholar 

  151. Bouffet, E. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34, 2206–2211 (2016).

    Article  PubMed  CAS  Google Scholar 

  152. Saha, D., Martuza, R. L. & Rabkin, S. D. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 32, 253–267.e255 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  153. Jiang, H. et al. Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination. Cancer Res. 77, 3894–3907 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Khasraw, M., Ameratunga, M. S., Grant, R., Wheeler, H. & Pavlakis, N. Antiangiogenic therapy for high-grade glioma. Cochrane Database Syst. Rev. 9, CD008218 (2014).

    Google Scholar 

  155. Park, J. S. et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30, 953–967 (2016).

    Article  PubMed  CAS  Google Scholar 

  156. Infante, J., Burris, H. A. & Lewis, N. A multicenter phase Ib study of the safety, pharmacokinetics, biological activity and clinical efficacy of INCB7839, a potent and selective inhibitor of ADAM10 and ADAM17. Breast Cancer Res. Treat. 106, S269 (2007).

    Google Scholar 

  157. Friedman, S. et al. Clinical benefit of INCB7839, a potent and selective inhibitor of ADAM10 and ADAM17, in combination with trastuzumab in metastatic HER2 positive breast cancer patients. Cancer Res. 69, 5056 (2014).

    Article  Google Scholar 

  158. Kim, S. S., Pirollo, K. F. & Chang, E. H. Isolation and culturing of glioma cancer stem cells. Curr. Protoc. Cell Biol. 67, 10.21–10 (2015).

    Google Scholar 

  159. Hubert, C. G. et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 76, 2465–2477 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Hira, V. V. V. et al. Periarteriolar glioblastoma stem cell niches express bone marrow hematopoietic stem cell niche proteins. J. Histochem. Cytochem. 66, 155–173 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  161. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  PubMed  CAS  Google Scholar 

  162. Xu, Z., Kader, M., Sen, R. & Placantonakis, D. G. Orthotopic patient-derived glioblastoma xenografts in mice. Methods Mol. Biol. 1741, 183–190 (2018).

    Article  PubMed  Google Scholar 

  163. William, D. et al. Optimized creation of glioblastoma patient derived xenografts for use in preclinical studies. J. Transl Med. 15, 27 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Oh, T. et al. Immunocompetent murine models for the study of glioblastoma immunotherapy. J. Transl Med. 12, 107 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Hambardzumyan, D., Parada, L. F., Holland, E. C. & Charest, A. Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia 59, 1155–1168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Baysan, M. et al. Micro-environment causes reversible changes in DNA methylation and mRNA expression profiles in patient-derived glioma stem cells. PLoS ONE 9, e94045 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Bigner, S. H., Mark, J. & Bigner, D. D. Chromosomal progression of malignant human gliomas from biopsy to establishment as permanent lines in vitro. Cancer Genet. Cytogenet. 24, 163–176 (1987).

    Article  PubMed  CAS  Google Scholar 

  169. Beutler, A. S., Banck, M. S., Wedekind, D. & Hedrich, H. J. Tumor gene therapy made easy: allogeneic major histocompatibility complex in the C6 rat gliomamodel. Hum. Gene Ther. 10, 95–101 (1999).

    Article  PubMed  CAS  Google Scholar 

  170. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56.e46 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    Article  PubMed  Google Scholar 

  173. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  PubMed  CAS  Google Scholar 

  174. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Frattini, V. et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 1141–1149 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. McDavitt for her skilled editorial assistance. This work was supported by U19 CA179563 by the US NIH Common Fund, through the Office of Strategic Coordination/Office of the NIH Director (X.O.B., A.M.K. and T.R.M.), and the US NIH National Cancer Institute (P01 CA069246 (X.O.B.), R01 AI123349 (T.R.M.) and R21 NS098051 (A.M.K.)).

Reviewer information

Nature Reviews Neurology thanks W. Wick and the other, anonymous reviewers for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data, discussion of content, writing and review of the manuscript before submission.

Corresponding authors

Correspondence to Marike L. Broekman or Xandra O. Breakefield.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broekman, M.L., Maas, S.L.N., Abels, E.R. et al. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 14, 482–495 (2018). https://doi.org/10.1038/s41582-018-0025-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0025-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer