Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pathogenesis of IgA nephropathy and implications for treatment

Abstract

IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region — probably derived from the mucosal immune system — is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN.

Key points

  • IgA nephropathy (IgAN) is an important cause of progressive kidney disease and kidney failure globally, with most patients being at risk of developing kidney failure within their lifetime.

  • Advances in the understanding of the pathogenesis of IgAN have highlighted an (auto)immune basis for the disease, with increased circulating levels of galactose-deficient IgA1 (Gd-IgA1) being associated with the presence of IgA and IgG antibodies specific to these IgA1 O-glycoforms.

  • The circulating Gd-IgA1 that forms immune complexes and is deposited within the glomeruli in IgAN is probably mucosal in origin.

  • The presence of elevated levels of Gd-IgA1 alone is insufficient to trigger IgAN; genetic and epigenetic factors contribute to the susceptibility of developing IgAN and the risk of progressive disease.

  • Several therapies that target mucosal B cell priming, B cell production of Gd-IgA1, complement activity and the endothelin system are in development for the treatment of IgAN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographical variation in the prevalence of IgA nephropathy.
Fig. 2: Long-term outcomes in IgA nephropathy.
Fig. 3: Pathogenesis of IgAN.
Fig. 4: IgA1 structure and glycosylation.
Fig. 5: Pathological consequences of IgA immune complex deposition in IgAN.

Similar content being viewed by others

References

  1. Berger, J. & Hinglais, N. [Intercapillary deposits of IgA-IgG]. J. Urol. Nephrol. 74, 694–695 (1968).

    CAS  Google Scholar 

  2. McGrogan, A., Franssen, C. F. M. & De Vries, C. S. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol. Dial. Transpl. 26, 414–430 (2011).

    Article  Google Scholar 

  3. Schena, F. P. & Nistor, I. Epidemiology of IgA nephropathy: a global perspective. Semin. Nephrol. 38, 435–442 (2018).

    Article  PubMed  Google Scholar 

  4. Knoppova, B. et al. Pathogenesis of IgA nephropathy: current understanding and implications for development of disease-specific treatment. J. Clin. Med. 10, 4501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pillebout, E. IgA vasculitis and IgA nephropathy: same disease? J. Clin. Med. 10, 2310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Willey, C. J. et al. The incidence and prevalence of IgA nephropathy in Europe. Nephrol. Dial. Transpl. 38, 2340–2349 (2023).

    Article  Google Scholar 

  7. Barbour, S. J. et al. Individuals of Pacific Asian origin with IgA nephropathy have an increased risk of progression to end-stage renal disease. Kidney Int. 84, 1017–1024 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. D’Amico, G. & D’Amico, G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin. Nephrol. 24, 179–196 (2004).

    Article  PubMed  Google Scholar 

  9. Pitcher, D. et al. Long-term outcomes in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 18, 727–738 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Floege, J. Recurrent IgA nephropathy after renal transplantation. Semin. Nephrol. 24, 287–291 (2004).

    Article  PubMed  Google Scholar 

  11. Jarrick, S. et al. Mortality in IgA nephropathy: a nationwide population-based cohort study. J. Am. Soc. Nephrol. 30, 866–876 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hastings, M. C. et al. Life expectancy for patients from the Southeastern United States with IgA nephropathy. Kidney Int. Rep. 3, 99–104 (2018).

    Article  PubMed  Google Scholar 

  13. Barbour, S. J. et al. Updating the international IgA nephropathy prediction tool for use in children. Kidney Int. 99, 1439–1450 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, H. et al. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. 22, 1795–1803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scionti, K., Molyneux, K., Selvaskandan, H., Barratt, J. & Cheung, C. K. New insights into the pathogenesis and treatment strategies in IgA nephropathy. Glomerular Dis. 2, 15–29 (2022).

    Article  PubMed  Google Scholar 

  16. Allen, A. C. et al. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 60, 969–973 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Allen, A. C., Bailey, E. M., Barratt, J., Buck, K. S. & Feehally, J. Analysis of IgA1 O-glycans in IgA nephropathy by fluorophore-assisted carbohydrate electrophoresis. J. Am. Soc. Nephrol. 10, 1763–1771 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Hiki, Y. et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 59, 1077–1085 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Coppo, R. & Amore, A. Aberrant glycosylation in IgA nephropathy (IgAN). Kidney Int. 65, 1544–1547 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, L. X. & Zhao, M. H. Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int. 68, 167–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Gharavi, A. G. et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J. Am. Soc. Nephrol. 19, 1008–1014 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tomana, M. et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 52, 509–516 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Tomana, M. et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J. Clin. Invest. 104, 73–81 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Knoppova, B. et al. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front. Immunol. 7, 117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheung, C. K., Dormer, J. P. & Barratt, J. The role of complement in glomerulonephritis — are novel therapies ready for prime time? Nephrol. Dial. Transpl. 38, 1789–1797 (2022).

    Article  Google Scholar 

  26. Kerr, M. A. The structure and function of human IgA. Biochem. J. 271, 285–296 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barratt, J. et al. Why target the gut to treat IgA nephropathy? Kidney Int. Rep. 5, 1620–1624 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Perše, M. & Večerić-Haler, Ž. The role of IgA in the pathogenesis of IgA nephropathy. Int. J. Mol. Sci. 20, 6199 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. He, J.-W. et al. Associations of genetic variants contributing to gut microbiota composition in immunoglobin a nephropathy. mSystems 6, e00819–e00820 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, J. et al. Expansion of Escherichia-Shigella in gut is associated with the onset and response to immunosuppressive therapy of IgA nephropathy. J. Am. Soc. Nephrol. 33, 2276–2292 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lebreton, C. et al. Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 143, 698–707.e4 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Matysiak-Budnik, T. et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J. Exp. Med. 205, 143–154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Woof, J. M. & Russell, M. W. Structure and function relationships in IgA. Mucosal Immunol. 4, 590–597 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. de Sousa-Pereira, P. & Woof, J. M. IgA: structure, function, and developability. Antibodies 8, 57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yeo, S. C. et al. New insights into the pathogenesis of IgA nephropathy. Semin. Immunopathol. 36, 431–442 (2014).

    Article  Google Scholar 

  36. Spencer, J. & Sollid, L. M. The human intestinal B-cell response. Mucosal Immunol. 9, 1113–1124 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Hansen, A. L., Reily, C., Novak, J. & Renfrow, M. B. Immunoglobulin A glycosylation and its role in disease. Exp. Suppl. 112, 433–477 (2021).

    CAS  PubMed  Google Scholar 

  38. Qin, W. et al. External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol. Dial. Transpl. 23, 1608–1614 (2008).

    Article  CAS  Google Scholar 

  39. Blaas, S. H., Stieber-Gunckel, M., Falk, W., Obermeier, F. & Rogler, G. CpG-oligodeoxynucleotides stimulate immunoglobulin a secretion in intestinal mucosal B cells. Clin. Exp. Immunol. 155, 534–540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, G. et al. O-glycoforms of polymeric immunoglobulin A1 in the plasma of patients with IgA nephropathy are associated with pathological phenotypes. Nephrol. Dial. Transpl. 37, 33–41 (2022).

    Article  CAS  Google Scholar 

  41. Zhao, N. et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 82, 790–796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, P. et al. Plasma galactose-deficient IgA1 and C3 and CKD progression in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 14, 1458–1465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whitworth, J. A., Leibowitz, S., Kennedy, M. C., Cameron, J. S. & Chantler, C. IgA and glomerular disease. Clin. Nephrol. 5, 33–36 (1976).

    CAS  PubMed  Google Scholar 

  44. Suzuki, H. et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J. Clin. Invest. 118, 629 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuki, H. et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J. Biol. Chem. 289, 5330–5339 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Yamada, K. et al. Leukemia inhibitory factor signaling enhances production of galactose-deficient IgA1 in IgA nephropathy. Kidney Dis. 6, 168–180 (2020).

    Article  Google Scholar 

  47. Gleeson, P. J. et al. The gut microbiota posttranslationally modifies IgA1 in autoimmune glomerulonephritis. Sci. Transl. Med. 16, eadl6149 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, B. et al. Mass spectrometry-based screening identifies circulating immunoglobulinA-α1-microglobulin complex as potential biomarker in immunoglobulin A nephropathy. Nephrol. Dial. Transpl. 36, 782–792 (2021).

    Article  CAS  Google Scholar 

  49. Oortwijn, B. D. et al. Differential glycosylation of polymeric and monomeric IgA: a possible role in glomerular inflammation in IgA nephropathy. J. Am. Soc. Nephrol. 17, 3529–3539 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Chuang, P. D. & Morrison, S. L. Elimination of N-linked glycosylation sites from the human IgA1 constant region: effects on structure and function. J. Immunol. 158, 724–732 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki, H. & Novak, J. IgA glycosylation and immune complex formation in IgAN. Semin. Immunopathol. 43, 669–678 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Dotz, V. et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function. J. Am. Soc. Nephrol. 32, 2455–2465 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berthelot, L. et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J. Exp. Med. 209, 793–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Selvaskandan, H., Barratt, J. & Cheung, C. K. Immunological drivers of IgA nephropathy: exploring the mucosa-kidney link. Int. J. Immunogenet. 49, 8–21 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Watanabe, H. et al. Comprehensive microbiome analysis of tonsillar crypts in IgA nephropathy. Nephrol. Dial. Transpl. 32, 2072–2079 (2016).

    Google Scholar 

  56. De Angelis, M. et al. Microbiota and metabolome associated with Immunoglobulin A Nephropathy (IgAN). PLoS ONE 9, e99006 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chemouny, J. M. et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice. Nephrol. Dial. Transpl. 34, 1135–1144 (2019).

    Article  CAS  Google Scholar 

  58. Di Leo, V. et al. Rifaximin as a potential treatment for IgA nephropathy in a humanized mice model. J. Pers. Med. 11, 309 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. McCarthy, D. D. et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J. Clin. Invest. 121, 3991–4002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oortwijn, B. D. et al. Demonstration of secretory IgA in kidneys of patients with IgA nephropathy. Nephrol. Dial. Transpl. 22, 3191–3195 (2007).

    Article  CAS  Google Scholar 

  61. Zhang, J. J., Xu, L. X., Liu, G., Zhao, M. H. & Wang, H. Y. The level of serum secretory IgA of patients with IgA nephropathy is elevated and associated with pathological phenotypes. Nephrol. Dial. Transpl. 23, 207–212 (2008).

    Article  Google Scholar 

  62. Oortwijn, B. D. et al. The role of secretory IgA and complement in IgA nephropathy. Semin. Nephrol. 28, 58–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez-Russo, L., Rajasekaran, A., Bin, S., Faith, J. & Cravedi, P. The gut and kidney crosstalk in immunoglobulin A nephropathy. Kidney360 3, 1630–1639 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Feehally, J. et al. Sequential study of the IgA system in relapsing IgA nephropathy. Kidney Int. 30, 924–931 (1986).

    Article  CAS  PubMed  Google Scholar 

  65. Sallustio, F. et al. High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrol. Dial. Transpl. 36, 452–464 (2021).

    Article  CAS  Google Scholar 

  66. Zachova, K. et al. Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. J. Am. Soc. Nephrol. 33, 908–917 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheung, C. K. & Barratt, J. Further evidence for the mucosal origin of pathogenic IgA in IgA nephropathy. J. Am. Soc. Nephrol. 33, 873–875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, J. et al. Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. J. Clin. Invest. 113, 826–835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Barratt, J., Eitner, F., Feehally, J. & Floege, J. Immune complex formation in IgA nephropathy: a case of the ‘right’ antibodies in the ‘wrong’ place at the ‘wrong’ time? Nephrol. Dial. Transpl. 24, 3620–3623 (2009).

    Article  Google Scholar 

  70. Van Den Wall Bake, A. W. L. et al. The bone marrow as production site of the IgA deposited in the kidneys of patients with IgA nephropathy. Clin. Exp. Immunol. 72, 321–325 (1988).

    PubMed  PubMed Central  Google Scholar 

  71. Harper, S. J., Allen, A. C., Pringle, J. H. & Feehally, J. Increased dimeric IgA producing B cells in the bone marrow in IgA nephropathy determined by in situ hybridisation for J chain mRNA. J. Clin. Pathol. 49, 38–42 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Harper, S. J. et al. Expression of J chain mRNA in duodenal IgA plasma cells in IgA nephropathy. Kidney Int. 45, 836–844 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Rojas, O. L. et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176, 610–624.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Currie, E. G. et al. Immunoglobulin A nephropathy is characterized by anticommensal humoral immune responses. JCI Insight 7, e141289 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nihei, Y. et al. Identification of IgA autoantibodies targeting mesangial cells redefines the pathogenesis of IgA nephropathy. Sci. Adv. 9, eadd6734 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feehally, J. et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J. Am. Soc. Nephrol. 21, 1791–1797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kiryluk, K., Novak, J. & Gharavi, A. G. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu. Rev. Med. 64, 339–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Zhai, Y. L. et al. Increased APRIL expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine 95, e3099 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xin, G. et al. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J. Nephrol. 26, 683–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Huang, Z. Q. et al. Somatic mutations modulate autoantibodies against galactose-deficient IgA1 in IgA nephropathy. J. Am. Soc. Nephrol. 27, 3278–3284 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Levinsky, R. J. & Martin Barratt, T. IgA immune complexes in Henoch-Schönlein purpura. Lancet 2, 1100–1103 (1979).

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Berthoux, F. et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J. Am. Soc. Nephrol. 23, 1579–1587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maixnerova, D. et al. Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS ONE 14, e0212254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Matousovic, K. et al. IgA-containing immune complexes in the urine of IgA nephropathy patients. Nephrol. Dial. Transpl. 21, 2478–2484 (2006).

    Article  CAS  Google Scholar 

  86. Roberts, I. S. D. Pathology of IgA nephropathy. Nat. Rev. Nephrol. 10, 445–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Novak, J. et al. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int. 67, 504–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Rizk, D. V. et al. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1. J. Am. Soc. Nephrol. 30, 2017–2026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Placzek, W. J. et al. Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS ONE 13, e0190967 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Matsumoto, Y. et al. Identification and characterization of circulating immune complexes in IgA nephropathy. Sci. Adv. 8, eabm8783 (2024).

    Article  Google Scholar 

  91. Vuong, M. T. et al. Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int. 78, 1281–1287 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Lai, K. N., To, W. Y., Leung, J. C. K., Yu, A. W. Y. & Li, P. K. T. Serologic study of immunoglobulin A-fibronectin aggregates in immunoglobulin A nephropathy. Am. J. Kidney Dis. 27, 622–630 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Launay, P. et al. Fcα receptor (Cd89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J. Exp. Med. 191, 1999–2009 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Berthelot, L. et al. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int. 88, 815–822 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Cambier, A. et al. Soluble CD89 is a critical factor for mesangial proliferation in childhood IgA nephropathy. Kidney Int. 101, 274–287 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Boyd, J. K. & Barratt, J. Immune complex formation in IgA nephropathy: CD89 a ‘saint’ or a ‘sinner’? Kidney Int. 78, 1211–1213 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Roccatello, D. et al. The fate of aggregated immunoglobulin A injected in IgA nephropathy patients and healthy controls. Am. J. Kidney Dis. 18, 20–25 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Silva, F. G., Chander, P., Pirani, C. L. & Hardy, M. A. Disappearance of glomerular mesangial IgA deposits after renal allograft transplantation. Transplantation 33, 241–246 (1982).

    CAS  PubMed  Google Scholar 

  99. Ji, S. et al. The fate of glomerular mesangial IgA deposition in the donated kidney after allograft transplantation. Clin. Transpl. 18, 536–540 (2004).

    Article  Google Scholar 

  100. Monteiro, R. C. et al. Charge and size of mesangial IgA in IgA nephropathy. Kidney Int. 28, 666–671 (1985).

    Article  CAS  PubMed  Google Scholar 

  101. Bene, M. C. & Faure, G. C. Composition of mesangial deposits in IgA nephropathy: complement factors. Nephron 46, 219 (1987).

    Article  CAS  PubMed  Google Scholar 

  102. Tomino, Y., Sakai, H., Miura, M., Endoh, M. & Nomoto, Y. Detection of polymeric IgA in glomeruli from patients with IgA nephropathy. Clin. Exp. Immunol. 49, 419–426 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Varis, J. et al. Immunoglobulin and complement deposition in glomeruli of 756 subjects who had committed suicide or met with a violent death. J. Clin. Pathol. 46, 607–610 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Molyneux, K. et al. β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney Int. 92, 1458–1468 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Moura, I. C. et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J. Exp. Med. 194, 417–425 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Leung, J. C. K. et al. Polymeric IgA increases the synthesis of macrophage migration inhibitory factor by human mesangial cells in IgA nephropathy. Nephrol. Dial. Transpl. 18, 36–45 (2003).

    Article  CAS  Google Scholar 

  107. Xie, X. et al. Renal deposition and clearance of recombinant poly-IgA complexes in a model of IgA nephropathy. J. Pathol. 254, 159–172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fukuda, A. et al. Urine podocyte mRNAs mark disease activity in IgA nephropathy. Nephrol. Dial. Transpl. 30, 1140–1150 (2015).

    Article  CAS  Google Scholar 

  109. Kim, M. J. et al. Spleen tyrosine kinase is important in the production of proinflammatory cytokines and cell proliferation in human mesangial cells following stimulation with IgA1 isolated from IgA nephropathy patients. J. Immunol. 189, 3751–3758 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Kohan, D. E. et al. Targeting the endothelin A receptor in IgA nephropathy. Kidney Int. Rep. 8, 2198–2210 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Komers, R. & Plotkin, H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R877–R884 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lehrke, I., Waldherr, R., Ritz, E. & Wagner, J. Renal endothelin-1 and endothelin receptor type B expression in glomerular diseases with proteinuria. J. Am. Soc. Nephrol. 12, 2321–2329 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Zanatta, C. M. et al. Endothelin-1 and endothelin a receptor immunoreactivity is increased in patients with diabetic nephropathy. Ren. Fail. 34, 308–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Tycová, I. et al. Molecular profiling in IgA nephropathy and focal and segmental glomerulosclerosis. Physiol. Res. 67, 93–105 (2018).

    Article  PubMed  Google Scholar 

  115. Koopman, J. J. E., van Essen, M. F., Rennke, H. G., de Vries, A. P. J. & van Kooten, C. Deposition of the membrane attack complex in healthy and diseased human kidneys. Front. Immunol. 11, 599974 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Medjeral-Thomas, N. R. et al. Progressive IgA nephropathy is associated with low circulating mannan-binding lectin-associated serine protease-3 (MASP-3) and increased glomerular factor H-related protein-5 (FHR5) deposition. Kidney Int. Rep. 3, 426–438 (2018).

    Article  PubMed  Google Scholar 

  117. Maillard, N. et al. Current understanding of the role of complement in IgA nephropathy. J. Am. Soc. Nephrol. 26, 1503–1512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xie, J. et al. Fine mapping implicates a deletion of CFHR1 and CFHR3 in protection from IgA nephropathy in Han Chinese. J. Am. Soc. Nephrol. 27, 3187–3194 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Espinosa, M. et al. Mesangial C4d deposition: a new prognostic factor in IgA nephropathy. Nephrol. Dial. Transpl. 24, 886–891 (2009).

    Article  CAS  Google Scholar 

  120. Roos, A. et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J. Am. Soc. Nephrol. 17, 1724–1734 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Kiryluk, K. et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat. Genet. 55, 1091–1105 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sanchez-Rodriguez, E., Southard, C. T. & Kiryluk, K. GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 16, 458–466 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Li, M. et al. Genome-wide meta-analysis identifies three novel susceptibility loci and reveals ethnic heterogeneity of genetic susceptibility for IgA nephropathy. J. Am. Soc. Nephrol. 31, 2949–2963 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu, L. et al. Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits. Nat. Commun. 13, 6859 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schena, F. P., Serino, G., Sallustio, F., Falchi, M. & Cox, S. N. Omics studies for comprehensive understanding of immunoglobulin A nephropathy: state-of-the-art and future directions. Nephrol. Dial. Transpl. 33, 2101–2112 (2018).

    CAS  Google Scholar 

  127. Sukcharoen, K. et al. IgA nephropathy genetic risk score to estimate the prevalence of IgA nephropathy in UK biobank. Kidney Int. Rep. 5, 1643–1650 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kiryluk, K. et al. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13, e1006609 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gale, D. P. et al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J. Am. Soc. Nephrol. 28, 2158–2166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, Y.-N. et al. Interaction between GALNT12 and C1GALT1 associates with galactose-deficient IgA1 and IgA nephropathy. J. Am. Soc. Nephrol. 32, 545–552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhu, L. et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J. Am. Soc. Nephrol. 26, 1195–1204 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Yeo, S. C., Liu, X. & Liew, A. Complement factor H gene polymorphism rs6677604 and the risk, severity and progression of IgA nephropathy: a systematic review and meta-analysis. Nephrology 23, 1096–1106 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Szeto, C.-C. & Li, P. K.-T. MicroRNAs in IgA nephropathy. Nat. Rev. Nephrol. 10, 249–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Indellicato, R. & Trinchera, M. Epigenetic regulation of glycosylation. Adv. Exp. Med. Biol. 1325, 173–186 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Selvaskandan, H., Pawluczyk, I. & Barratt, J. MicroRNAs: a new avenue to understand, investigate and treat immunoglobulin A nephropathy? Clin. Kidney J. 11, 29–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Pawluczyk, I. Z. A. et al. Differential expression of microRNA miR-150-5p in IgA nephropathy as a potential mediator and marker of disease progression. Kidney Int. 99, 1127–1139 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Selvaskandan, H., Shi, S., Twaij, S., Cheung, C. K. & Barratt, J. Monitoring immune responses in IgA nephropathy: biomarkers to guide management. Front. Immunol. 11, 572754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sevillano, A. M. et al. Remission of hematuria improves renal survival in IgA nephropathy. J. Am. Soc. Nephrol. 28, 3089–3099 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cattran, D. C. et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 76, 534–545 (2009).

    Article  PubMed  Google Scholar 

  140. Trimarchi, H. et al. Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification working group. Kidney Int. 91, 1014–1021 (2017).

    Article  PubMed  Google Scholar 

  141. Barbour, S. J. et al. Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern. Med. 179, 942–952 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Selvaskandan, H., Pawluczyk, I. & Barratt, J. Clinical application of microRNAs in glomerular diseases. Nephrol. Dial. Transpl. 38, 1375–1384 (2022).

    Article  Google Scholar 

  143. Suzuki, Y. et al. Serum levels of galactose-deficient immunoglobulin (Ig) A1 and related immune complex are associated with disease activity of IgA nephropathy. Clin. Exp. Nephrol. 18, 770–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yamabe, H. et al. Elevated serum secretory IgA in patients with IgA nephropathy. Nephron 51, 499–501 (1989).

    Article  CAS  PubMed  Google Scholar 

  145. ROSTOKER, G. et al. Secretory IgA are elevated in both saliva and serum of patients with various types of primary glomerulonephritis. Clin. Exp. Immunol. 90, 305–311 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Serino, G. et al. In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy. Kidney Int. 89, 683–692 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Pawluczyk, I. et al. A pilot study to predict risk of IgA nephropathy progression based on miR-204 expression. Kidney Int. Rep. 6, 2179–2188 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Rovin, B. H. et al. Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases. Kidney Int. 100, 753–779 (2021).

    Article  PubMed  Google Scholar 

  149. Lv, J. et al. Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA 327, 1888–1898 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cheung, C. K. & Barratt, J. First do no harm: systemic glucocorticoids should not be used for the treatment of progressive IgA nephropathy. Kidney Int. 103, 669–673 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Selvaskandan, H., Barratt, J. & Cheung, C. K. Novel treatment paradigms: primary IgA nephropathy. Kidney Int. Rep. 9, 203–213 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Selvaskandan, H., Gonzalez-Martin, G., Barratt, J. & Cheung, C. K. IgA nephropathy: an overview of drug treatments in clinical trials. Expert. Opin. Invest. Drugs 31, 1321–1338 (2022).

    Article  CAS  Google Scholar 

  153. Thompson, A. et al. Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin. J. Am. Soc. Nephrol. 14, 469–481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lafayette, R. A. et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J. Am. Soc. Nephrol. 28, 1306–1313 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05065970 (2024).

  156. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05174221 (2023).

  157. Bhachu, J. S., Scionti, K., Muto, M., Molyneux, K. & Barratt, J. Targeted release-budesonide (NEFECON) modifies circulating IGA-IGG immune complex levels and levels of poorly O-Galactosylated IgA in IgAN. Kidney Dis. 4, 121–122 (2018).

    Google Scholar 

  158. Molyneux K., B. J. & Wimbury, D. H. Nefecon® (Budesonide) selectively reduces circulating levels of BAFF (BLYS) and soluble BCMA and TACI in IgA nephropathy. J. Am. Soc. Nephrol. 31, 26 (2020).

    Article  Google Scholar 

  159. Barratt, J. et al. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int. 103, 391–402 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Lafayette, R. et al. Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NefIgArd): 2-year results from a randomised phase 3 trial. Lancet 402, 859–870 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Mathur, M. et al. A phase 2 trial of sibeprenlimab in patients with IgA nephropathy. N. Engl. J. Med. 390, 20–31 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Tieu, J. et al. Rituximab associated hypogammaglobulinemia in autoimmune disease. Front. Immunol. 12, 1–9 (2021).

    Article  Google Scholar 

  163. Barratt, J. et al. Pos-109 interim results of phase 1 and 2 trials to investigate the safety, tolerability, pharmacokinetics, pharmacodynamics, and clinical activity of bion-1301 in patients with IgA nephropathy. Kidney Int. Rep. 7, S46 (2022).

    Article  Google Scholar 

  164. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05248646 (2024).

  165. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05852938 (2024).

  166. Barratt, J. et al. Randomized phase II JANUS study of atacicept in patients with IgA nephropathy and persistent proteinuria. Kidney Int. Rep. 7, 1831–1841 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lafayette, R. et al. A phase 2b, randomized, double-blind, placebo-controlled, clinical trial of atacicept for treatment of IgA nephropathy. Kidney Int. 105, 1306–1315 (2024).

    Article  CAS  PubMed  Google Scholar 

  168. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT04716231 (2023).

  169. Zhang, H. et al. Results of a randomized double-blind placebo-controlled Phase 2 study propose iptacopan as an alternative complement pathway inhibitor for IgA nephropathy. Kidney Int. 105, 189–199 (2023).

    Article  PubMed  Google Scholar 

  170. Rizk, D. V. et al. Targeting the alternative complement pathway with iptacopan to treat IgA nephropathy: design and rationale of the APPLAUSE-IgAN study. Kidney Int. Rep. 8, 968–979 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lafayette, R. A. et al. Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy. Kidney Int. Rep. 5, 2032 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wheeler, D. C. et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 100, 215–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Baigent, C. et al. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022).

    Article  Google Scholar 

  174. Rastogi, A. & Januzzi, J. L. Pleiotropic effects of sodium-glucose cotransporter-2 inhibitors in cardiovascular disease and chronic kidney disease. J. Clin. Med. 12, 2824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Heerspink, H. J. L. et al. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 401, 1584–1594 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Rovin, B. H. et al. Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet 402, 2077–2090 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Lambers Heerspink, H. et al. Wcn23-1085 a phase 3, randomized, double-blind, placebo-controlled study of atrasentan in patients with IgA nephropathy — the ALIGN study. Kidney Int. Rep. 8, S279–S280 (2023).

    Article  Google Scholar 

  178. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05047263 (2024).

  179. Gleeson, P. J., O’Shaughnessy, M. M. & Barratt, J. IgA nephropathy in adults — treatment standard. Nephrol. Dial. Transpl. 38, 2464–2473 (2023).

    Article  CAS  Google Scholar 

  180. Lechner, S. M. et al. IgA1 protease treatment reverses mesangial deposits and hematuria in a model of IgA nephropathy. J. Am. Soc. Nephrol. 27, 2622–2629 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. van Delft, M. A. M. et al. Antagonizing FcαR1 (CD89) as treatment in IgA-mediated chronic inflammation and autoimmunity. Front. Immunol. 14, 1118539 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  182. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05799287 (2023).

  183. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05732402 (2024).

  184. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05797610 (2024).

  185. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05097989 (2024).

  186. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT05083364 (2024).

  187. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT04564339 (2023).

  188. Barratt, J. et al. Phase 2 trial of cemdisiran in adult patients with IgA nephropathy: a randomized controlled trial. Clin. J. Am. Soc. Nephrol. 19, 452–462 (2024).

    PubMed  Google Scholar 

  189. Bruchfeld, A. et al. C5a receptor inhibitor avacopan in immunoglobulin A nephropathy — an open-label pilot study. Clin. Kidney J. 15, 922–928 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Stamellou, E. et al. IgA nephropathy. Nat. Rev. Dis. Prim. 9, 67 (2023).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Chee Kay Cheung or Jonathan Barratt.

Ethics declarations

Competing interests

C.K.C. reports receiving consulting and speaker fees from Alexion, Alpine Immune Sciences, Calliditas, Chinook, CSL Vifor, George Clinical, Novartis, Otsuka, Stada, Travere Therapeutics, Vera Therapeutics; receiving grant support from Travere Therapeutics; and being on data-monitoring committees for Roche and Alpine Immune Sciences. H.N.R. has provided consultation for Calliditas, Chinook, Novartis and Omeros, and provided a conference lecture supported by Travere Therapeutics; serves on the steering committee of IgA studies for Calliditas and Chinook (a Novartis company); has attended advisory meetings for Otsuka, Pfizer and Eledon; is a clinical trial site investigator for Calliditas, Omeros and Alnylam; and directs the Louise Fast Foundation fellowship. H.Z. is employed by Peking University First Hospital and reports receiving consultancy fees for being a Steering Committee member from Novartis, Omeros, Calliditas, Chinook and Otsuka; and having participated in symposia or panel discussions and received honoraria for scientific presentations from Omeros and Novartis. J.B. reports consultancy for Alebund, Alnylam, Alpine, Argenx, Astellas, BioCryst, Calliditas, Chinook, Dimerix, HiBio, Kira, Novartis, Omeros, Otsuka, Q32 Bio, Roche, Sanofi, Takeda, Travere Therapeutics, Vera Therapeutics, Vifor and Visterra; research funding from Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere Therapeutics and Visterra; a role on the Editorial Boards of CJASN, Clinical Science, Glomerular Diseases and Kidney International; and an advisory or leadership role as Treasurer of the International IgA Nephropathy Network. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Sigrid Lundberg, Mazdak Nurmi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, C.K., Alexander, S., Reich, H.N. et al. The pathogenesis of IgA nephropathy and implications for treatment. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00885-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00885-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing