Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A stocked toolbox for understanding the role of astrocytes in disease

Abstract

Our understanding of astrocytes and their role in neurological diseases has increased considerably over the past two decades as the diverse roles of these cells have become recognized. Our evolving understanding of these cells suggests that they are more than support cells for neurons and that they play important roles in CNS homeostasis under normal conditions, in neuroprotection and in disease exacerbation. These multiple functions make them excellent candidates for targeted therapies to treat neurological disorders. New technological advances, including in vivo imaging, optogenetics and chemogenetics, have allowed us to examine astrocytic functions in ways that have uncovered new insights into the dynamic roles of these cells. Furthermore, the use of induced pluripotent stem cell-derived astrocytes from patients with a host of neurological disorders can help to tease out the contributions of astrocytes to human disease. In this Review, we explore some of the technological advances developed over the past decade that have aided our understanding of astrocyte function. We also highlight neurological disorders in which astrocyte function or dysfunction is believed to have a role in disease pathogenesis or propagation and discuss how the technological advances have been and could be used to study each of these diseases.

Key points

  • Astrocytes not only have key homeostatic functions in the CNS but also respond to neuronal injury in both neuroprotective and pathological manners.

  • Astrocytes have key roles in a broad spectrum of neurodevelopmental and neurodegenerative diseases.

  • New tools have been developed to evaluate the structural, functional and molecular mechanisms by which astrocytes respond to injury.

  • The in vivo methods by which astrocytes can be studied have revealed new layers of complexity in astrocyte function, which could not have been appreciated with the use of older experimental approaches.

  • The use of induced pluripotent stem cell-derived astrocytes could help with interpretation of preclinical observations as they are used to direct the design of human therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Astrocyte function in health and disease.
Fig. 2: Tools for studying astrocytes in health and disease.

Similar content being viewed by others

References

  1. Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article  PubMed  Google Scholar 

  2. Pekny, M. & Pekna, M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim. Biophys. Acta 1862, 483–491 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nature Neurosci. 18, 942–952 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Molofsky, A. V. & Deneen, B. Astrocyte development: a guide for the perplexed. Glia 63, 1320–1329 (2015).

    Article  PubMed  Google Scholar 

  5. Pellerin, L. & Magistretti, P. J. Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10, 53–62 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Haydon, P. G. The evolving view of astrocytes. Cerebrum 1, 12–16 (2016).

    Google Scholar 

  7. Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Alvarez, J. I., Katayama, T. & Prat, A. Glial influence on the blood brain barrier. Glia 61, 1939–1958 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Helmchen, F. & Kleinfeld, D. Chapter 10 in vivo measurements of blood flow and glial cell function with two-photon laser-scanning microscopy. Methods Enzymol. 444, 231–254 (2008).

    Article  PubMed  Google Scholar 

  10. Haber, M., Zhou, L. & Murai, K. K. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J. Neurosci. 26, 8881–8891 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Chung, W. S., Allen, N. J. & Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7, a020370 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Losi, G., Mariotti, L., Sessolo, M. & Carmignoto, G. New tools to study astrocyte Ca2+ signal dynamics in brain networks in vivo. Front. Cell Neurosci. 11, 134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, D., Agulhon, C., Schmidt, E., Oheim, M. & Ropert, N. New tools for investigating astrocyte-to-neuron communication. Front. Cell Neurosci. 7, 193 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Bardehle, S. et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat. Neurosci. 16, 580–586 (2013).

    Article  PubMed  CAS  Google Scholar 

  15. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205–209 (2013).

    Article  PubMed Central  CAS  Google Scholar 

  16. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. Gourine, A. V. et al. Astrocytes control breathing through pH-dependent release of ATP. Science 329, 571–575 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Perea, G., Yang, A., Boyden, E. S. & Sur, M. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 5, 3262 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nam, Y. et al. Reversible induction of pain hypersensitivity following optogenetic stimulation of spinal astrocytes. Cell Rep. 17, 3049–3061 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. Poskanzer, K. E. & Yuste, R. Astrocytes regulate cortical state switching in vivo. Proc. Natl Acad. Sci. USA 113, E2675–E2684 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Beppu, K. et al. Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 81, 314–320 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Roth, B. L. DREADDs for Neuroscientists. Neuron 89, 683–694 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Whissell, P. D., Tohyama, S. & Martin, L. J. The use of DREADDs to deconstruct behavior. Front. Genet. 7, 70 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Davila, D., Thibault, K., Fiacco, T. A. & Agulhon, C. Recent molecular approaches to understanding astrocyte function in vivo. Front. Cell Neurosci. 7, 272 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Agulhon, C. et al. Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo. J. Physiol. 591, 5599–5609 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Scofield, M. D. et al. Gq-DREADD Selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol. Psychiatry 78, 441–451 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Srinivasan, R. et al. Ca(2+) signaling in astrocytes from Ip3r2(−/−) mice in brain slices and during startle responses in vivo. Nat. Neurosci. 18, 708–717 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shigetomi, E., Kracun, S. & Khakh, B. S. Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters. Neuron Glia Biol. 6, 183–191 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Di Castro, M. A. et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 14, 1276–1284 (2011).

    Article  PubMed  CAS  Google Scholar 

  32. Bindocci, E. et al. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science 356, eaai8185 (2017).

    Article  PubMed  CAS  Google Scholar 

  33. Okubo, Y. et al. Imaging extrasynaptic glutamate dynamics in the brain. Proc. Natl Acad. Sci. USA 107, 6526–6531 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Brancaccio, M., Patton, A. P., Chesham, J. E., Maywood, E. S. & Hastings, M. H. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93, 1420–1435 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Harada, K. et al. Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci. Rep. 7, 7351 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rimmele, T. S. & Chatton, J. Y. A novel optical intracellular imaging approach for potassium dynamics in astrocytes. PLoS ONE 9, e109243 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Maragakis, N. J. & Rothstein, J. D. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol. 2, 679–689 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. Haidet-Phillips, A. M. et al. Gene profiling of human induced pluripotent stem cell-derived astrocyte progenitors following spinal cord engraftment. Stem Cells Transl. Med. 3, 575–585 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rinaldi, F., Motti, D., Ferraiuolo, L. & Kaspar, B. K. High content analysis in amyotrophic lateral sclerosis. Mol. Cell Neurosci. 80, 180–191 (2017).

    Article  PubMed  CAS  Google Scholar 

  41. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  PubMed  CAS  Google Scholar 

  42. Chandrasekaran, A., Avci, H. X., Leist, M., Kobolak, J. & Dinnyes, A. Astrocyte differentiation of human pluripotent stem cells: new tools for neurological disorder research. Front. Cell Neurosci. 10, 215 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Meyer, K. et al. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc. Natl Acad. Sci. USA 111, 829–832 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Caiazzo, M. et al. Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Rep. 4, 25–36 (2015).

    Article  CAS  Google Scholar 

  45. Tian, E. et al. Small-molecule-based lineage reprogramming creates functional astrocytes. Cell Rep. 16, 781–792 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Drouin-Ouellet, J. et al. REST suppression mediates neural conversion of adult human fibroblasts via microRNA-dependent and -independent pathways. EMBO Mol. Med. 9, 1117–1131 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Mertens, J., Marchetto, M. C., Bardy, C. & Gage, F. H. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat. Rev. Neurosci. 17, 424–437 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Myszczynska, M. & Ferraiuolo, L. New in vitro models to study amyotrophic lateral sclerosis. Brain Pathol. 26, 258–265 (2016).

    Article  PubMed  CAS  Google Scholar 

  51. Russo, L. S. Jr., Aron, A. & Anderson, P. J. Alexander’s disease: a report and reappraisal. Neurology 26, 607–614 (1976).

    Article  PubMed  Google Scholar 

  52. van der Knaap, M. S. et al. Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology 66, 494–498 (2006).

    Article  PubMed  Google Scholar 

  53. Brenner, M. et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nature Genet. 27, 117–120 (2001).

    Article  PubMed  CAS  Google Scholar 

  54. Li, R., Messing, A., Goldman, J. E. & Brenner, M. GFAP mutations in Alexander disease. Int. J. Dev. Neurosci. 20, 259–268 (2002).

    Article  PubMed  Google Scholar 

  55. Tang, G., Perng, M. D., Wilk, S., Quinlan, R. & Goldman, J. E. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. J. Biol. Chem. 285, 10527–10537 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Messing, A., Brenner, M., Feany, M. B., Nedergaard, M. & Goldman, J. E. Alexander disease. J. Neurosci. 32, 5017–5023 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Messing, A. et al. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am. J. Pathol. 152, 391–398 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Walker, A. K. et al. Astrocytic TDP-43 pathology in Alexander disease. J. Neurosci. 34, 6448–6458 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kondo, T. et al. Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes. Acta Neuropathol. Commun. 4, 69 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  PubMed  CAS  Google Scholar 

  61. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. Patterson, K. C., Hawkins, V. E., Arps, K. M., Mulkey, D. K. & Olsen, M. L. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats. Hum. Mol. Genet. 25, 3303–3320 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Okabe, Y. et al. Alterations of gene expression and glutamate clearance in astrocytes derived from an MeCP2-null mouse model of Rett syndrome. PLoS ONE 7, e35354 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Maezawa, I., Swanberg, S., Harvey, D., LaSalle, J. M. & Jin, L. W. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J. Neurosci. 29, 5051–5061 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Turovsky, E., Karagiannis, A., Abdala, A. P. & Gourine, A. V. Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome. J. Physiol. 593, 3159–3168 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ballas, N., Lioy, D. T., Grunseich, C. & Mandel, G. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci. 12, 311–317 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lioy, D. T. et al. A role for glia in the progression of Rett’s syndrome. Nature 475, 497–500 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Bebensee, D. F., Can, K. & Muller, M. Increased mitochondrial mass and cytosolic redox imbalance in hippocampal astrocytes of a mouse model of rett syndrome: subcellular changes revealed by ratiometric imaging of JC-1 and roGFP1 fluorescence. Oxid. Med. Cell. Longev. 2017, 3064016 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Delepine, C. et al. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes. Hum. Mol. Genet. 25, 146–157 (2016).

    Article  PubMed  CAS  Google Scholar 

  70. Olsen, M. L. et al. New insights on astrocyte ion channels: critical for homeostasis and neuron-glia signaling. J. Neurosci. 35, 13827–13835 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Williams, E. C. et al. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum. Mol. Genet. 23, 2968–2980 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Thom, M. Review: hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol. Appl. Neurobiol. 40, 520–543 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bedner, P. et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138, 1208–1222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).

    Article  PubMed  CAS  Google Scholar 

  75. Bittner, C. X. et al. Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J. Neurosci. 31, 4709–4713 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Hinterkeuser, S. et al. Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur. J. Neurosci. 12, 2087–2096 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. Schroder, W. et al. Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 41 (Suppl. 6), S181–S184 (2000).

    Article  PubMed  Google Scholar 

  78. Bordey, A. & Sontheimer, H. Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res. 32, 286–303 (1998).

    Article  PubMed  CAS  Google Scholar 

  79. Buono, R. J. et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res. 58, 175–183 (2004).

    Article  PubMed  CAS  Google Scholar 

  80. Dossi, E., Vasile, F. & Rouach, N. Human astrocytes in the diseased brain. Brain Res. Bull. 136, 139–156 (2017).

    Article  PubMed  CAS  Google Scholar 

  81. Hubbard, J. A., Szu, J. I. & Binder, D. K. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res. Bull. 136, 118–129 (2017).

    Article  PubMed  CAS  Google Scholar 

  82. Bedner, P. & Steinhauser, C. Altered Kir and gap junction channels in temporal lobe epilepsy. Neurochem. Int. 63, 682–687 (2013).

    Article  PubMed  CAS  Google Scholar 

  83. Kielbinski, M., Gzielo, K. & Soltys, Z. Review: roles for astrocytes in epilepsy: insights from malformations of cortical development. Neuropathol. Appl. Neurobiol. 42, 593–606 (2016).

    Article  PubMed  CAS  Google Scholar 

  84. Raimondo, J. V. et al. Tight coupling of astrocyte pH dynamics to epileptiform activity revealed by genetically encoded pH sensors. J. Neurosci. 36, 7002–7013 (2016).

    Article  PubMed  CAS  Google Scholar 

  85. Figueiredo, M. et al. Optogenetic experimentation on astrocytes. Exp. Physiol. 96, 40–50 (2011).

    Article  PubMed  CAS  Google Scholar 

  86. Ji, Z. G. & Wang, H. Optogenetic control of astrocytes: is it possible to treat astrocyte-related epilepsy? Brain Res. Bull. 110, 20–25 (2015).

    Article  PubMed  CAS  Google Scholar 

  87. Bristol, L. A. & Rothstein, J. D. Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann. Neurol. 39, 676–679 (1996).

    Article  PubMed  CAS  Google Scholar 

  88. Lin, G., Bristol, L. A. & Rothstein, J. D. An abnormal mRNA leads to downregulation of glutamate transporter EAAT2 (GLT-1) expression in amyotrophic lateral sclerosis. Ann. Neurol. 40, 540–541 (1996).

    Google Scholar 

  89. Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 11, 251–253 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wang, L., Gutmann, D. H. & Roos, R. P. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum. Mol. Genet. 20, 286–293 (2011).

    Article  PubMed  CAS  Google Scholar 

  91. Papadeas, S. T., Kraig, S. E., O’Banion, C., Lepore, A. C. & Maragakis, N. J. Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc. Natl Acad. Sci. USA 108, 17803–17808 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Haidet-Phillips, A. M. et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat. Biotechnol. 29, 824–828 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Re, D. B. et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81, 1001–1008 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Almad, A. A. et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia 64, 1154–1169 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Richard, J. P. & Maragakis, N. J. Induced pluripotent stem cells from ALS patients for disease modeling. Brain Res. 1607, 15–25 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Kawamata, H. et al. Abnormal intracellular calcium signaling and SNARE-dependent exocytosis contributes to SOD1G93A astrocyte-mediated toxicity in amyotrophic lateral sclerosis. J. Neurosci. 34, 2331–2348 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Agarwal, A. et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93, 587–605 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bhat, R. et al. Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7, e45069 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Pike, C. J., Cummings, B. J., Monzavi, R. & Cotman, C. W. Beta-amyloid-induced changes in cultured astrocytes parallel reactive astrocytosis associated with senile plaques in Alzheimer’s disease. Neuroscience 63, 517–531 (1994).

    Article  PubMed  CAS  Google Scholar 

  101. Garwood, C. J. et al. Review: astrocytes in Alzheimer’s disease and other age-associated dementias: a supporting player with a central role. Neuropathol. Appl. Neurobiol. 43, 281–298 (2017).

    Article  PubMed  CAS  Google Scholar 

  102. Koistinaho, M. et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat. Med. 10, 719–726 (2004).

    Article  PubMed  CAS  Google Scholar 

  103. Alarcon, R., Fuenzalida, C., Santibanez, M. & von Bernhardi, R. Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J. Biol. Chem. 280, 30406–30415 (2005).

    Article  PubMed  CAS  Google Scholar 

  104. Iram, T. et al. Astrocytes from old Alzheimer’s disease mice are impaired in Abeta uptake and in neuroprotection. Neurobiol. Dis. 96, 84–94 (2016).

    Article  PubMed  CAS  Google Scholar 

  105. Hartlage-Rubsamen, M. et al. Astrocytic expression of the Alzheimer’s disease beta-secretase (BACE1) is stimulus-dependent. Glia 41, 169–179 (2003).

    Article  PubMed  Google Scholar 

  106. Ben Haim, L. et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J. Neurosci. 35, 2817–2829 (2015).

    Article  PubMed  Google Scholar 

  107. Hefendehl, J. K. et al. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Abeta plaques by iGluSnFR two-photon imaging. Nat. Commun. 7, 13441 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lim, D., Ronco, V., Grolla, A. A., Verkhratsky, A. & Genazzani, A. A. Glial calcium signalling in Alzheimer’s disease. Rev. Physiol. Biochem. Pharmacol. 167, 45–65 (2014).

    Article  PubMed  CAS  Google Scholar 

  109. Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T. & Bacskai, B. J. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211–1215 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Scott, H. A., Gebhardt, F. M., Mitrovic, A. D., Vandenberg, R. J. & Dodd, P. R. Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol. Aging 32, 553.e1–553.e11 (2011).

    Article  CAS  Google Scholar 

  111. Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 20, 886–896 (2014).

    Article  PubMed  CAS  Google Scholar 

  112. Acosta, C., Anderson, H. D. & Anderson, C. M. Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res. 95, 2430–2447 (2017).

    Article  PubMed  CAS  Google Scholar 

  113. Merlini, M., Meyer, E. P., Ulmann-Schuler, A. & Nitsch, R. M. Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol. 122, 293–311 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Orr, A. G. et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat. Neurosci. 18, 423–434 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Orellana, J. A. et al. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J. Neurochem. 118, 826–840 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Garwood, C. J., Pooler, A. M., Atherton, J., Hanger, D. P. & Noble, W. Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2, e167 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Jones, V. C., Atkinson-Dell, R., Verkhratsky, A. & Mohamet, L. Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis. 8, e2696 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Liao, M. C. et al. Single-cell detection of secreted Abeta and sAPPalpha from human IPSC-derived neurons and astrocytes. J. Neurosci. 36, 1730–1746 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Kondo, T. et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12, 487–496 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    Article  PubMed  CAS  Google Scholar 

  122. Oberheim, N. A., Goldman, S. A. & Nedergaard, M. Heterogeneity of astrocytic form and function. Methods Mol. Biol. 814, 23–45 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Ben Haim, L. & Rowitch, D. H. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18, 31–41 (2017).

    Article  PubMed  CAS  Google Scholar 

  126. Wang, L. et al. Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim. Biophys. Sin. 44, 249–258 (2012).

    Article  PubMed  CAS  Google Scholar 

  127. Chou, S. Y. et al. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J. Neurosci. 28, 3277–3290 (2008).

    Article  PubMed  CAS  Google Scholar 

  128. Ferraiuolo, L., Kirby, J., Grierson, A. J., Sendtner, M. & Shaw, P. J. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat. Rev. Neurol. 7, 616–630 (2011).

    Article  PubMed  CAS  Google Scholar 

  129. Allaman, I. et al. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J. Neurosci. 30, 3326–3338 (2010).

    Article  PubMed  CAS  Google Scholar 

  130. Oliveira, J. M. Mitochondrial bioenergetics and dynamics in Huntington’s disease: tripartite synapses and selective striatal degeneration. J. Bioenerg. Biomembr. 42, 227–234 (2010).

    Article  PubMed  CAS  Google Scholar 

  131. Cassina, P. et al. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J. Neurosci. 28, 4115–4122 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Mei, X., Ezan, P., Giaume, C. & Koulakoff, A. Astroglial connexin immunoreactivity is specifically altered at beta-amyloid plaques in beta-amyloid precursor protein/presenilin1 mice. Neuroscience 171, 92–105 (2010).

    Article  PubMed  CAS  Google Scholar 

  133. Vis, J. C. et al. Connexin expression in Huntington’s diseased human brain. Cell Biol. Int. 22, 837–847 (1998).

    Article  PubMed  CAS  Google Scholar 

  134. Heuser, K. et al. Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res. 88, 55–64 (2010).

    Article  PubMed  CAS  Google Scholar 

  135. Tong, X. et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 17, 694–703 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Rossi, D. et al. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ. 15, 1691–1700 (2008).

    Article  PubMed  CAS  Google Scholar 

  137. Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464–1468 (1992).

    Article  PubMed  CAS  Google Scholar 

  138. Arzberger, T., Krampfl, K., Leimgruber, S. & Weindl, A. Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease — an in situ hybridization study. J. Neuropathol. Exp. Neurol. 56, 440–454 (1997).

    Article  PubMed  CAS  Google Scholar 

  139. Jacob, C. P. et al. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J. Alzheimers Dis. 11, 97–116 (2007).

    Article  PubMed  CAS  Google Scholar 

  140. Gu, X. L. et al. Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol. Brain 3, 12 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Valenza, M. et al. Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J. Neurosci. 30, 10844–10850 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Bu, G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 10, 333–344 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Delekate, A. et al. Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat. Commun. 5, 5422 (2014).

    Article  PubMed  Google Scholar 

  144. Hauser, R. A. & Schwarzschild, M. A. Adenosine A2A receptor antagonists for Parkinson’s disease: rationale, therapeutic potential and clinical experience. Drugs Aging 22, 471–482 (2005).

    Article  PubMed  CAS  Google Scholar 

  145. Gandelman, M., Peluffo, H., Beckman, J. S., Cassina, P. & Barbeito, L. Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J. Neuroinflamm. 7, 33 (2010).

    Article  CAS  Google Scholar 

  146. Battaglia, G. et al. Early defect of transforming growth factor beta1 formation in Huntington’s disease. J. Cell. Mol. Med. 15, 555–571 (2011).

    Article  PubMed  CAS  Google Scholar 

  147. Shibata, N. et al. Persistent cleavage and nuclear translocation of apoptosis-inducing factor in motor neurons in the spinal cord of sporadic amyotrophic lateral sclerosis patients. Acta Neuropathol. 118, 755–762 (2009).

    Article  PubMed  CAS  Google Scholar 

  148. Johnson, J. A. et al. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann. NY Acad. Sci. 1147, 61–69 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Rossi, D. et al. Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease. J. Biol. Chem. 280, 42088–42096 (2005).

    Article  PubMed  CAS  Google Scholar 

  150. Brambilla, L. et al. Disruption of the astrocytic TNFR1-GDNF axis accelerates motor neuron degeneration and disease progression in amyotrophic lateral sclerosis. Hum. Mol. Genet. 25, 3080–3095 (2016).

    PubMed  CAS  Google Scholar 

  151. Frakes, A. E. et al. Microglia induce motor neuron death via the classical NF-kappaB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Hsiao, H. Y., Chen, Y. C., Chen, H. M., Tu, P. H. & Chern, Y. A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease. Hum. Mol. Genet. 22, 1826–1842 (2013).

    Article  PubMed  CAS  Google Scholar 

  153. Aebischer, J. et al. IFNgamma triggers a LIGHT-dependent selective death of motoneurons contributing to the non-cell-autonomous effects of mutant SOD1. Cell Death Differ. 18, 754–768 (2011).

    Article  PubMed  CAS  Google Scholar 

  154. Barcia, C. et al. IFN-gamma signaling, with the synergistic contribution of TNF-alpha, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis. 2, e142 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Reviewer information

Nature Reviews Neurology thanks L. Barbeito, L. Ferraiuolo and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of manuscript preparation.

Corresponding author

Correspondence to Nicholas J. Maragakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tripartite synapse

A site at which three-way communication occurs between presynaptic, postsynaptic and astrocytic processes during synaptic transmission.

Gliotransmission

The release of glutamate, ATP, d-serine and other neurotransmitters that are essential for synaptic transmission and plasticity from astrocytes.

Microdialysis

A minimally invasive method of sampling in vivo concentrations of various analytes (neurotransmitters, peptides, glutamate, etc.) in the brain and spinal cord using a dialysis probe.

Single-wavelength glutamate sensor

A fluorescent sensor based on a circularly permuted single fluorophore rather than Förster resonance energy transfer (FRET), which is based on ratiometric measurements at two different wavelengths.

Human cortical spheroids

(hCSs). 3D cultures that produce laminated cerebral cortex-like structures that include astrocytes as part of a cortical neuronal circuit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almad, A., Maragakis, N.J. A stocked toolbox for understanding the role of astrocytes in disease. Nat Rev Neurol 14, 351–362 (2018). https://doi.org/10.1038/s41582-018-0010-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0010-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing