Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of hyaluronan in kidney development, physiology and disease

Abstract

The hyaluronan (HA) matrix in the tissue microenvironment is crucial for maintaining homeostasis by regulating inflammatory signalling, endothelial–mesenchymal transition and cell migration. During development, covalent modifications and osmotic swelling of HA create mechanical forces that initiate midgut rotation, vascular patterning and branching morphogenesis. Together with its main cell surface receptor, CD44, HA establishes a physicochemical scaffold at the cell surface that facilitates the interaction and clustering of growth factors and receptors that is required for normal physiology. High-molecular-weight HA, tumour necrosis factor-stimulated gene 6, pentraxin 3 and CD44 form a stable pericellular matrix that promotes tissue regeneration and reduces inflammation. By contrast, breakdown of high-molecular-weight HA into depolymerized fragments by hyaluronidases triggers inflammatory signalling, leukocyte migration and angiogenesis, contributing to tissue damage and fibrosis in kidney disease. Targeting HA metabolism is challenging owing to its dynamic regulation and tissue-specific functions. Nonetheless, modulating HA matrix functions by targeting its binding partners holds promise as a therapeutic strategy for restoring tissue homeostasis and mitigating pathological processes. Further research in this area is warranted to enable the development of novel therapeutic approaches for kidney and other diseases characterized by dysregulated HA metabolism.

Key points

  • Hyaluronan (HA) is a key component of the extracellular matrix that has critical roles in tissue homeostasis, organogenesis, cell signalling, cell migration and regulation of immune responses.

  • Together with its cell surface receptor CD44 and HA-binding proteins such as TSG6 and pentraxin3, high-molecular-weight (HMW)-HA creates a stable pericellular matrix that facilitates tissue regeneration and reduces inflammation.

  • Depolymerization of HMW-HA enables tissue remodelling and generates HA fragments that can activate inflammatory signalling, recruit leukocytes and promote angiogenesis.

  • During development, covalent modifications and osmotic swelling of HA create mechanical forces that initiate midgut rotation, vascular patterning and branching morphogenesis.

  • In kidney injury and disease, synthesis of HMW-HA contributes to tissue regeneration, whereas dysregulated breakdown of HA has been associated with inflammation, hyalinosis and fibrosis; in renal cell carcinoma, high tumour levels of HA are associated with an unfavourable prognosis.

  • HA metabolism is an unlikely therapeutic target owing to its dynamic, tissue-specific regulation and fundamental importance for tissue homeostasis; however, HA binding partners could potentially be targeted to modulate HA matrix functions and mitigate pathological processes in kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hyaluronan biosynthesis by hyaluronan synthase 2 and its catabolic pathways.
Fig. 2: Interactions of hyaluronan with the extracellular matrix.
Fig. 3: Hyaluronan determines gut laterality and vascular patterning.
Fig. 4: Hyaluronan–CD44 interactions in kidney development.

Similar content being viewed by others

References

  1. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hansell, P. & Palm, F. A role for the extracellular matrix component hyaluronan in kidney dysfunction during ACE-inhibitor fetopathy. Acta Physiol. 213, 795–804 (2015).

