Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polygenic scores and their applications in kidney disease

Abstract

Genome-wide association studies (GWAS) have uncovered thousands of risk variants that individually have small effects on the risk of human diseases, including chronic kidney disease, type 2 diabetes, heart diseases and inflammatory disorders, but cumulatively explain a substantial fraction of disease risk, underscoring the complexity and pervasive polygenicity of common disorders. This complexity poses unique challenges to the clinical translation of GWAS findings. Polygenic scores combine small effects of individual GWAS risk variants across the genome to improve personalized risk prediction. Several polygenic scores have now been developed that exhibit sufficiently large effects to be considered clinically actionable. However, their clinical use is limited by their partial transferability across ancestries and a lack of validated models that combine polygenic, monogenic, family history and clinical risk factors. Moreover, prospective studies are still needed to demonstrate the clinical utility and cost-effectiveness of polygenic scores in clinical practice. Here, we discuss evolving methods for developing polygenic scores, best practices for validating and reporting their performance, and the study designs that will empower their clinical implementation. We specifically focus on the polygenic scores relevant to nephrology and other chronic, complex diseases and review their key limitations, necessary refinements and potential clinical applications.

Key points

  • A polygenic score is a numerical measure of inherited susceptibility conveyed by multiple genetic risk variants for a particular trait or disease and is computed by summing the effects of thousands (or millions) of risk alleles across the genome.

  • Family history and polygenic risk contribute independently to susceptibility for most common complex traits and diseases.

  • Additive effects of monogenic and polygenic risk have been demonstrated for breast and colorectal cancer, cardiovascular disease and chronic kidney disease.

  • An integrative genomic risk predictor combines monogenic, polygenic, family history, environmental and clinical risk factors into a single risk prediction framework.

  • The key limitation of existing polygenic scores is their partial cross-ancestry transferability or diminished predictive performance in various non-European populations currently underrepresented in genome-wide association studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polygenic risk score development pathway from genome-wide association study discovery to clinical implementation.
Fig. 2: Genome-wide polygenic score for chronic kidney disease.
Fig. 3: Steps needed for clinical implementation of polygenic testing.

Similar content being viewed by others

References

  1. Chatterjee, N. et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat. Genet. 45, 400–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, Y., Qi, G. H., Park, J. H. & Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Turner, S. et al. Quality control procedures for genome-wide association studies. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0119s68 (2011).

  6. Hong, E. P. & Park, J. W. Sample size and statistical power calculation in genetic association studies. Genomics Inf. 10, 117–122 (2012).

    Article  PubMed Central  Google Scholar 

  7. Stanaway, I. B. et al. The eMERGE genotype set of 83,717 subjects imputed to ~40 million variants genome wide and association with the herpes zoster medical record phenotype. Genet. Epidemiol. 43, 63–81 (2019).

    PubMed  Google Scholar 

  8. Bycroft, C. et al. The UK biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramirez, A. H. et al. The All of Us research program: data quality, utility, and diversity. Patterns 3, 100570 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 44, 631–635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Homburger, J. R. et al. Low coverage whole genome sequencing enables accurate assessment of common variants and calculation of genome-wide polygenic scores. Genome Med. 11, 74 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sul, J. H., Martin, L. S. & Eskin, E. Population structure in genetic studies: confounding factors and mixed models. PLoS Genet. 14, e1007309 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slatkin, M. Linkage disequilibrium — understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–U170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 3, e114 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics 198, 497–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. B 82, 1273–1300 (2020).

    Article  Google Scholar 

  30. Yang, Z. K. et al. CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses. Nat. Genet. 55, 1057–1065 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Dobrijevic, E. et al. Mendelian randomization for nephrologists. Kidney Int. 104, 1113–1123 (2023).

    Article  PubMed  Google Scholar 

  32. Cano-Gamez, E. & Trynka, G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 11, 424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trynka, G. & Raychaudhuri, S. Using chromatin marks to interpret and localize genetic associations to complex human traits and diseases. Curr. Opin. Genet. Dev. 23, 635–641 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoffman, M. M. et al. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 9, 473–U488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Backenroth, D. et al. FUN-LDA: a latent Dirichlet allocation model for predicting tissue-specific functional effects of noncoding variation: methods and applications. Am. J. Hum. Genet. 102, 920–942 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, M. L. J. et al. Cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and disease-associated genes. Genome Biol. 18, 52 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen, K. M., Wong, A. K., Troyanskaya, O. G. & Zhou, J. A sequence-based global map of regulatory activity for deciphering human genetics. Nat. Genet. 54, 940–949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khan, A. et al. Genome-wide polygenic score to predict chronic kidney disease across ancestries. Nat. Med. 28, 1412–1420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi, S. W., Mak, T. S. H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vilhjalmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruan, Y. F. et al. Author Correction: Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 1259 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Jin, J. et al. MUSSEL: enhanced Bayesian polygenic risk prediction leveraging information across multiple ancestry groups. Cell Genom. 4, 100539 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amariuta, T. et al. Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements. Nat. Genet. 52, 1346–1354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weissbrod, O. et al. Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores. Nat. Genet. 54, 450–458 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miao, J. C. et al. Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics. Nat. Commun. 14, 832 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lello, L., Raben, T. G., Yong, S. Y., Tellier, L. C. A. M. & Hsu, S. D. H. Genomic prediction of 16 complex disease risks including heart attack, diabetes, breast and prostate cancer. Sci. Rep. 9, 15286 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol. 41, 469–480 (2017).

    Article  PubMed  Google Scholar 

  52. Pattee, J. & Pan, W. Penalized regression and model selection methods for polygenic scores on summary statistics. PLoS Comput. Biol. 16, e1008271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun, Q. et al. Improving polygenic risk prediction in admixed populations by explicitly modeling ancestral-differential effects via GAUDI. Nat. Commun. 15, 1016 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abraham, G. et al. Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nat. Commun. 10, 5819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wand, H. et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature 591, 211–219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Novembre, J. et al. Addressing the challenges of polygenic scores in human genetic research. Am. J. Hum. Genet. 109, 2095–2100 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. Elife 9, e48376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lambert, S. A. et al. The polygenic score catalog as an open database for reproducibility and systematic evaluation. Nat. Genet. 53, 420–425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, S. F. et al. Genotype imputation and variability in polygenic risk score estimation. Genome Med. 12, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics 30, 2906–2914 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xie, J. et al. The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nat. Commun. 11, 1600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Prive, F. et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 109, 12–23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 107, 788–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Patel, R. A. et al. Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits. Am. J. Hum. Genet. 109, 1286–1297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nikpay, M., Stewart, A. F. R. & McPherson, R. Partitioning the heritability of coronary artery disease highlights the importance of immune-mediated processes and epigenetic sites associated with transcriptional activity. Cardiovasc. Res. 113, 973–983 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Nikpay, M. et al. A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dikilitas, O. et al. Predictive utility of polygenic risk scores for coronary heart disease in three major racial and ethnic groups. Am. J. Hum. Genet. 106, 707–716 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat. Genet. 54, 1803–1815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nielsen, J. B. et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat. Genet. 50, 1234–1239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Klarin, D. et al. Genetic analysis of venous thromboembolism in UK Biobank identifies the ZFPM2 locus and implicates obesity as a causal risk factor. Circ. Cardiovasc. Genet. 10, e001643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Klarin, D. et al. Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease. Nat. Genet. 51, 1574–1579 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ghouse, J. et al. Genome-wide meta-analysis identifies 93 risk loci and enables risk prediction equivalent to monogenic forms of venous thromboembolism. Nat. Genet. 55, 399–409 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ge, T. et al. Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations. Genome Med. 14, 70 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ng, M. C. Y. et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 10, e1004517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Hoffmann, T. J. et al. A large multiethnic genome-wide association study of adult body mass index identifies novel loci. Genetics 210, 499–515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–U401 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khera, A. V. et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 177, 587–596.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: polygenic risk score software. Bioinformatics 31, 1466–1468 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Hui, D. et al. Quantifying factors that affect polygenic risk score performance across diverse ancestries and age groups for body mass index. Pac. Symp. Biocomput. 28, 437–448 (2023).

    PubMed  PubMed Central  Google Scholar 

  87. Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Demenais, F. et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat. Genet. 50, 42–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Namjou, B. et al. Multiancestral polygenic risk score for pediatric asthma. J. Allergy Clin. Immunol. 150, 1086–1096 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chen, G. B. et al. Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Hum. Mol. Genet. 23, 4710–4720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sud, A., Kinnersley, B. & Houlston, R. S. Genome-wide association studies of cancer: current insights and future perspectives. Nat. Rev. Cancer 17, 692–704 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Eccles, S. A. et al. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res. 15, R92 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, C. et al. Generalizability of polygenic risk scores for breast cancer among women with European, African, and Latinx ancestry. JAMA Netw. Open. 4, e2119084 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Conti, D. V. et al. Publisher Correction: Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat. Genet. 53, 413 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, L. & Kiryluk, K. Genome-wide polygenic risk predictors for kidney disease. Nat. Rev. Nephrol. 14, 723–724 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shang, N. et al. Medical records-based chronic kidney disease phenotype for clinical care and “big data” observational and genetic studies. NPJ Digit. Med. 4, 70 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yu, Z. et al. Polygenic risk scores for kidney function and their associations with circulating proteome, and incident kidney diseases. J. Am. Soc. Nephrol. 32, 3161–3173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Steinbrenner, I. et al. A polygenic score for reduced kidney function and adverse outcomes in a cohort with chronic kidney disease. Kidney Int. 103, 421–424 (2023).

    Article  PubMed  Google Scholar 

  102. Fox, C. S. et al. Genomewide linkage analysis to serum creatinine, GFR, and creatinine clearance in a community-based population: the Framingham Heart Study. J. Am. Soc. Nephrol. 15, 2457–2461 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Langefeld, C. D. et al. Heritability of GFR and albuminuria in Caucasians with type 2 diabetes mellitus. Am. J. Kidney Dis. 43, 796–800 (2004).

    Article  PubMed  Google Scholar 

  104. Satko, S. G. & Freedman, B. I. The familial clustering of renal disease and related phenotypes. Med. Clin. N. Am. 89, 447–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Jones, A.C. et al. Single- versus multi-ancestry polygenic risk scores for CKD in black Americans. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.0000000000000437 (2024).

  106. Gorski, M. et al. Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies. Kidney Int. 102, 624–639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Robinson-Cohen, C. et al. Genome-wide association study of CKD progression. J. Am. Soc. Nephrol. 34, 1547–1559 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Teumer, A. et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat. Commun. 10, 4130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Salem, R. M. et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J. Am. Soc. Nephrol. 30, 2000–2016 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kiryluk, K. et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat. Genet. 55, 1091–1105 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Barry, A. et al. Multi-population genome-wide association study implicates immune and non-immune factors in pediatric steroid-sensitive nephrotic syndrome. Nat. Commun. 14, 2481 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stechman, M. J., Loh, N. Y. & Thakker, R. V. Genetic causes of hypercalciuric nephrolithiasis. Pediatr. Nephrol. 24, 2321–2332 (2009).

    Article  PubMed  Google Scholar 

  113. Paranjpe, I. & Nadkarni, G. N. Regarding “Derivation and validation of genome-wide polygenic score for urinary tract stone diagnosis.” Reply. Kidney Int. 98, 1347–1348 (2020).

    Article  PubMed  Google Scholar 

  114. Altshuler, D. M. et al. A global reference for human genetic variation. Nature 526, 68 (2015).

    Article  CAS  Google Scholar 

  115. Neugut, Y. D., Mohan, S., Gharavi, A. G. & Kiryluk, K. Cases in precision medicine: APOL1 and genetic testing in the evaluation of chronic kidney disease and potential transplant. Ann. Intern. Med. 171, 659–664 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gupta, Y. et al. Strong protective effect of the APOL1 p.N264K variant against G2-associated focal segmental glomerulosclerosis and kidney disease. Nat. Commun. 14, 7836 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bachmann, Q. et al. The Kidney Donor Profile Index (KDPI) correlates with histopathologic findings in post-reperfusion baseline biopsies and predicts kidney transplant outcome. Front. Med. 9, 875206 (2022).

    Article  Google Scholar 

  118. Port, F. K. et al. Donor characteristics associated with reduced graft survival: an approach to expanding the pool of kidney donors. Transplantation 74, 1281–1286 (2002).

    Article  PubMed  Google Scholar 

  119. Pham, P. T. T., Pham, P. C. T., Lipshutz, G. S. & Wilkinson, A. H. New onset diabetes mellitus after solid organ transplantation. Endocrinol. Metab. Clin. North. Am. 36, 873–890 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Shaked, A. et al. Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes. Nat. Med. 28, 999–1005 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Matinfar, M., Shahidi, S. & Feizi, A. Incidence of nonmelanoma skin cancer in renal transplant recipients: a systematic review and meta-analysis. J. Res. Med. Sci. 23, 14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Stapleton, C. P. et al. Polygenic risk score as a determinant of risk of non-melanoma skin cancer in a European-descent renal transplant cohort. Am. J. Transpl. 19, 801–810 (2019).

    Article  Google Scholar 

  123. Chahal, H. S. et al. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nat. Commun. 7, 12048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat. Commun. 11, 3635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Khan, A. et al. Polygenic risk alters the penetrance of monogenic kidney disease. Nat. Commun. 14, 8318 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zhang, J., Thio, C. H. L., Gansevoort, R. T. & Snieder, H. Familial aggregation of CKD and heritability of kidney biomarkers in the general population: the lifelines cohort study. Am. J. Kidney Dis. 77, 869–878 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Timmerman, N. et al. Family history and polygenic risk of cardiovascular disease: independent factors associated with secondary cardiovascular events in patients undergoing carotid endarterectomy. Atherosclerosis 307, 121–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Hindy, G. et al. Genome-wide polygenic score, clinical risk factors, and long-term trajectories of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 40, 2738–2746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Inouye, M. et al. Genomic risk prediction of coronary artery disease in 480,000 adults implications for primary prevention. J. Am. Coll. Cardiol. 72, 1883–1893 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lee, A. et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 21, 1708–1718 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mars, N. et al. Systematic comparison of family history and polygenic risk across 24 common diseases. Am. J. Hum. Genet. 109, 2152–2162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lakeman, I. M. M. et al. Validation of the BOADICEA model and a 313-variant polygenic risk score for breast cancer risk prediction in a Dutch prospective cohort. Genet. Med. 22, 1803–1811 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Antoniou, A. C. et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br. J. Cancer 98, 1457–1466 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mars, N. et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat. Med. 26, 549–557 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. de Boer, I. H. et al. Rationale and design of the Kidney Precision Medicine Project. Kidney Int. 99, 498–510 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Liu, H. B. et al. Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease. Nat. Genet. 54, 950–962 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Linder, J. E. et al. Returning integrated genomic risk and clinical recommendations: the eMERGE study. Genet. Med. 25, 100006 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lennon, N. J. et al. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat. Med. 30, 480–487 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8, giz082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Prive, F., Arbel, J. & Vilhjalmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2021).

    Article  PubMed  Google Scholar 

  143. Jones, S. E. et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 10, 343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 10, 5086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Newcombe, P. J., Nelson, C. P., Samani, N. J. & Dudbridge, F. A flexible and parallelizable approach to genome-wide polygenic risk scores. Genet. Epidemiol. 43, 730–741 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhu, X. & Stephens, M. Bayesian large-scale multiple regression with summary statistics from genome-wide association studies. Ann. Appl. Stat. 11, 1561–1592 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yang, S. & Zhou, X. Accurate and scalable construction of polygenic scores in large biobank data sets. Am. J. Hum. Genet. 106, 679–693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Prive, F., Aschard, H., Ziyatdinov, A. & Blum, M. G. B. Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr. Bioinformatics 34, 2781–2787 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chun, S. et al. Non-parametric polygenic risk prediction via partitioned GWAS summary statistics. Am. J. Hum. Genet. 107, 46–59 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hu, Y. et al. Leveraging functional annotations in genetic risk prediction for human complex diseases. PLoS Comput. Biol. 13, e1005589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is funded by the National Human Genome Research Institute (NHGRI) Electronic Medical Records and Genomics-IV (eMERGE-IV grant 5U01HG008680-07). Additional sources of funding include U01HG013201 (K.K.), R01LM013061 (K.K.), R01DK136765 (K.K.), R01DK105124 (K.K.), RC2DK116690 (K.K.), K25DK128563 (A.K.) and UL1TR001873 (A.K., K.K.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Krzysztof Kiryluk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Nita Limdi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

All of Us: https://allofus.nih.gov/

eMERGE: https://emerge-network.org/

Michigan Inputation Server: https://imputationserver.sph.umich.edu/index.html

PGS Catalog: https://www.pgscatalog.org/

UK Biobank: https://www.ukbiobank.ac.uk/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Kiryluk, K. Polygenic scores and their applications in kidney disease. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00886-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00886-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing