Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease

Abstract

Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD.

Key points

  • The kidney has distinctive anatomical and physiological characteristics, and kidney cell types have specialized metabolic traits tailored to their specific functions and location.

  • In general, all kidney cells — including epithelial, endothelial, stromal and immune cells — can have an impact on fibrosis, and their roles are determined by spatiotemporal metabolic reprogramming that coordinates their effector functions and interactions.

  • Identification of cell-type-specific metabolic shifts could enable the recognition of novel cell subpopulations with distinctive roles in adaptive or fibrotic kidney regeneration.

  • Targeting metabolic routes and energy-sensing molecules to promote an immune anti-inflammatory or quiescent state might avoid chronic inflammation and subsequent development of kidney fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular crosstalk in the pathological progression of kidney fibrosis.
Fig. 2: Main pathways of cellular metabolism involved in kidney fibrogenesis.
Fig. 3: Metabolic alterations in tubular epithelial cells contributing to kidney fibrogenesis.
Fig. 4: Metabolomic reprogramming of endothelial cells, podocytes and myofibroblasts.

Similar content being viewed by others

References

  1. Wang, Z. et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92, 1369–1377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cargill, K. & Sims-Lucas, S. Metabolic requirements of the nephron. Pediatr. Nephrol. 35, 1–8 (2020).

    Article  PubMed  Google Scholar 

  3. Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48, 9–31 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L. & Perkovic, V. Chronic kidney disease. Lancet 398, 786–802 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, S. M. & Bonventre, J. V. Acute kidney injury and maladaptive tubular repair leading to renal fibrosis. Curr. Opin. Nephrol. Hypertens. 29, 310–318 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, Q., Tang, B. & Zhang, C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal. Transduct. Target. Ther. 7, 182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abedini, A. et al. Spatially resolved human kidney multi-omics single cell atlas highlights the key role of the fibrotic microenvironment in kidney disease progression. Nat. Genet. 56, 1712–1724 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Houten, S. M. & Wanders, R. J. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 33, 469–477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark, J. Z. et al. Representation and relative abundance of cell-type selective markers in whole-kidney RNA-Seq data. Kidney Int. 95, 787–796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hansen, J. et al. A reference tissue atlas for the human kidney. Sci. Adv. 8, eabn4965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, W. et al. Kidney glycolysis serves as a mammalian phosphate sensor that maintains phosphate homeostasis. J. Clin. Invest. 133, e164610 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Legouis, D., Faivre, A., Cippa, P. E. & de Seigneux, S. Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. Nephrol. Dial. Transpl. 37, 1417–1425 (2022).

    Article  CAS  Google Scholar 

  20. Onodera, T. et al. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization. Nat. Commun. 14, 6531 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lyu, Z. et al. PPARγ maintains the metabolic heterogeneity and homeostasis of renal tubules. EBioMedicine 38, 178–190 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brinkkoetter, P. T. et al. Anaerobic glycolysis maintains the glomerular filtration barrier independent of mitochondrial metabolism and dynamics. Cell Rep. 27, 1551–1566.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779 e720 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31, 118–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Kalucka, J. et al. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 28, 881–894.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Setten, E. et al. Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context. Nat. Commun. 13, 6499 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, H., Dixon, E. E., Wu, H. & Humphreys, B. D. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 34, 1977–1998.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simon, N. & Hertig, A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front. Med. 2, 52 (2015).

    Article  Google Scholar 

  31. Miguel, V. et al. Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J. Clin. Invest. 131, e140695 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Afshinnia, F. et al. Impaired β-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. J. Am. Soc. Nephrol. 29, 295–306 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Dhillon, P. et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab. 33, 379–394 e378 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Piret, S. E. et al. Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation. Kidney Int. 100, 1250–1267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Price, N. L. et al. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight 4, e131102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Miguel, V., Ramos, R., Garcia-Bermejo, L., Rodriguez-Puyol, D. & Lamas, S. The program of renal fibrogenesis is controlled by microRNAs regulating oxidative metabolism. Redox Biol. 40, 101851 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Hammoud, S. et al. Tubular CPT1A deletion minimally affects aging and chronic kidney injury. JCI Insight 9, e171961 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yuan, L. et al. Macrophage-derived exosomal miR-195a-5p impairs tubular epithelial cells mitochondria in acute kidney injury mice. FASEB J. 37, e22691 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Han, Y. C. et al. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis. 12, 925 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miguel, V. et al. Enhanced fatty acid oxidation through metformin and baicalin as therapy for COVID-19 and associated inflammatory states in lung and kidney. Redox Biol. 68, 102957 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gui, Y. et al. Calponin 2 harnesses metabolic reprogramming to determine kidney fibrosis. Mol. Metab. 71, 101712 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren, L. et al. The role of lipotoxicity in kidney disease: from molecular mechanisms to therapeutic prospects. Biomed. Pharmacother. 161, 114465 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Yoshioka, K. et al. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney Int. 101, 510–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Mukhi, D. et al. ACSS2 gene variants determine kidney disease risk by controlling de novo lipogenesis in kidney tubules. J. Clin. Invest. e172963 (2023).

  45. Mori, Y. et al. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab. 33, 1042–1061.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, Y. et al. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis. 11, 994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rojas-Morales, P., Pedraza-Chaverri, J. & Tapia, E. Ketone bodies for kidney injury and disease. Adv. Redox Res. 2, 100009 (2021).

    Article  CAS  Google Scholar 

  48. Perry, R. J. & Shulman, G. I. Sodium-glucose cotransporter-2 inhibitors: understanding the mechanisms for therapeutic promise and persisting risks. J. Biol. Chem. 295, 14379–14390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, S. et al. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free. Radic. Biol. Med. 152, 632–649 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Tang, C. et al. Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol. 17, 299–318 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Perry, H. M. et al. Dynamin-related protein 1 deficiency promotes recovery from AKI. J. Am. Soc. Nephrol. 29, 194–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Gall, J. M. et al. Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia. J. Am. Soc. Nephrol. 26, 1092–1102 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Vringer, E. & Tait, S. W. G. Mitochondria and cell death-associated inflammation. Cell Death Differ. 30, 304–312 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Komada, T. et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J. Am. Soc. Nephrol. 29, 1165–1181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quinn, G. Z., Dhillon, P. & Susztak, K. It takes two to tango: the role of dysregulated metabolism and inflammation in kidney disease development. Semin. Nephrol. 40, 199–205 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, S. et al. Inhibition of PFKP in renal tubular epithelial cell restrains TGF-β induced glycolysis and renal fibrosis. Cell Death Dis. 14, 816 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahmadi, A. et al. Chronic kidney disease is associated with attenuated plasma metabolome response to oral glucose tolerance testing. J. Ren. Nutr. 33, 316–325 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Wei, Q. et al. Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am. J. Physiol. Renal Physiol. 316, F1162–F1172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Verissimo, T. et al. Decreased renal gluconeogenesis is a hallmark of chronic kidney disease. J. Am. Soc. Nephrol. 33, 810–827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Renal Physiol. 313, F561–F575 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, D. et al. TSLP/TSLPR promotes renal fibrosis by activating STAT3 in renal fibroblasts. Int. Immunopharmacol. 121, 110430 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Garibotto, G. et al. Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clin. Nutr. 29, 424–433 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Scantlebery, A. M. et al. The dysregulation of metabolic pathways and induction of the pentose phosphate pathway in renal ischaemia-reperfusion injury. J. Pathol. 253, 404–414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou, H. L. et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 565, 96–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Beld, J., Lee, D. J. & Burkart, M. D. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. Mol. Biosyst. 11, 38–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, M. et al. Phosphorylation of acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin. J. Am. Soc. Nephrol. 29, 2326–2336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kikuchi, H. et al. Failure to sense energy depletion may be a novel therapeutic target in chronic kidney disease. Kidney Int. 95, 123–137 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Cao, H. et al. Tuberous sclerosis 1 (Tsc1) mediated mTORC1 activation promotes glycolysis in tubular epithelial cells in kidney fibrosis. Kidney Int. 98, 686–698 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Schaub, J. A. et al. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes. J. Clin. Invest. 133, e164486 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hiatt, M. J., Ivanova, L., Trnka, P., Solomon, M. & Matsell, D. G. Urinary tract obstruction in the mouse: the kinetics of distal nephron injury. Lab. Invest. 93, 1012–1023 (2013).