    Article  CAS  Google Scholar 

  4. Spicer, A. P., Olson, J. S. & McDonald, J. A. Molecular cloning and characterization of a cDNA encoding the third putative mammalian hyaluronan synthase. J. Biol. Chem. 272, 8957–8961 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Shyjan, A. M., Heldin, P., Butcher, E. C., Yoshino, T. & Briskin, M. J. Functional cloning of the cDNA for a human hyaluronan synthase. J. Biol. Chem. 271, 23395–23399 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Itano, N. & Kimata, K. Molecular cloning of human hyaluronan synthase. Biochem. Biophys. Res. Commun. 222, 816–820 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Rilla, K. et al. Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity. J. Biol. Chem. 280, 31890–31897 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Rilla, K. et al. Changed lamellipodial extension, adhesion plaques and migration in epidermal keratinocytes containing constitutively expressed sense and antisense hyaluronan synthase 2 (Has2) genes. J. Cell Sci. 115, 3633–3643 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Tlapak-Simmons, V. L., Baggenstoss, B. A., Kumari, K., Heldermon, C. & Weigel, P. H. Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. J. Biol. Chem. 274, 4246–4253 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Itano, N. & Kimata, K. Mammalian hyaluronan synthases. IUBMB Life 54, 195–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Bart, G. et al. Fluorescence resonance energy transfer (FRET) and proximity ligation assays reveal functionally relevant homo- and heteromeric complexes among hyaluronan synthases HAS1, HAS2 and HAS3. J. Biol. Chem. 290, 11479–11490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siiskonen, H., Oikari, S., Pasonen-Seppanen, S. & Rilla, K. Hyaluronan synthase 1: a mysterious enzyme with unexpected functions. Front. Immunol. 6, 43 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rilla, K. et al. Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. J. Biol. Chem. 288, 5973–5983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Itano, N. et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 274, 25085–25092 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Torronen, K. et al. Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem. Cell Biol. 141, 17–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Karousou, E. et al. The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J. Biol. Chem. 285, 23647–23654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oikari, S. et al. UDP-sugar accumulation drives hyaluronan synthesis in breast cancer. Matrix Biol. 67, 63–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Vigetti, D., Viola, M., Karousou, E., De Luca, G. & Passi, A. Metabolic control of hyaluronan synthases. Matrix Biol. 35, 8–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Vigetti, D. et al. Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J. Biol. Chem. 281, 8254–8263 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Baggenstoss, B. A. et al. Hyaluronan synthase control of synthesis rate and hyaluronan product size are independent functions differentially affected by mutations in a conserved tandem B-X7-B motif. Glycobiology 27, 154–164 (2016).

    Article  PubMed  Google Scholar 

  21. Wang, G. et al. Shear stress regulation of endothelial glycocalyx structure is determined by glucobiosynthesis. Arterioscler. Thromb. Vasc. Biol. 40, 350–364 (2020).

    Article  PubMed  Google Scholar 

  22. Vigetti, D. et al. Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J. Biol. Chem. 287, 35544–35555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vigetti, D. et al. Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J. Biol. Chem. 289, 28816–28826 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chao, H. & Spicer, A. P. Natural antisense mRNAs to hyaluronan synthase 2 inhibit hyaluronan biosynthesis and cell proliferation. J. Biol. Chem. 280, 27513–27522 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Vigetti, D. et al. Hyaluronan synthesis is inhibited by adenosine monophosphate-activated protein kinase through the regulation of HAS2 activity in human aortic smooth muscle cells. J. Biol. Chem. 286, 7917–7924 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stern, R., Kogan, G., Jedrzejas, M. J. & Soltes, L. The many ways to cleave hyaluronan. Biotechnol. Adv. 25, 537–557 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Stern, R. Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology 13, 105R–115R (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Bourguignon, V. & Flamion, B. Respective roles of hyaluronidases 1 and 2 in endogenous hyaluronan turnover. FASEB J. 30, 2108–2114 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Csoka, A. B., Frost, G. I. & Stern, R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 20, 499–508 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Tobisawa, Y. et al. The cell surface hyaluronidase TMEM2 is essential for systemic hyaluronan catabolism and turnover. J. Biol. Chem. 297, 101281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoshida, H. et al. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc. Natl Acad. Sci. USA 110, 5612–5617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, H. et al. The extracellular matrix integrates mitochondrial homeostasis. Cell 187, 4289–4304.e26 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Tavianatou, A. G. et al. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 286, 2883–2908 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Monslow, J., Govindaraju, P. & Pure, E. Hyaluronan — a functional and structural sweet spot in the tissue microenvironment. Front. Immunol. 6, 231 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vigetti, D. & Passi, A. Hyaluronan synthases posttranslational regulation in cancer. Adv. Cancer Res. 123, 95–119 (2014).

    Article  PubMed  Google Scholar 

  36. Berdiaki, A. et al. Hyaluronan and reactive oxygen species signaling-novel cues from the matrix? Antioxidants 12, 824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greyner, H. J., Wiraszka, T., Zhang, L. S., Petroll, W. M. & Mummert, M. E. Inducible macropinocytosis of hyaluronan in B16-F10 melanoma cells. Matrix Biol. 29, 503–510 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Fraser, J. R., Laurent, T. C. & Laurent, U. B. Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242, 27–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Screaton, G. R. et al. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc. Natl Acad. Sci. USA 89, 12160–12164 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goldstein, L. A. et al. A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56, 1063–1072 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B. & Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 1303–1313 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Idzerda, R. L. et al. Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proc. Natl Acad. Sci. USA 86, 4659–4663 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mackay, C. R. et al. Expression and modulation of CD44 variant isoforms in humans. J. Cell Biol. 124, 71–82 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Naor, D., Wallach-Dayan, S. B., Zahalka, M. A. & Sionov, R. V. Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin. Cancer Biol. 18, 260–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Zoller, M. CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front. Immunol. 6, 235 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Lesley, J., Hyman, R. & Kincade, P. W. CD44 and its interaction with extracellular matrix. Adv. Immunol. 54, 271–335 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Toyama-Sorimachi, N. & Miyasaka, M. A novel ligand for CD44 is sulfated proteoglycan. Int. Immunol. 6, 655–660 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Carvalho, A. M., Reis, R. L. & Pashkuleva, I. Hyaluronan receptors as mediators and modulators of the tumor microenvironment. Adv. Healthc. Mater. 12, e2202118 (2023).

    Article  PubMed  Google Scholar 

  49. Schommer, N. N., Muto, J., Nizet, V. & Gallo, R. L. Hyaluronan breakdown contributes to immune defense against group A Streptococcus. J. Biol. Chem. 289, 26914–26921 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scuruchi, M. et al. 6-Mer hyaluronan oligosaccharides modulate neuroinflammation and alpha-synuclein expression in neuron-like SH-SY5Y cells. J. Cell. Biochem. 117, 2835–2843 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Campo, G. M. et al. 4-mer hyaluronan oligosaccharides stimulate inflammation response in synovial fibroblasts in part via TAK-1 and in part via p38-MAPK. Curr. Med. Chem. 20, 1162–1172 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Toole, B. P. Hyaluronan and its binding proteins, the hyaladherins. Curr. Opin. Cell Biol. 2, 839–844 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Albtoush, N. et al. TSG6 hyaluronan matrix remodeling dampens the inflammatory response during colitis. Matrix Biol. 121, 149–166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, T. H., Wisniewski, H. G. & Vilcek, J. A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J. Cell Biol. 116, 545–557 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Baranova, N. S. et al. The inflammation-associated protein TSG-6 cross-links hyaluronan via hyaluronan-induced TSG-6 oligomers. J. Biol. Chem. 286, 25675–25686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, S., He, H., Day, A. J. & Tseng, S. C. Constitutive expression of inter-α-inhibitor (IαI) family proteins and tumor necrosis factor-stimulated gene-6 (TSG-6) by human amniotic membrane epithelial and stromal cells supporting formation of the heavy chain-hyaluronan (HC-HA) complex. J. Biol. Chem. 287, 12433–12444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhuo, L. et al. SHAP potentiates the CD44-mediated leukocyte adhesion to the hyaluronan substratum. J. Biol. Chem. 281, 20303–20314 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Lesley, J. et al. TSG-6 modulates the interaction between hyaluronan and cell surface CD44. J. Biol. Chem. 279, 25745–25754 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Qadri, M., Almadani, S., Jay, G. D. & Elsaid, K. A. Role of CD44 in regulating TLR2 activation of human macrophages and downstream expression of proinflammatory cytokines. J. Immunol. 200, 758–767 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Baranova, N. S. et al. Incorporation of pentraxin 3 into hyaluronan matrices is tightly regulated and promotes matrix cross-linking. J. Biol. Chem. 289, 30481–30498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zlibut, A., Bocsan, I. C. & Agoston-Coldea, L. Pentraxin-3 and endothelial dysfunction. Adv. Clin. Chem. 91, 163–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Speeckaert, M. M., Speeckaert, R., Carrero, J. J., Vanholder, R. & Delanghe, J. R. Biology of human pentraxin 3 (PTX3) in acute and chronic kidney disease. J. Clin. Immunol. 33, 881–890 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Lech, M. et al. Endogenous and exogenous pentraxin-3 limits postischemic acute and chronic kidney injury. Kidney Int. 83, 647–661 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Hasegawa, K. et al. Versican, a major hyaluronan-binding component in the dermis, loses its hyaluronan-binding ability in solar elastosis. J. Investig. Dermatol. 127, 1657–1663 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Sin, Y. J. A. et al. Noncovalent hyaluronan crosslinking by TSG-6: modulation by heparin, heparan sulfate, and PRG4. Front. Mol. Biosci. 9, 990861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chanmee, T., Ontong, P., Kimata, K. & Itano, N. Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells. Front. Oncol. 5, 180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu, H. et al. Oct4 regulates the miR-302 cluster in P19 mouse embryonic carcinoma cells. Mol. Biol. Rep. 38, 2155–2160 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Moretto, P. et al. Regulation of hyaluronan synthesis in vascular diseases and diabetes. J. Diabetes Res. 2015, 1–9 (2015).

    Article  Google Scholar 

  69. Lagendijk, A. K., Szabo, A., Merks, R. M. & Bakkers, J. Hyaluronan: a critical regulator of endothelial-to-mesenchymal transition during cardiac valve formation. Trends Cardiovasc. Med. 23, 135–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Lagendijk, A. K., Goumans, M. J., Burkhard, S. B. & Bakkers, J. MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. Circ. Res. 109, 649–657 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Bakkers, J. et al. Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development 131, 525–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Nandadasa, S. et al. The versican-hyaluronan complex provides an essential extracellular matrix niche for Flk1+ hematoendothelial progenitors. Matrix Biol. 97, 40–57 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sherpa, A. D. et al. Integrity of white matter is compromised in mice with hyaluronan deficiency. Neurochem. Res. 45, 53–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Sanketi, B. D. et al. Pitx2 patterns an accelerator-brake mechanical feedback through latent TGFβ to rotate the gut. Science 377, eabl3921 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sivakumar, A. et al. Midgut laterality is driven by hyaluronan on the right. Dev. Cell 46, 533–551.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Munjal, A., Hannezo, E., Tsai, T. Y., Mitchison, T. J. & Megason, S. G. Extracellular hyaluronate pressure shaped by cellular tethers drives tissue morphogenesis. Cell 184, 6313–6325 e6318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pardue, E. L., Ibrahim, S. & Ramamurthi, A. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis 4, 203–214 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vernon, R. B. et al. Autocrine hyaluronan influences sprouting and lumen formation during HUVEC tubulogenesis in vitro. J. Histochem. Cytochem. 69, 415–428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lokeshwar, V. B. & Selzer, M. G. Differences in hyaluronic acid-mediated functions and signaling in arterial, microvessel, and vein-derived human endothelial cells. J. Biol. Chem. 275, 27641–27649 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Queisser, K. A., Mellema, R. A. & Petrey, A. C. Hyaluronan and its receptors as regulatory molecules of the endothelial interface. J. Histochem. Cytochem. 69, 25–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Parnigoni, A. et al. Hyaluronan in pathophysiology of vascular diseases: specific roles in smooth muscle cells, endothelial cells, and macrophages. Am. J. Physiol. Cell Physiol. 323, C505–C519 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Murphy, J. F. et al. Engagement of CD44 modulates cyclooxygenase induction, VEGF generation, and proliferation in human vascular endothelial cells. FASEB J. 19, 446–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Rodgers, L. S. et al. Depolymerized hyaluronan induces vascular endothelial growth factor, a negative regulator of developmental epithelial-to-mesenchymal transformation. Circ. Res. 99, 583–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Little, M. H. & McMahon, A. P. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb. Perspect. Biol. 4, a008300 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. McMahon, A. P. Development of the mammalian kidney. Curr. Top. Dev. Biol. 117, 31–64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li, H., Hohenstein, P. & Kuure, S. Embryonic kidney development, stem cells and the origin of Wilms tumor. Genes 12, 318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Saxen, L. & Sariola, H. Early organogenesis of the kidney. Pediatr. Nephrol. 1, 385–392 (1987).

    Article  CAS  PubMed  Google Scholar 

  89. Linton, J. M., Martin, G. R. & Reichardt, L. F. The ECM protein nephronectin promotes kidney development via integrin α8β1-mediated stimulation of Gdnf expression. Development 134, 2501–2509 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Motamedi, F. J. et al. WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors. Nat. Commun. 5, 4444 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Kanwar, Y. S. et al. Role of extracellular matrix, growth factors and proto-oncogenes in metanephric development. Kidney Int. 52, 589–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Hochane, M. et al. Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development. PLoS Biol. 17, e3000152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang, G. et al. Spatial dynamic metabolomics identifies metabolic cell fate trajectories in human kidney differentiation. Cell Stem Cell 29, 1580–1593 e1587 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Soulie, P., Chassot, A., Ernandez, T., Montesano, R. & Feraille, E. Spatially restricted hyaluronan production by Has2 drives epithelial tubulogenesis in vitro. Am. J. Physiol. Cell Physiol. 307, C745–C759 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Belsky, E. & Toole, B. P. Hyaluronate and hyaluronidase in the developing chick embryo kidney. Cell Differ. 12, 61–66 (1983).

    Article  CAS  PubMed  Google Scholar 

  96. Grobstein, C. Inductive interaction in the development of the mouse metanephros. J. Exp. Zool. 130, 319–339 (1955).

    Article  Google Scholar 

  97. Kobayashi, A. et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep. 3, 650–662 (2014).

    Article  CAS  Google Scholar 

  98. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shakya, R. et al. The role of GDNF in patterning the excretory system. Dev. Biol. 283, 70–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Short, K. M. et al. Global quantification of tissue dynamics in the developing mouse kidney. Dev. Cell 29, 188–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Rosines, E., Schmidt, H. J. & Nigam, S. K. The effect of hyaluronic acid size and concentration on branching morphogenesis and tubule differentiation in developing kidney culture systems: potential applications to engineering of renal tissues. Biomaterials 28, 4806–4817 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pohl, M., Sakurai, H., Stuart, R. O. & Nigam, S. K. Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Dev. Cell 224, 312–325 (2000).

    CAS  Google Scholar 

  103. Toole, B. P. Hyaluronan in morphogenesis. J. Intern. Med. 242, 35–40 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Faa, G. et al. The role of immunohistochemistry in the study of the newborn kidney. J. Matern. Fetal Neonatal Med. 25, 135–138 (2012).

    Article  PubMed  Google Scholar 

  105. Rozario, T. & DeSimone, D. W. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Cell 341, 126–140 (2010).

    CAS  Google Scholar 

  106. Knepper, M. A., Saidel, G. M., Hascall, V. C. & Dwyer, T. Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am. J. Physiol. Renal Physiol. 284, F433–F446 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Wells, A. F. et al. The localization of hyaluronan in normal and rejected human kidneys. Transplantation 50, 240–243 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Goransson, V., Johnsson, C., Nylander, O. & Hansell, P. Renomedullary and intestinal hyaluronan content during body water excess: a study in rats and gerbils. J. Physiol. 542, 315–322 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rugheimer, L. et al. Hyaluronan synthases and hyaluronidases in the kidney during changes in hydration status. Matrix Biol. 28, 390–395 (2009).

    Article  PubMed  Google Scholar 

  110. Stridh, S., Palm, F. & Hansell, P. Renal interstitial hyaluronan: functional aspects during normal and pathological conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1235–R1249 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Hansell, P., Goransson, V., Odlind, C., Gerdin, B. & Hallgren, R. Hyaluronan content in the kidney in different states of body hydration. Kidney Int. 58, 2061–2068 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Goransson, V. et al. Renomedullary interstitial cells in culture; the osmolality and oxygen tension influence the extracellular amounts of hyaluronan and cellular expression of CD44. Matrix Biol. 20, 129–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Johnsson, C., Tufveson, G., Wahlberg, J. & Hallgren, R. Experimentally-induced warm renal ischemia induces cortical accumulation of hyaluronan in the kidney. Kidney Int. 50, 1224–1229 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. van den Berg, B. M. et al. Glomerular function and structural integrity depend on hyaluronan synthesis by glomerular endothelium. J. Am. Soc. Nephrol. 30, 1886–1897 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rabelink, T. J. et al. Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat. Rev. Nephrol. 13, 201–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Dane, M. J. et al. Glomerular endothelial surface layer acts as a barrier against albumin filtration. Am. J. Pathol. 182, 1532–1540 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Dane, M. J. et al. A microscopic view on the renal endothelial glycocalyx. Am. J. Physiol. Renal Physiol. 308, F956–F966 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Ramiro-Diaz, J. et al. Luminal endothelial lectins with affinity for N-acetylglucosamine determine flow-induced cardiac and vascular paracrine-dependent responses. Am. J. Physiol. 299, H743–H751 (2010).

    CAS  Google Scholar 

  119. Parthasarathy, N. & Spiro, R. G. Characterization of the glycosaminoglycan component of the renal glomerular basement membrane and its relationship to the peptide portion. J. Biol. Chem. 256, 507–513 (1981).

    Article  CAS  PubMed  Google Scholar 

  120. Smith, D. W., Azadi, A., Lee, C. J. & Gardiner, B. S. Spatial composition and turnover of the main molecules in the adult glomerular basement membrane. Tissue Barriers 11, 2110798 (2023).

    Article  PubMed  Google Scholar 

  121. Balaji, S. et al. Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling. FASEB J. 31, 868–881 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, X. et al. High-molecular weight hyaluronan attenuates tubulointerstitial scarring in kidney injury. JCI Insight 5, e136345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhao, Y. B., Wei, W., Lin, X. X., Chai, Y. F. & Jin, H. The role of histone H3 methylation in acute kidney injury. Drug. Des. Devel. Ther. 16, 2453–2461 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yu, C. et al. Histone demethylase JMJD3 protects against renal fibrosis by suppressing TGFβ and Notch signaling and preserving PTEN expression. Theranostics 11, 2706–2721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nakka, K. et al. JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment. Science 377, 666–669 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Kato, T. et al. Adipose tissue-derived stem cells suppress acute cellular rejection by TSG-6 and CD44 interaction in rat kidney transplantation. Transplantation 98, 277–284 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Dyer, D. P. et al. TSG-6 inhibits neutrophil migration via direct interaction with the chemokine CXCL8. J. Immunol. 192, 2177–2185 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Salman, L. et al. Hyaluronan inhibition as a therapeutic target for diabetic kidney disease: what is next? Kidney360 4, e851–e860 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Selman, G. et al. A hyaluronan synthesis inhibitor delays the progression of diabetic kidney disease in a mouse experimental model. Kidney360 2, 809–818 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Khramova, A. et al. Proteoglycans contribute to the functional integrity of the glomerular endothelial cell surface layer and are regulated in diabetic kidney disease. Sci. Rep. 11, 8487 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Morimoto, K. et al. Renal arteriolar hyalinosis, not intimal thickening in large arteries, is associated with cardiovascular events in people with biopsy-proven diabetic nephropathy. Diabet. Med. 37, 2143–2152 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Oguchi, H. et al. Vasa recta hyalinosis reflects severe arteriolopathy in renal allografts. Clin. Exp. Nephrol. 23, 799–806 (2019).

    Article  PubMed  Google Scholar 

  133. Rouschop, K. M. et al. Protection against renal ischemia reperfusion injury by CD44 disruption. J. Am. Soc. Nephrol. 16, 2034–2043 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Rosser, J. I. et al. Oral hymecromone decreases hyaluronan in human study participants. J. Clin. Invest. 132, e157983 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dogne, S. et al. Hyaluronidase 1 deficiency preserves endothelial function and glycocalyx integrity in early streptozotocin-induced diabetes. Diabetes 65, 2742–2753 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Martin, D. C. et al. A mouse model of human mucopolysaccharidosis IX exhibits osteoarthritis. Hum. Mol. Genet. 17, 1904–1915 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Natowicz, M. R. et al. Clinical and biochemical manifestations of hyaluronidase deficiency. N. Engl. J. Med. 335, 1029–1033 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Onclinx, C. et al. Deficiency in mouse hyaluronidase 2: a new mechanism of chronic thrombotic microangiopathy. Haematologica 100, 1023–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Jin, C. & Zong, Y. The role of hyaluronan in renal cell carcinoma. Front. Immunol. 14, 1127828 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, J. et al. Targeting hyaluronic acid synthase-3 (HAS3) for the treatment of advanced renal cell carcinoma. Cancer Cell Int. 22, 421 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jokelainen, O. et al. Cellular hyaluronan is associated with a poor prognosis in renal cell carcinoma. Urol. Oncol. 38, 686 e611–686 e622 (2020).

    Article  Google Scholar 

  142. Chi, A. et al. Molecular characterization of kidney cancer: association of hyaluronic acid family with histological subtypes and metastasis. Cancer 118, 2394–2402 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Moran, H. et al. Glycocalyx mechanotransduction mechanisms are involved in renal cancer metastasis. Matrix Biol. 13, 100100 (2022).

    Article  CAS  Google Scholar 

  144. Sun, M. et al. MicroRNA-125a suppresses cell migration, invasion, and regulates hyaluronic acid synthase 1 expression by targeting signal transducers and activators of transcription 3 in renal cell carcinoma cells. J. Cell. Biochem. 120, 1894–1902 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Chanmee, T., Ontong, P. & Itano, N. Hyaluronan: a modulator of the tumor microenvironment. Cancer Lett. 375, 20–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Jin, J. et al. Sunitinib resistance in renal cell carcinoma: from molecular mechanisms to predictive biomarkers. Drug Resist. Updat. 67, 100929 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Rini, B. I. & Atkins, M. B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 10, 992–1000 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Lasorsa, F. et al. Cancer stem cells in renal cell carcinoma: origins and biomarkers. Int. J. Mol. Sci. 24, 13179 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mikami, S. et al. Expression of TNF-α and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas. Int. J. Cancer 136, 1504–1514 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Lokeshwar, V. B., Mirza, S. & Jordan, A. Targeting hyaluronic acid family for cancer chemoprevention and therapy. Adv. Cancer Res. 123, 35–65 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Morosi, L. et al. PEGylated recombinant human hyaluronidase (PEGPH20) pre-treatment improves intra-tumour distribution and efficacy of paclitaxel in preclinical models. J. Exp. Clin. Cancer Res. 40, 286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, D. K. et al. Scalable production of a multifunctional protein (TSG-6) that aggregates with itself and the CHO cells that synthesize it. PLoS ONE 11, e0147553 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Moriya, T. et al. Arteriolar hyalinosis predicts increase in albuminuria and GFR decline in normo- and microalbuminuric Japanese patients with type 2 diabetes. Diabetes Care 40, 1373–1378 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Mencke, R. et al. Klotho deficiency induces arteriolar hyalinosis in a trade-off with vascular calcification. Am. J. Pathol. 189, 2503–2515 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Menon, R. et al. Defining the molecular correlate of arteriolar hyalinosis in kidney disease progression by integration of single cell transcriptomic analysis and pathology scoring. Preprint at medRxiv https://doi.org/10.1101/2023.06.14.23291150 (2023).

  156. Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol. 15, 367–385 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Dwyer, T. M. et al. Distribution of renal medullary hyaluronan in lean and obese rabbits. Kidney Int. 58, 721–729 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Alonsogalicia, M., Dwyer, T. M., Herrera, G. A. & Hall, J. E. Increased hyaluronic-acid in the inner renal medulla of obese dogs. Hypertension 25, 888–892 (1995).

    Article  CAS  PubMed  Google Scholar 

  159. Hansell, P. et al. Renomedullary interstitial cells regulate hyaluronan turnover depending on growth media osmolality suggesting a role in renal water handling. Acta Physiol. Scand. 165, 115–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Dwyer, T. M., Stec, D. E., Hall, J. E. & Csongradi, E. Hyaluronan is required for the renal medulla to maximally concentrate urine. FASEB J. https://doi.org/10.1096/fasebj.25.1_supplement.1079.5 (2011).

  161. Adams, J. D. et al. Comparing thirst and spot urine concentrations in humans of differing body sizes: an observational study. Physiol. Behav. 245, 113673 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. M. Chuva de Sousa Lopes for providing the fetal tissue sample used in Fig. 4; W. M. P. J. Sol for processing and immune fluorescence staining of the tissue sample, and M. Zuurmond for editing and drafting the originally submitted versions of the figures. The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) is supported by Novo Nordisk Foundation grants (NNF21CC0073729). Some of the authors’ work was funded through the Dutch Kidney Foundation (GLYCOREN Consortium grant no. CP09.03).

Author information

Authors and Affiliations

Authors

Contributions

T.J.R. and B.M.v.d.B. primarily researched the data for the article and wrote the text. G.W. and J.v.d.V. contributed to discussions on the interpretation of the literature and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ton J. Rabelink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Michael Goligorsky, Peter Hansell and Thomas Wight for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabelink, T.J., Wang, G., van der Vlag, J. et al. The roles of hyaluronan in kidney development, physiology and disease. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00883-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00883-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing