Review Article | Published:

Cerebral small vessel disease: from a focal to a global perspective

Nature Reviews Neurologyvolume 14pages387398 (2018) | Download Citation

Abstract

Cerebral small vessel disease (SVD) is commonly observed on neuroimaging among elderly individuals and is recognized as a major vascular contributor to dementia, cognitive decline, gait impairment, mood disturbance and stroke. However, clinical symptoms are often highly inconsistent in nature and severity among patients with similar degrees of SVD on brain imaging. Here, we provide a new framework based on new advances in structural and functional neuroimaging that aims to explain the remarkable clinical variation in SVD. First, we discuss the heterogeneous pathology present in SVD lesions despite an identical appearance on imaging and the perilesional and remote effects of these lesions. We review effects of SVD on structural and functional connectivity in the brain, and we discuss how network disruption by SVD can lead to clinical deficits. We address reserve and compensatory mechanisms in SVD and discuss the part played by other age-related pathologies. Finally, we conclude that SVD should be considered a global rather than a focal disease, as the classically recognized focal lesions affect remote brain structures and structural and functional network connections. The large variability in clinical symptoms among patients with SVD can probably be understood by taking into account the heterogeneity of SVD lesions, the effects of SVD beyond the focal lesions, the contribution of neurodegenerative pathologies other than SVD, and the interaction with reserve mechanisms and compensatory mechanisms.

Key points

  • Cerebral small vessel disease (SVD) is associated with a remarkable degree of variation in clinical symptoms — both in nature and in severity — that cannot be explained fully by conventional markers of SVD.

  • Conventional MRI does not capture the heterogeneity present in SVD lesions with a similar appearance and reveals only the tip of the iceberg of the total SVD-related brain damage.

  • SVD affects brain tissue beyond the commonly recognized focal lesions by inducing a cascade of events that spread from the initial lesion to remote brain areas, which probably contributes to clinical outcome.

  • SVD disturbs structural and functional network connectivity and thereby disrupts efficient communication in brain networks, which is necessary for functional performance.

  • Brain resilience protects against clinical deterioration caused by SVD via reserve and compensatory mechanisms, which explains the clinical variation observed in patients with apparently equal SVD lesion burden.

  • The clinical notion that SVD mostly constitutes a subcortical disease of focal lesions requires reconsideration.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kontis, V. et al. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet 389, 1323–1335 (2017).

  2. 2.

    Prince, M. et al. World Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends (Alzheimer’s Disease International, 2015).

  3. 3.

    METACOHORTS Consortium. METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: an initiative of the Joint Programme for Neurodegenerative Disease Research. Alzheimers Dement. 12, 1235–1249 (2016).

  4. 4.

    de Laat, K. F. et al. Gait in elderly with cerebral small vessel disease. Stroke 41, 1652–1658 (2010).

  5. 5.

    Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

  6. 6.

    Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666 (2010).

  7. 7.

    van Agtmaal, M. J. M., Houben, A., Pouwer, F., Stehouwer, C. D. A. & Schram, M. T. Association of microvascular dysfunction with late-life depression: a systematic review and meta-analysis. JAMA Psychiatry 74, 729–739 (2017).

  8. 8.

    de Leeuw, F. E. et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 70, 9–14 (2001).

  9. 9.

    Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9, 689–701 (2010).

  10. 10.

    Cummings, J. L. Frontal-subcortical circuits and human behavior. Arch. Neurol. 50, 873–880 (1993).

  11. 11.

    Jokinen, H. et al. Longitudinal cognitive decline in subcortical ischemic vascular disease — the LADIS Study. Cerebrovasc. Dis. 27, 384–391 (2009).

  12. 12.

    Baezner, H. et al. Association of gait and balance disorders with age-related white matter changes: the LADIS study. Neurology 70, 935–942 (2008).

  13. 13.

    Smith, E. E. et al. Early cerebral small vessel disease and brain volume, cognition, and gait. Ann. Neurol. 77, 251–261 (2015).

  14. 14.

    van der Holst, H. M. et al. Cerebral small vessel disease and incident parkinsonism: the RUN DMC study. Neurology 85, 1569–1577 (2015).

  15. 15.

    Marin, R. S., Biedrzycki, R. C. & Firinciogullari, S. Reliability and validity of the Apathy Evaluation Scale. Psychiatry Res. 38, 143–162 (1991).

  16. 16.

    Stanton, B. R. & Carson, A. Apathy: a practical guide for neurologists. Pract. Neurol. 16, 42–47 (2016).

  17. 17.

    Hollocks, M. J. et al. Differential relationships between apathy and depression with white matter microstructural changes and functional outcomes. Brain 138, 3803–3815 (2015).

  18. 18.

    van Uden, I. W. et al. White matter integrity and depressive symptoms in cerebral small vessel disease: the RUN DMC study. Am. J. Geriatr. Psychiatry 23, 525–535 (2015).

  19. 19.

    Edwards, J. D., Jacova, C., Sepehry, A. A., Pratt, B. & Benavente, O. R. A quantitative systematic review of domain-specific cognitive impairment in lacunar stroke. Neurology 80, 315–322 (2013).

  20. 20.

    Seo, S. W. et al. Clinical significance of microbleeds in subcortical vascular dementia. Stroke 38, 1949–1951 (2007).

  21. 21.

    Hillis, A. E. et al. Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain 125, 1094–1104 (2002).

  22. 22.

    Hoffmann, M. & Chen, R. The spectrum of aphasia subtypes and etiology in subacute stroke. J. Stroke Cerebrovasc. Dis. 22, 1385–1392 (2013).

  23. 23.

    Van Zandvoort, M. J., De Haan, E. H. & Kappelle, L. J. Chronic cognitive disturbances after a single supratentorial lacunar infarct. Neuropsychiatry Neuropsychol. Behav. Neurol. 14, 98–102 (2001).

  24. 24.

    Vasquez, B. P. & Zakzanis, K. K. The neuropsychological profile of vascular cognitive impairment not demented: a meta-analysis. J. Neuropsychol. 9, 109–136 (2015).

  25. 25.

    Van der Werf, Y. D. et al. Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia 41, 1330–1344 (2003).

  26. 26.

    Van Der Werf, Y. D. et al. Neuropsychological correlates of a right unilateral lacunar thalamic infarction. J. Neurol. Neurosurg. Psychiatry 66, 36–42 (1999).

  27. 27.

    Kooistra, C. A. & Heilman, K. M. Memory loss from a subcortical white matter infarct. J. Neurol. Neurosurg. Psychiatry 51, 866–869 (1988).

  28. 28.

    Tatemichi, T. K. et al. Confusion and memory loss from capsular genu infarction: a thalamocortical disconnection syndrome? Neurology 42, 1966–1979 (1992).

  29. 29.

    van Uden, I. W. et al. White matter and hippocampal volume predict the risk of dementia in patients with cerebral small vessel disease: the RUN DMC study. J. Alzheimers Dis. 49, 863–873 (2016).

  30. 30.

    Gouw, A. A. et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J. Neurol. Neurosurg. Psychiatry 82, 126–135 (2011).

  31. 31.

    Lammie, G. A., Brannan, F. & Wardlaw, J. M. Incomplete lacunar infarction (Type Ib lacunes). Acta Neuropathol. 96, 163–171 (1998).

  32. 32.

    Shoamanesh, A., Kwok, C. S. & Benavente, O. Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc Dis. 32, 528–534 (2011).

  33. 33.

    van Veluw, S. J., Biessels, G. J., Klijn, C. J. & Rozemuller, A. J. Heterogeneous histopathology of cortical microbleeds in cerebral amyloid angiopathy. Neurology 86, 867–871 (2016).

  34. 34.

    Jessen, N. A., Munk, A. S., Lundgaard, I. & Nedergaard, M. The glymphatic system: a beginner’s guide. Neurochem. Res. 40, 2583–2599 (2015).

  35. 35.

    Joutel, A. & Chabriat, H. Pathogenesis of white matter changes in cerebral small vessel diseases: beyond vessel-intrinsic mechanisms. Clin. Sci. 131, 635–651 (2017).

  36. 36.

    Keith, J. et al. Collagenosis of the deep medullary veins: an underrecognized pathologic correlate of white matter hyperintensities and periventricular infarction? J. Neuropathol. Exp. Neurol. 76, 299–312 (2017).

  37. 37.

    Brown, W. R., Moody, D. M., Challa, V. R., Thore, C. R. & Anstrom, J. A. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J. Neurol. Sci. 203–204, 159–163 (2002).

  38. 38.

    Matsusue, E. et al. White matter changes in elderly people: MR-pathologic correlations. Magn. Reson. Med. Sci. 5, 99–104 (2006).

  39. 39.

    Auriel, E. et al. Microinfarct disruption of white matter structure: a longitudinal diffusion tensor analysis. Neurology 83, 182–188 (2014).

  40. 40.

    Maillard, P. et al. White matter hyperintensities and their penumbra lie along a continuum of injury in the aging brain. Stroke 45, 1721–1726 (2014).

  41. 41.

    Spilt, A. et al. Not all age-related white matter hyperintensities are the same: a magnetization transfer imaging study. AJNR Am. J. Neuroradiol. 27, 1964–1968 (2006).

  42. 42.

    Tanabe, J. L. et al. Magnetization transfer ratio of white matter hyperintensities in subcortical ischemic vascular dementia. AJNR Am. J. Neuroradiol. 20, 839–844 (1999).

  43. 43.

    Haller, S. et al. Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study. Acta Neuropathol. Commun. 1, 14 (2013).

  44. 44.

    Wardlaw, J. M., Valdes Hernandez, M. C. & Munoz-Maniega, S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J. Am. Heart Assoc. 4, 001140 (2015).

  45. 45.

    Soares, J. M., Marques, P., Alves, V. & Sousa, N. A hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 7, 31 (2013).

  46. 46.

    Bouvy, W. H. et al. Abnormalities of cerebral deep medullary veins on 7 Tesla MRI in amnestic mild cognitive impairment and early Alzheimer’s disease: a pilot study. J. Alzheimers Dis. 57, 705–710 (2017).

  47. 47.

    van Dalen, J. W. et al. White matter hyperintensity volume and cerebral perfusion in older individuals with hypertension using arterial spin-labeling. AJNR Am. J. Neuroradiol. 37, 1824–1830 (2016).

  48. 48.

    van Nieuwenhuizen, K. M., Hendrikse, J. & Klijn, C. J. M. New microbleed after blood-brain barrier leakage in intracerebral haemorrhage. BMJ Case Rep. https://doi.org/10.1136/bcr-2016-218794 (2017).

  49. 49.

    Koch, S., McClendon, M. S. & Bhatia, R. Imaging evolution of acute lacunar infarction: leukoariosis or lacune? Neurology 77, 1091–1095 (2011).

  50. 50.

    van Veluw, S. J. et al. Evolution of DWI lesions in cerebral amyloid angiopathy: evidence for ischemia. Neurology 89, 2136–2142 (2017).

  51. 51.

    Maillard, P. et al. White matter hyperintensity penumbra. Stroke 42, 1917–1922 (2011).

  52. 52.

    Maniega, S. M. et al. White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiol. Aging 36, 909–918 (2015).

  53. 53.

    Reijmer, Y. D., Freeze, W. M., Leemans, A. & Biessels, G. J. The effect of lacunar infarcts on white matter tract integrity. Stroke 44, 2019–2021 (2013).

  54. 54.

    Hinman, J. D., Lee, M. D., Tung, S., Vinters, H. V. & Carmichael, S. T. Molecular disorganization of axons adjacent to human lacunar infarcts. Brain 138, 736–745 (2015).

  55. 55.

    Lee, W. J., Lee, J. Y., Lim, J. S., Kwon, H. M. & Lee, Y. S. Transient isolated ocular motor abnormality related to perilesional edema of an acute medullary microbleed: A case report and review of the literatures. Clin. Neurol. Neurosurg. 138, 174–176 (2015).

  56. 56.

    Lawrence, A. J. et al. Mechanisms of cognitive impairment in cerebral small vessel disease: multimodal MRI results from the St George’s cognition and neuroimaging in stroke (SCANS) study. PLoS ONE 8, e61014 (2013).

  57. 57.

    Pasi, M., van Uden, I. W., Tuladhar, A. M., de Leeuw, F. E. & Pantoni, L. White matter microstructural damage on diffusion tensor imaging in cerebral small vessel disease: clinical consequences. Stroke 47, 1679–1684 (2016).

  58. 58.

    Tuladhar, A. M. et al. White matter integrity in small vessel disease is related to cognition. Neuroimage Clin. 7, 518–524 (2015).

  59. 59.

    Baykara, E. et al. A novel imaging marker for small vessel disease based on skeletonization of white matter tracts and diffusion histograms. Ann. Neurol. 80, 581–592 (2016).

  60. 60.

    Williams, O. A. et al. Diffusion tensor image segmentation of the cerebrum provides a single measure of cerebral small vessel disease severity related to cognitive change. Neuroimage Clin. 16, 330–342 (2017).

  61. 61.

    Coban, H., Tung, S., Yoo, B., Vinters, H. V. & Hinman, J. D. Molecular disorganization of axons adjacent to human cortical microinfarcts. Front. Neurol. 8, 405 (2017).

  62. 62.

    Shih, A. Y. et al. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat. Neurosci. 16, 55–63 (2013).

  63. 63.

    Summers, P. M. et al. Functional deficits induced by cortical microinfarcts. J. Cereb. Blood Flow Metab. 37, 3599–3614 (2017).

  64. 64.

    Arvanitakis, Z., Leurgans, S. E., Barnes, L. L., Bennett, D. A. & Schneider, J. A. Microinfarct pathology, dementia, and cognitive systems. Stroke 42, 722–727 (2011).

  65. 65.

    van Veluw, S. J. et al. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol. 16, 730–740 (2017).

  66. 66.

    Tullberg, M. et al. White matter lesions impair frontal lobe function regardless of their location. Neurology 63, 246–253 (2004).

  67. 67.

    Dickie, D. A. et al. Progression of white matter disease and cortical thinning are not related in older community-dwelling subjects. Stroke 47, 410–416 (2016).

  68. 68.

    Lambert, C. et al. Characterising the grey matter correlates of leukoaraiosis in cerebral small vessel disease. Neuroimage Clin. 9, 194–205 (2015).

  69. 69.

    Tuladhar, A. M. et al. Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke 46, 425–432 (2015).

  70. 70.

    Lambert, C. et al. Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease. Brain 139, 1136–1151 (2016).

  71. 71.

    Duering, M. et al. Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology 79, 2025–2028 (2012).

  72. 72.

    Duering, M. et al. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology 84, 1685–1692 (2015).

  73. 73.

    Jokinen, H. et al. Brain atrophy accelerates cognitive decline in cerebral small vessel disease: the LADIS study. Neurology 78, 1785–1792 (2012).

  74. 74.

    Schmidt, R. et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann. Neurol. 58, 610–616 (2005).

  75. 75.

    Righart, R. et al. Impact of regional cortical and subcortical changes on processing speed in cerebral small vessel disease. Neuroimage Clin. 2, 854–861 (2013).

  76. 76.

    Kim, Y. J. et al. Gray and white matter changes linking cerebral small vessel disease to gait disturbances. Neurology 86, 1199–1207 (2016).

  77. 77.

    Lawrence, A. J., Chung, A. W., Morris, R. G., Markus, H. S. & Barrick, T. R. Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology 83, 304–311 (2014).

  78. 78.

    Tuladhar, A. M. et al. Disruption of rich club organisation in cerebral small vessel disease. Hum. Brain Mapp. 38, 1751–1766 (2017).

  79. 79.

    Tuladhar, A. M. et al. Structural network connectivity and cognition in cerebral small vessel disease. Hum. Brain Mapp. 37, 300–310 (2016).

  80. 80.

    Tang, J. et al. Aberrant white matter networks mediate cognitive impairment in patients with silent lacunar infarcts in basal ganglia territory. J. Cereb. Blood Flow Metab. 35, 1426–1434 (2015).

  81. 81.

    van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

  82. 82.

    van den Heuvel, M. P., Kahn, R. S., Goni, J. & Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl Acad. Sci. USA 109, 11372–11377 (2012).

  83. 83.

    Reijmer, Y. D. et al. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. Brain 138, 179–188 (2015).

  84. 84.

    Xie, X., Shi, Y. & Zhang, J. Structural network connectivity impairment and depressive symptoms in cerebral small vessel disease. J. Affect. Disord. 220, 8–14 (2017).

  85. 85.

    Tuladhar, A. M. et al. Structural network efficiency predicts conversion to dementia. Neurology 86, 1112–1119 (2016).

  86. 86.

    Reijmer, Y. D. et al. Small vessel disease and cognitive impairment: the relevance of central network connections. Hum. Brain Mapp. 37, 2446–2454 (2016).

  87. 87.

    Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015).

  88. 88.

    van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol 20, 519–534 (2010).

  89. 89.

    Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D. & Schacter, D. L. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cogn. Neurosci. 25, 74–86 (2013).

  90. 90.

    Dey, A. K., Stamenova, V., Turner, G., Black, S. E. & Levine, B. Pathoconnectomics of cognitive impairment in small vessel disease: a systematic review. Alzheimers Dement. 12, 831–845 (2016).

  91. 91.

    Cheng, H. L. et al. Impairments in cognitive function and brain connectivity in severe asymptomatic carotid stenosis. Stroke 43, 2567–2573 (2012).

  92. 92.

    Schaefer, A. et al. Early small vessel disease affects frontoparietal and cerebellar hubs in close correlation with clinical symptoms — a resting-state fMRI study. J. Cereb. Blood Flow Metab. 34, 1091–1095 (2014).

  93. 93.

    Sun, Y. W. et al. Abnormal functional connectivity in patients with vascular cognitive impairment, no dementia: a resting-state functional magnetic resonance imaging study. Behav. Brain Res. 223, 388–394 (2011).

  94. 94.

    van Duinkerken, E. et al. Resting-state brain networks in type 1 diabetic patients with and without microangiopathy and their relation to cognitive functions and disease variables. Diabetes 61, 1814–1821 (2012).

  95. 95.

    Yi, L. et al. Structural and functional changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and resting-state fMRI study. PLoS ONE 7, e44758 (2012).

  96. 96.

    Zhou, Y., Yu, F. & Duong, T. Q. Alzheimer’s Disease Neuroimaging Initiative. White matter lesion load is associated with resting state functional MRI activity and amyloid PET but not FDG in mild cognitive impairment and early Alzheimer’s disease patients. J. Magn. Reson. Imag. 41, 102–109 (2015).

  97. 97.

    Nordahl, C. W. et al. White matter changes compromise prefrontal cortex function in healthy elderly individuals. J. Cogn. Neurosci. 18, 418–429 (2006).

  98. 98.

    Venkatraman, V. K. et al. Executive control function, brain activation and white matter hyperintensities in older adults. Neuroimage 49, 3436–3442 (2010).

  99. 99.

    Welker, K. M., De Jesus, R. O., Watson, R. E., Machulda, M. M. & Jack, C. R. Altered functional MR imaging language activation in elderly individuals with cerebral leukoaraiosis. Radiology 265, 222–232 (2012).

  100. 100.

    Aizenstein, H. J. et al. fMRI correlates of white matter hyperintensities in late-life depression. Am. J. Psychiatry 168, 1075–1082 (2011).

  101. 101.

    Liu, C. et al. Abnormal intrinsic brain activity patterns in patients with subcortical ischemic vascular dementia. PLoS ONE 9, e87880 (2014).

  102. 102.

    Mayda, A. B., Westphal, A., Carter, C. S. & DeCarli, C. Late life cognitive control deficits are accentuated by white matter disease burden. Brain 134, 1673–1683 (2011).

  103. 103.

    Papma, J. M. et al. The influence of cerebral small vessel disease on default mode network deactivation in mild cognitive impairment. Neuroimage Clin. 2, 33–42 (2012).

  104. 104.

    Chen, Y. et al. Aberrant functional networks connectivity and structural atrophy in silent lacunar infarcts: relationship with cognitive impairments. J. Alzheimers Dis. 42, 841–850 (2014).

  105. 105.

    Stern, Y. Cognitive reserve. Neuropsychologia 47, 2015–2028 (2009).

  106. 106.

    Brickman, A. M. et al. White matter hyperintensities and cognition: testing the reserve hypothesis. Neurobiol. Aging 32, 1588–1598 (2011).

  107. 107.

    Mortimer, J. A., Snowdon, D. A. & Markesbery, W. R. Head circumference, education and risk of dementia: findings from the Nun Study. J. Clin. Exp. Neuropsychol 25, 671–679 (2003).

  108. 108.

    Smith, E. E. et al. Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch. Neurol. 65, 94–100 (2008).

  109. 109.

    Pinter, D., Enzinger, C. & Fazekas, F. Cerebral small vessel disease, cognitive reserve and cognitive dysfunction. J. Neurol. 262, 2411–2419 (2015).

  110. 110.

    Barulli, D. & Stern, Y. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn. Sci. 17, 502–509 (2013).

  111. 111.

    Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol Soc. 8, 448–460 (2002).

  112. 112.

    Dufouil, C., Alperovitch, A. & Tzourio, C. Influence of education on the relationship between white matter lesions and cognition. Neurology 60, 831–836 (2003).

  113. 113.

    Elbaz, A. et al. Motor function in the elderly: evidence for the reserve hypothesis. Neurology 81, 417–426 (2013).

  114. 114.

    Nebes, R. D. et al. The relation of white matter hyperintensities to cognitive performance in the normal old: education matters. Neuropsychol Dev. Cogn. B Aging Neuropsychol Cogn. 13, 326–340 (2006).

  115. 115.

    Saczynski, J. S. et al. White matter lesions and cognitive performance: the role of cognitively complex leisure activity. J. Gerontol. A Biol. Sci. Med. Sci. 63, 848–854 (2008).

  116. 116.

    Vemuri, P. et al. Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly. Brain 138, 761–771 (2015).

  117. 117.

    Murray, A. D. et al. The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer’s diseases. Brain 134, 3687–3696 (2011).

  118. 118.

    Jokinen, H. et al. Cognitive reserve moderates long-term cognitive and functional outcome in cerebral small vessel disease. J. Neurol. Neurosurg. Psychiatry 87, 1296–1302 (2016).

  119. 119.

    Park, D. C. & Reuter-Lorenz, P. The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–196 (2009).

  120. 120.

    Steffener, J., Brickman, A. M., Rakitin, B. C., Gazes, Y. & Stern, Y. The impact of age-related changes on working memory functional activity. Brain Imag. Behav. 3, 142–153 (2009).

  121. 121.

    Daselaar, S. M. et al. Less wiring, more firing: low-performing older adults compensate for impaired white matter with greater neural activity. Cereb. Cortex 25, 983–990 (2015).

  122. 122.

    Nestor, S. M. et al. Small vessel disease is linked to disrupted structural network covariance in Alzheimer’s disease. Alzheimers Dement. 13, 749–760 (2017).

  123. 123.

    Godin, O. et al. Joint effect of white matter lesions and hippocampal volumes on severity of cognitive decline: the 3C-Dijon MRI study. J. Alzheimers Dis. 20, 453–463 (2010).

  124. 124.

    van der Flier, W. M. et al. Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. J. Neurol. Neurosurg. Psychiatry 76, 1497–1500 (2005).

  125. 125.

    Koncz, R. & Sachdev, P. S. Are the brain’s vascular and Alzheimer pathologies additive or interactive? Curr. Opin. Psychiatry 31, 147–152 (2018).

  126. 126.

    Roseborough, A., Ramirez, J., Black, S. E. & Edwards, J. D. Associations between amyloid beta and white matter hyperintensities: a systematic review. Alzheimers Dement 13, 1154–1167 (2017).

  127. 127.

    Oosterman, J. M., Oosterveld, S., Rikkert, M. G., Claassen, J. A. & Kessels, R. P. Medial temporal lobe atrophy relates to executive dysfunction in Alzheimer’s disease. Int. Psychogeriatr. 24, 1474–1482 (2012).

  128. 128.

    De Guio, F. et al. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J. Cereb. Blood Flow Metab. 36, 1319–1337 (2016).

  129. 129.

    Goos, J. D. et al. Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging. Stroke 42, 1894–1900 (2011).

  130. 130.

    Tryambake, D. et al. Intensive blood pressure lowering increases cerebral blood flow in older subjects with hypertension. Hypertension 61, 1309–1315 (2013).

  131. 131.

    Fleischer, V. et al. Graph theoretical framework of brain networks in multiple sclerosis: a review of concepts. Neuroscience https://doi.org/10.1016/j.neuroscience.2017.10.033 (2017).

  132. 132.

    Charidimou, A., Pantoni, L. & Love, S. The concept of sporadic cerebral small vessel disease: a road map on key definitions and current concepts. Int. J. Stroke 11, 6–18 (2016).

  133. 133.

    Wardlaw, J. M., Smith, C. & Dichgans, M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 12, 483–497 (2013).

  134. 134.

    Hill, M. A. & Meininger, G. A. Arteriolar vascular smooth muscle cells: mechanotransducers in a complex environment. Int. J. Biochem. Cell Biol. 44, 1505–1510 (2012).

  135. 135.

    Charidimou, A. et al. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 140, 1829–1850 (2017).

  136. 136.

    Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).

  137. 137.

    Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

  138. 138.

    Sporns, O. Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660 (2014).

  139. 139.

    Brundel, M., de Bresser, J., van Dillen, J. J., Kappelle, L. J. & Biessels, G. J. Cerebral microinfarcts: a systematic review of neuropathological studies. J. Cereb. Blood Flow Metab. 32, 425–436 (2012).

Download references

Acknowledgements

C.J.M.K. was supported by a clinical established investigator grant of the Dutch Heart Foundation (grant number 2012 T077) and an Aspasia grant from the Netherlands Organisation for Health Research and Development (ZonMw grant 015.008.048). A.M.T. was supported by the Dutch Heart Foundation (grant number 2016T044). F.-E.d.L. was supported by a clinical established investigator grant of the Dutch Heart Foundation (grant number 2014 T060) and a VIDI innovational grant from the Netherlands Organisation for Health Research and Development (ZonMw grant 016.126.351). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Review criteria

Articles were selected from PubMed. To select articles on small vessel disease, we used the following search terms appearing in the title and abstract: “cerebral small vessel disease”, “cerebral microangiopath*”, “white matter hyperintensities”, “leukoaraiosis”, “lacunar stroke”, “lacunar infarct”, “perivascular spaces” or “microbleeds”. We combined these searches with search terms covering the topics in this Review, including “cognition”, “motor”, “cerebral cortex”, “network” or “connect*”. We included only articles in English and focused on articles published within the past decade to discuss the most recent scientific findings. Furthermore, reference lists of cited articles and articles in our personal databases were screened for eligibility.

Reviewer information

Nature Reviews Neurology thanks A. Charidimou, S. Black and the other anonymous reviewer for their contribution to the peer review of this work.

Author information

Affiliations

  1. Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands

    • Annemieke ter Telgte
    • , Esther M. C. van Leijsen
    • , Kim Wiegertjes
    • , Catharina J. M. Klijn
    • , Anil M. Tuladhar
    •  & Frank-Erik de Leeuw

Authors

  1. Search for Annemieke ter Telgte in:

  2. Search for Esther M. C. van Leijsen in:

  3. Search for Kim Wiegertjes in:

  4. Search for Catharina J. M. Klijn in:

  5. Search for Anil M. Tuladhar in:

  6. Search for Frank-Erik de Leeuw in:

Contributions

A.t.T. and E.M.C.v.L. researched the data for the article and wrote the text. A.t.T., K.W. and A.M.T. researched the data and created the boxes and figures. A.t.T., E.M.C.v.L., K.W., C.J.M.K., A.M.T. and F.-E.d.L. provided substantial contributions to discussions of the content. All authors reviewed and/or edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Frank-Erik de Leeuw.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41582-018-0014-y