    Article  PubMed  Google Scholar 

  72. Nam, S. A. et al. Autophagy attenuates tubulointerstitial fibrosis through regulating transforming growth factor-β and NLRP3 inflammasome signaling pathway. Cell Death Dis. 10, 78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Han, S. H. et al. Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J. Am. Soc. Nephrol. 27, 439–453 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Gu, M. et al. Palmitoyltransferase DHHC9 and acyl protein thioesterase APT1 modulate renal fibrosis through regulating β-catenin palmitoylation. Nat. Commun. 14, 6682 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Singh, N., Singh, H., Jagavelu, K., Wahajuddin, M. & Hanif, K. Fatty acid synthase modulates proliferation, metabolic functions and angiogenesis in hypoxic pulmonary artery endothelial cells. Eur. J. Pharmacol. 815, 462–469 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Tiwari, R. et al. Post-ischemic inactivation of HIF prolyl hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis. Preprint at bioRxiv https://doi.org/10.1101/2023.10.03.560700 (2023).

  77. Janaszak-Jasiecka, A., Siekierzycka, A., Ploska, A., Dobrucki, I. T. & Kalinowski, L. Endothelial dysfunction driven by hypoxia-the influence of oxygen deficiency on NO bioavailability. Biomolecules 11, 982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tseng, A. H., Wu, L. H., Shieh, S. S. & Wang, D. L. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem. J. 464, 157–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Srivastava, S. P. et al. Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys. iScience 24, 102390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Doddaballapur, A. et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler. Thromb. Vasc. Biol. 35, 137–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, G. et al. Shear stress regulation of endothelial glycocalyx structure is determined by glucobiosynthesis. Arterioscler. Thromb. Vasc. Biol. 40, 350–364 (2020).

    Article  PubMed  Google Scholar 

  83. Kim, J. S. et al. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 309, H425–433, (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, Y. et al. Glutaredoxin 1 mediates the protective effect of steady laminar flow on endothelial cells against oxidative stress-induced apoptosis via inhibiting Bim. Sci. Rep. 7, 15539 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fang, Y. & Davies, P. F. Site-specific microRNA-92a regulation of Krüppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol. 32, 979–987 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiao, H. et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128, 632–642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dumas, S. J. et al. Phenotypic diversity and metabolic specialization of renal endothelial cells. Nat. Rev. Nephrol. 17, 441–464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rohlenova, K. et al. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab. 31, 862–877 e814 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Huang, H. et al. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J. 36, 2334–2352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. West, X. Z. et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467, 972–976 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reynolds, P. A. The mechanobiology of kidney podocytes in health and disease. Clin. Sci. 134, 1245–1253 (2020).

    Article  CAS  Google Scholar 

  93. Miyake, Y. et al. Upregulation of OASIS/CREB3L1 in podocytes contributes to the disturbance of kidney homeostasis. Commun. Biol. 5, 734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, Z. et al. Reduction of anaerobic glycolysis contributes to angiotensin II-induced podocyte injury with foot process effacement. Kidney Int. 103, 735–748 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Langer, S., Kreutz, R. & Eisenreich, A. Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions. J. Nephrol. 29, 765–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Fu, J. et al. Regeneration of glomerular metabolism and function by podocyte pyruvate kinase M2 in diabetic nephropathy. JCI Insight 7, e155260 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Horne, S. J. et al. Podocyte-specific loss of Krüppel-like factor 6 increases mitochondrial injury in diabetic kidney disease. Diabetes 67, 2420–2433 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Galvan, D. L. et al. Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice. J. Clin. Invest. 129, 2807–2823 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Li, S. Y. et al. Increasing the level of peroxisome proliferator-activated receptor γ coactivator-1α in podocytes results in collapsing glomerulopathy. JCI Insight 2, e92930 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kim, J. J., Wilbon, S. S. & Fornoni, A. Podocyte lipotoxicity in CKD. Kidney360 2, 755–762 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lv, F. et al. CD36 aggravates podocyte injury by activating NLRP3 inflammasome and inhibiting autophagy in lupus nephritis. Cell Death Dis. 13, 729 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, J. J. et al. Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine 63, 103162 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Jiang, X. S. et al. PINK1/Parkin mediated mitophagy ameliorates palmitic acid-induced apoptosis through reducing mitochondrial ROS production in podocytes. Biochem. Biophys. Res. Commun. 525, 954–961 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Ducasa, G. M. et al. ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. J. Clin. Invest. 129, 3387–3400 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shen, Y. et al. VEGF-B antibody and interleukin-22 fusion protein ameliorates diabetic nephropathy through inhibiting lipid accumulation and inflammatory responses. Acta Pharm. Sin. B 11, 127–142 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, X. et al. Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney Int. 98, 1275–1285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kottmann, R. M. et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am. J. Respir. Crit. Care Med. 186, 740–751 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, H. et al. WWP2 regulates renal fibrosis and the metabolic reprogramming of profibrotic myofibroblasts. J. Am. Soc. Nephrol. 35, 696–718 (2024).

    Article  PubMed  Google Scholar 

  110. Li, L. et al. Orphan nuclear receptor COUP-TFII enhances myofibroblast glycolysis leading to kidney fibrosis. EMBO Rep. 22, e51169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lemos, D. R. et al. Interleukin-1β activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hamanaka, R. B. et al. Glutamine metabolism is required for collagen protein synthesis in lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 61, 597–606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ge, J. et al. Glutaminolysis promotes collagen translation and stability via α-ketoglutarate-mediated mTOR activation and proline hydroxylation. Am. J. Respir. Cell Mol. Biol. 58, 378–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Imamura, M. et al. RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase. JCI Insight 3, e94979 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fukasawa, H. et al. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc. Natl Acad. Sci. USA 101, 8687–8692 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gronroos, E., Hellman, U., Heldin, C. H. & Ericsson, J. Control of Smad7 stability by competition between acetylation and ubiquitination. Mol. Cell 10, 483–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Yang, Y. et al. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) drives chronic kidney disease progression in male mice. Nat. Commun. 14, 1334 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, D. Q. et al. Poricoic acid A activates AMPK to attenuate fibroblast activation and abnormal extracellular matrix remodelling in renal fibrosis. Phytomedicine 72, 153232 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. do Valle Duraes, F. et al. Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis. JCI Insight 5, e130651 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Basso, P. J., Andrade-Oliveira, V. & Camara, N. O. S. Targeting immune cell metabolism in kidney diseases. Nat. Rev. Nephrol. 17, 465–480 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Cheung, M. D. et al. Resident macrophage subpopulations occupy distinct microenvironments in the kidney. JCI Insight 7, e161078 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Liu, F. et al. Distinct fate, dynamics and niches of renal macrophages of bone marrow or embryonic origins. Nat. Commun. 11, 2280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Jia, Y. et al. Tubular epithelial cell-derived extracellular vesicles induce macrophage glycolysis by stabilizing HIF-1α in diabetic kidney disease. Mol. Med. 28, 95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Freemerman, A. J. et al. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J. Immunol. 202, 1265–1286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jing, C. et al. Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proc. Natl Acad. Sci. USA 117, 15160–15171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wei, X. et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539, 294–298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bosch, M. et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 370, eaay8085 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Tanaka, S. et al. Sphingosine 1-phosphate signaling in perivascular cells enhances inflammation and fibrosis in the kidney. Sci. Transl. Med. 14, eabj2681 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, J. et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab. 31, 1136–1153.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, P. S. et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Bhatia, D. et al. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4, e132826 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hwang, I. et al. Peroxiredoxin 3 deficiency accelerates chronic kidney injury in mice through interactions between macrophages and tubular epithelial cells. Free. Radic. Biol. Med. 131, 162–172 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Galic, S. et al. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Invest. 121, 4903–4915 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sag, D., Carling, D., Stout, R. D. & Suttles, J. Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Covarrubias, A. J. et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. Elife 5, e11612 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kitching, A. R. Dendritic cells in progressive renal disease: some answers, many questions. Nephrol. Dial. Transpl. 29, 2185–2193 (2014).

    Article  CAS  Google Scholar 

  139. Li, N. et al. IRF8-dependent type I conventional dendritic cells (cDC1s) Control post-ischemic inflammation and mildly protect against post-ischemic acute kidney injury and disease. Front. Immunol. 12, 685559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Snelgrove, S. L. et al. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis. Am. J. Pathol. 180, 91–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Ryan, D. G. & O’Neill, L. A. J. Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Lett. 591, 2992–3006 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Du, X. et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature 558, 141–145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kratchmarov, R. et al. Metabolic control of cell fate bifurcations in a hematopoietic progenitor population. Immunol. Cell Biol. 96, 863–871 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. von Vietinghoff, S. & Kurts, C. Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. Cell Tissue Res. 385, 335–344 (2021).

    Article  Google Scholar 

  146. Erra Diaz, F. et al. Extracellular acidosis and mTOR inhibition drive the differentiation of human monocyte-derived dendritic cells. Cell Rep. 31, 107613 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Li, H. et al. IL-23 reshapes kidney resident cell metabolism and promotes local kidney inflammation. J. Clin. Invest. 131, e142428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, K. et al. T cell metabolic reprogramming in acute kidney injury and protection by glutamine blockade. JCI Insight 8, e160345 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Law, B. M. P. et al. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int. 92, 79–88 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Wee, Y. M. et al. Tissue-resident natural killer cells exacerbate tubulointerstitial fibrosis by activating transglutaminase 2 and syndecan-4 in a model of aristolochic acid-induced nephropathy. BMB Rep. 52, 554–559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Marcais, A. et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat. Immunol. 15, 749–757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Loftus, R. M. et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Oleinika, K., Mauri, C. & Salama, A. D. Effector and regulatory B cells in immune-mediated kidney disease. Nat. Rev. Nephrol. 15, 11–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Cippa, P. E. et al. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nat. Commun. 10, 1157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Fleig, S. V. et al. Long-term B cell depletion associates with regeneration of kidney function. Immun. Inflamm. Dis. 9, 1479–1488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim, D. H. et al. IL-10 deficiency aggravates renal inflammation, fibrosis and functional failure in high-fat dieted obese mice. Tissue Eng. Regen. Med. 18, 399–410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Raza, I. G. A. & Clarke, A. J. B cell metabolism and autophagy in autoimmunity. Front. Immunol. 12, 681105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Caro-Maldonado, A. et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 192, 3626–3636 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. The, E.-K. C. G. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Article  Google Scholar 

  165. Cannon, C. P. et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N. Engl. J. Med. 383, 1425–1435 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Yau, K., Dharia, A., Alrowiyti, I. & Cherney, D. Z. I. Prescribing SGLT2 inhibitors in patients with CKD: expanding indications and practical considerations. Kidney Int. Rep. 7, 1463–1476 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cooper, M. E. et al. Kidney disease end points in a pooled analysis of individual patient-level data from a large clinical trials program of the dipeptidyl peptidase 4 inhibitor linagliptin in type 2 diabetes. Am. J. Kidney Dis. 66, 441–449 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Gragnano, F., De Sio, V. & Calabro, P. FLOW trial stopped early due to evidence of renal protection with semaglutide. Eur. Heart J. Cardiovasc. Pharmacother. 10, 7–9 (2024).

    Article  PubMed  Google Scholar 

  171. Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).

    Article  CAS  PubMed  Google Scholar 

  172. Webb, T. J. et al. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses. Pathog. Dis. 74, ftw055 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Tsogbadrakh, B. et al. AICAR, an AMPK activator, protects against cisplatin-induced acute kidney injury through the JAK/STAT/SOCS pathway. Biochem. Biophys. Res. Commun. 509, 680–686 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/study/NCT02322073 (2021).

  175. McFadden, J. M. et al. Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase. J. Med. Chem. 48, 946–961 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Robins, S. J. et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 285, 1585–1591, (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Davis, T. M. et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 54, 280–290 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Hadjivasilis, A., Kouis, P., Kousios, A. & Panayiotou, A. The effect of fibrates on kidney function and chronic kidney disease progression: a systematic review and meta-analysis of randomised studies. J. Clin. Med. 11, 768 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/study/NCT04929379 (2023).

  180. Iwasaki, M. et al. Efficacy and safety of pemafibrate in patients with chronic kidney disease: a retrospective study. Medicine 102, e32818 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cheng, F. et al. The effects of oral sodium bicarbonate on renal function and cardiovascular risk in patients with chronic kidney disease: a systematic review and meta-analysis. Ther. Clin. Risk Manag. 17, 1321–1331 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Wesson, D. E. & Simoni, J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 78, 1128–1135 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Mitchell, N. S., Scialla, J. J. & Yancy, W. S. Jr Are low-carbohydrate diets safe in diabetic and nondiabetic chronic kidney disease? Ann. N. Y. Acad. Sci. 1461, 25–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Rojas-Morales, P. et al. A ketogenic diet attenuates acute and chronic ischemic kidney injury and reduces markers of oxidative stress and inflammation. Life Sci. 289, 120227 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Oehm, S. et al. RESET-PKD: a pilot trial on short-term ketogenic interventions in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transpl. 38, 1623–1635 (2023).

    Article  CAS  Google Scholar 

  186. Zoccali, C. et al. The effect of a ketogenic diet on weight loss in CKD: a randomized controlled trial in obese stage G1–3a CKD patients. Clin. Kidney J. 16, 2309–2313 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yang, G., Xia, Y. & Ren, W. Glutamine metabolism in Th17/Treg cell fate: applications in Th17 cell-associated diseases. Sci. China Life Sci. 64, 221–233 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Ng, H. Y., Chen, H. C., Tsai, Y. C., Yang, Y. K. & Lee, C. T. Activation of intrarenal renin-angiotensin system during metabolic acidosis. Am. J. Nephrol. 34, 55–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Kanasaki, K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin. Sci. 132, 489–507 (2018).

    Article  CAS  Google Scholar 

  193. Lin, F. et al. Rapamycin protects against aristolochic acid nephropathy in mice by potentiating mammalian target of rapamycin-mediated autophagy. Mol. Med. Rep. 24, 495 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kezic, A., Thaiss, F., Becker, J. U., Tsui, T. Y. & Bajcetic, M. Effects of everolimus on oxidative stress in kidney model of ischemia/reperfusion injury. Am. J. Nephrol. 37, 291–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Schneer, S. et al. Renal function preservation with the mTOR inhibitor, everolimus, after lung transplant. Clin. Transpl. 28, 662–668 (2014).

    Article  CAS  Google Scholar 

  196. Zhao, Q. et al. Design and discovery of a highly potent ultralong-acting GLP-1 and glucagon co-agonist for attenuating renal fibrosis. Acta Pharm. Sin. B 14, 1283–1301 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  197. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/study/NCT03819153 (2024).

  198. Silva Barbosa, A. C. et al. Inhibition of estrogen sulfotransferase (SULT1E1/EST) ameliorates ischemic acute kidney injury in mice. J. Am. Soc. Nephrol. 31, 1496–1508 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Weir, M. A. et al. Orlistat and acute kidney injury: an analysis of 953 patients. Arch. Intern. Med. 171, 703–704 (2011).

    Article  PubMed  Google Scholar 

  200. Kanlaya, R. & Thongboonkerd, V. Protective effects of epigallocatechin-3-gallate from green tea in various kidney diseases. Adv. Nutr. 10, 112–121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the German Research Foundation (DFG: SFBTRR219) CRU344 4288578857858 and CRU5011 445703531, a grant from the Else Kroener Fresenius Foundation, the Dutch Kidney Foundation TASKFORCE EP1805 and Kolff Grant #113351, the Leducq Foundation, the BMBF eMed Consortia Fibromap and the BMBF Consortia CureFib to R.K. V.M. was supported by a FEBS Long-Term Fellowship. I.W.S. is funded by a Benjamin Hochberg Fellowship from the DFG.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Rafael Kramann.

Ethics declarations

Competing interests

R.K. is founder and shareholder of Sequantrix GmbH, has grants from Travere Therapeutics, Galapagos, Chugai, AskBio and Novo Nordisk, and is a consultant for Bayer, Pfizer, Novo Nordisk, Hybridize Therapeutics and Gruenenthal. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Sandeep Mallipattu, Alessandra Tammaro, Liu Ye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miguel, V., Shaw, I.W. & Kramann, R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00889-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00889-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing