Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in uromodulin biology and potential clinical applications

Abstract

Uromodulin (also known as Tamm–Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.

Key points

  • Most urinary uromodulin undergoes polymerization into filaments and has important roles in maintaining urinary homeostasis. This polymerization occurs on the apical membrane and is highly organized.

  • Non-polymeric uromodulin, an increasingly recognized form, has distinct kidney and systemic roles. Recognizing the specific form and site of action is crucial to understanding the function of uromodulin.

  • Acute kidney injury is characterized by uromodulin deficiency. Non-polymerizing uromodulin supplementation might improve the course of acute kidney injury and prevent the transition to chronic kidney disease.

  • Single-nucleotide polymorphisms in UMOD and PDILT are strongly linked to the risk and progression of chronic kidney disease. Whether this effect depends on expression of a specific form of uromodulin remains to be clarified.

  • Retention and aggregation of mutant uromodulin in the endoplasmic reticulum causes autosomal-dominant tubulointerstitial kidney disease. Clearance of mutant uromodulin might be a promising therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression, function and structure of uromodulin.
Fig. 2: Distinct pathways of extracellular secretion of uromodulin.
Fig. 3: Interactions of uromodulin with immune cells.
Fig. 4: Contributions of uromodulin to kidney disease.
Fig. 5: Pathogenesis of autosomal-dominant tubulointerstitial kidney disease-UMOD.

Similar content being viewed by others

References

  1. Devuyst, O., Olinger, E. & Rampoldi, L. Uromodulin: from physiology to rare and complex kidney disorders. Nat. Rev. Nephrol. 13, 525–544 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. El-Achkar, T. M. & Wu, X.-R. Uromodulin in kidney injury: an instigator, bystander, or protector? Am. J. Kidney Dis. 59, 452–461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schaeffer, C., Devuyst, O. & Rampoldi, L. Uromodulin: roles in health and disease. Annu. Rev. Physiol. 83, 477–501 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Fairley, J. K., Owen, J. E. & Birch, D. F. Protein composition of urinary casts from healthy subjects and patients with glomerulonephritis. Br. Med. J. 287, 1838–1840 (1983).

    Article  CAS  Google Scholar 

  5. Rovida, C. L. Conclusione degli studi intorno all’origine istologica dei cilindri dell’urina. Clin. Bologna 2a, 303–306 (1873).

    Google Scholar 

  6. Tamm, I. & Horsfall, F. L. Characterization and separation of an inhibitor of viral hemagglutination present in urine. Proc. Soc. Exp. Biol. Med. 74, 106–108 (1950).

    Article  CAS  PubMed  Google Scholar 

  7. Muchmore, A. V. & Decker, J. M. Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 229, 479–481 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Pennica, D. et al. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 236, 83–88 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Micanovic, R., LaFavers, K., Garimella, P. S., Wu, X.-R. & El-Achkar, T. M. Uromodulin (Tamm–Horsfall protein): guardian of urinary and systemic homeostasis. Nephrol. Dial. Transpl. 35, 33–43 (2020).

    Article  CAS  Google Scholar 

  10. Sikri, K. L., Foster, C. L., MacHugh, N. & Marshall, R. D. Localization of Tamm-Horsfall glycoprotein in the human kidney using immuno-fluorescence and immuno-electron microscopical techniques. J. Anat. 132, 597–605 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tokonami, N. et al. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney Int. 94, 701–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J. W., Chou, C.-L. & Knepper, M. A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, L., Chou, C.-L. & Knepper, M. A. A comprehensive map of mRNAs and their isoforms across all 14 renal tubule segments of mouse. J. Am. Soc. Nephrol. 32, 897–912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  15. Bachmann, S., Koeppen-Hagemann, I. & Kriz, W. Ultrastructural localization of Tamm-Horsfall glycoprotein (THP) in rat kidney as revealed by protein A-gold immunocytochemistry. Histochemistry 83, 531–538 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Pook, M. A. et al. Localization of the Tamm-Horsfall glycoprotein (uromodulin) gene to chromosome 16p12.3-16p13.11. Ann. Hum. Genet. 57, 285–290 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Srivastava, R., Micanovic, R., El-Achkar, T. M. & Janga, S. C. An intricate network of conserved DNA upstream motifs and associated transcription factors regulate the expression of uromodulin gene. J. Urol. 192, 981–989 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Gresh, L. et al. A transcriptional network in polycystic kidney disease. EMBO J. 23, 1657–1668 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trudu, M. et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 19, 1655–1660 (2013). This study examined the functional significance of common UMOD variants using clinical data and experimental models.

    Article  CAS  PubMed  Google Scholar 

  20. Köttgen, A. et al. Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J. Am. Soc. Nephrol. 21, 337–344 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Troyanov, S. et al. Clinical, genetic, and urinary factors associated with uromodulin excretion. Clin. J. Am. Soc. Nephrol. 11, 62–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Olden, M. et al. Common variants in UMOD associate with urinary uromodulin levels: a meta-analysis. J. Am. Soc. Nephrol. 25, 1869–1882 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, Y. et al. Genome-wide studies reveal factors associated with circulating uromodulin and its relationships to complex diseases. JCI Insight 7, e157035 (2022). A meta-analysis of GWAS of circulating uromodulin that identified several loci associated with circulating uromodulin levels.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris, A. P. et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat. Commun. 10, 29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nanamatsu, A., Micanovic, R., Khan, S., El-Achkar, T. M. & LaFavers, K. A. Healthy women have higher systemic uromodulin levels: identification of uromodulin as an estrogen responsive gene. Kidney360 4, e1302–e1307 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ying, W. Z. & Sanders, P. W. Dietary salt regulates expression of Tamm-Horsfall glycoprotein in rats. Kidney Int. 54, 1150–1156 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Olinger, E. et al. Hepsin-mediated processing of uromodulin is crucial for salt-sensitivity and thick ascending limb homeostasis. Sci. Rep. 9, 12287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ponte, B. et al. Uromodulin, salt, and 24-hour blood pressure in the general population. Clin. J. Am. Soc. Nephrol. 16, 787–789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. LaFavers, K. A. et al. Water loading and uromodulin secretion in healthy individuals and idiopathic calcium stone formers. Clin. J. Am. Soc. Nephrol. 18, 1059–1067 (2023). Experimental study showing that water loading induces urinary uromodulin secretion in humans.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Torffvit, O., Melander, O. & Hultén, U. L. Urinary excretion rate of Tamm-Horsfall protein is related to salt intake in humans. Nephron Physiol. 97, p31–p36 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Mladinov, D., Liu, Y., Mattson, D. L. & Liang, M. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase β1. Nucleic Acids Res. 41, 1273–1283 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Resnick, J. S., Sisson, S. & Vernier, R. L. Tamm-Horsfall protein. Abnormal localization in renal disease. Lab. Invest. 38, 550–555 (1978).

    CAS  PubMed  Google Scholar 

  34. McGiven, A. R., Hunt, J. S., Day, W. A. & Bailey, R. R. Tamm-Horsfall protein in the glomerular capsular space. J. Clin. Pathol. 31, 620–625 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maydan, O. et al. Uromodulin deficiency alters tubular injury and interstitial inflammation but not fibrosis in experimental obstructive nephropathy. Physiol. Rep. 6, e13654 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fasth, A. L., Hoyer, J. R. & Seiler, M. W. Extratubular Tamm-Horsfall protein deposits induced by ureteral obstruction in mice. Clin. Immunol. Immunopathol. 47, 47–61 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Sato, S. et al. Transcription factor Spi-B-dependent and -independent pathways for the development of Peyer’s patch M cells. Mucosal Immunol. 6, 838–846 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Yanagihara, S. et al. Uromodulin-SlpA binding dictates Lactobacillus acidophilus uptake by intestinal epithelial M cells. Int. Immunol. 29, 357–363 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Knauf, F., Brewer, J. R. & Flavell, R. A. Immunity, microbiota and kidney disease. Nat. Rev. Nephrol. 15, 263–274 (2019).

    Article  PubMed  Google Scholar 

  40. O’Donnell, J. A., Zheng, T., Meric, G. & Marques, F. Z. The gut microbiome and hypertension. Nat. Rev. Nephrol. 19, 153–167 (2023).

    Article  PubMed  Google Scholar 

  41. Evenepoel, P., Stenvinkel, P., Shanahan, C. & Pacifici, R. Inflammation and gut dysbiosis as drivers of CKD-MBD. Nat. Rev. Nephrol. 19, 646–657 (2023).

    Article  PubMed  Google Scholar 

  42. LaFavers, K. A. et al. The kidney protects against sepsis by producing systemic uromodulin. Am. J. Physiol. Renal Physiol. 323, F212–F226 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fontan, E., Fauve, R. M., Hevin, B. & Jusforgues, H. Immunostimulatory mouse granuloma protein. Proc. Natl Acad. Sci. USA 80, 6395–6398 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rindler, M. J., Naik, S. S., Li, N., Hoops, T. C. & Peraldi, M. N. Uromodulin (Tamm-Horsfall glycoprotein/uromucoid) is a phosphatidylinositol-linked membrane protein. J. Biol. Chem. 265, 20784–20789 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Stsiapanava, A. et al. Structure of the decoy module of human glycoprotein 2 and uromodulin and its interaction with bacterial adhesin FimH. Nat. Struct. Mol. Biol. 29, 190–193 (2022). Definition and characterization of the D10C domain and decoy module of uromodulin by combining AlphaFold2 predictions, X-ray crystallography and Cryo-electron microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, H., Wu, C., Zhao, S. & Guo, J. Identification and characterization of D8C, a novel domain present in liver-specific LZP, uromodulin and glycoprotein 2, mutated in familial juvenile hyperuricaemic nephropathy. FEBS Lett. 578, 236–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Schaeffer, C., Santambrogio, S., Perucca, S., Casari, G. & Rampoldi, L. Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly. Mol. Biol. Cell 20, 589–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stsiapanava, A. et al. Cryo-EM structure of native human uromodulin, a zona pellucida module polymer. EMBO J. 39, e106807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Rooijen, J. J., Voskamp, A. F., Kamerling, J. P. & Vliegenthart, J. F. Glycosylation sites and site-specific glycosylation in human Tamm-Horsfall glycoprotein. Glycobiology 9, 21–30 (1999).

    Article  PubMed  Google Scholar 

  50. Weiss, G. L. et al. Architecture and function of human uromodulin filaments in urinary tract infections. Science 369, 1005–1010 (2020). Demonstration of the structure and function of urinary uromodulin filaments using cryo-electron tomography.

    Article  CAS  PubMed  Google Scholar 

  51. Easton, R. L., Patankar, M. S., Clark, G. F., Morris, H. R. & Dell, A. Pregnancy-associated changes in the glycosylation of Tamm-Horsfall glycoprotein. Expression of sialyl Lewis(x) sequences on core 2 type O-glycans derived from uromodulin. J. Biol. Chem. 275, 21928–21938 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Stoops, E. H. & Caplan, M. J. Trafficking to the apical and basolateral membranes in polarized epithelial cells. J. Am. Soc. Nephrol. 25, 1375–1386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tokonami, N., Olinger, E., Debaix, H., Houillier, P. & Devuyst, O. The excretion of uromodulin is modulated by the calcium-sensing receptor. Kidney Int. 94, 882–886 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Joseph, C. B. et al. Meta-GWAS reveals novel genetic variants associated with urinary excretion of uromodulin. J. Am. Soc. Nephrol. 33, 511–529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Otterpohl, K. L. et al. Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease. JCI Insight 5, e138530 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mariniello, M. et al. Uromodulin processing in DNAJB11-kidney disease. Kidney Int. S0085-2538, 00785–00788 (2023).

    Google Scholar 

  57. Schiano, G. et al. Allelic effects on uromodulin aggregates drive autosomal dominant tubulointerstitial kidney disease. EMBO Mol. Med. 15, e18242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brunati, M. et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. Elife 4, e08887 (2015). Identification of hepsin as a crucial protease for releasing polymerizing uromodulin into urine.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bokhove, M. et al. A structured interdomain linker directs self-polymerization of human uromodulin. Proc. Natl Acad. Sci. USA 113, 1552–1557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stanisich, J. J. et al. The cryo-EM structure of the human uromodulin filament core reveals a unique assembly mechanism. Elife 9, e60265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nanamatsu, A. et al. Vasopressin induces urinary uromodulin secretion by activating PKA (Protein Kinase A). Hypertension 77, 1953–1963 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Ecelbarger, C. A. et al. Localization and regulation of the rat renal Na+-K+-2Cl- cotransporter, BSC-1. Am. J. Physiol. 271, F619–F628 (1996).

    CAS  PubMed  Google Scholar 

  63. Bachmann, S., Dawnay, A. B., Bouby, N. & Bankir, L. Tamm-Horsfall protein excretion during chronic alterations in urinary concentration and protein intake in the rat. Ren. Physiol. Biochem. 14, 236–245 (1991).

    CAS  PubMed  Google Scholar 

  64. Schiano, G. et al. The urinary excretion of uromodulin is regulated by the potassium channel ROMK. Sci. Rep. 9, 19517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Micanovic, R. et al. The kidney releases a nonpolymerizing form of uromodulin in the urine and circulation that retains the external hydrophobic patch domain. Am. J. Physiol. Renal Physiol. 322, F403–F418 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mary, S. et al. Polymerization-incompetent uromodulin in the pregnant stroke-prone spontaneously hypertensive rat. Hypertension 69, 910–918 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Jovine, L., Qi, H., Williams, Z., Litscher, E. & Wassarman, P. M. The ZP domain is a conserved module for polymerization of extracellular proteins. Nat. Cell Biol. 4, 457–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Van, J. A. D. et al. Peptidomic analysis of urine from youths with early type 1 diabetes reveals novel bioactivity of uromodulin peptides in vitro. Mol. Cell Proteom. 19, 501–517 (2020).

    Article  CAS  Google Scholar 

  69. El-Achkar, T. M. et al. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am. J. Physiol. Renal Physiol. 304, F1066–F1075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Micanovic, R. et al. Tamm-Horsfall protein regulates mononuclear phagocytes in the kidney. J. Am. Soc. Nephrol. 29, 841–856 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Bates, J. M. et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int. 65, 791–797 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Mo, L. et al. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am. J. Physiol. Renal Physiol. 286, F795–F802 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Coady, A., Ramos, A. R., Olson, J., Nizet, V. & Patras, K. A. Tamm-Horsfall protein protects the urinary tract against Candida albicans. Infect. Immun. 86, e00451–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Raffi, H. S., Bates, J. M., Laszik, Z. & Kumar, S. Tamm-Horsfall protein acts as a general host-defense factor against bacterial cystitis. Am. J. Nephrol. 25, 570–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Raffi, H. S., Bates, J. M., Laszik, Z. & Kumar, S. Tamm-Horsfall protein protects against urinary tract infection by Proteus mirabilis. J. Urol. 181, 2332–2338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bjugn, R. & Flood, P. R. Scanning electron microscopy of human urine and purified Tamm-Horsfall’s glycoprotein. Scand. J. Urol. Nephrol. 22, 313–315 (1988).

    Article  CAS  PubMed  Google Scholar 

  77. Pak, J., Pu, Y., Zhang, Z. T., Hasty, D. L. & Wu, X. R. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J. Biol. Chem. 276, 9924–9930 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Garimella, P. S. et al. Urinary uromodulin and risk of urinary tract infections: the Cardiovascular Health Study. Am. J. Kidney Dis. 69, 744–751 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Ghirotto, S. et al. The uromodulin gene locus shows evidence of pathogen adaptation through human evolution. J. Am. Soc. Nephrol. 27, 2983–2996 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, W. C., Lin, H. S., Chen, H. Y., Shih, C. H. & Li, C. W. Effects of Tamm-Horsfall protein and albumin on calcium oxalate crystallization and importance of sialic acids. Mol. Urol. 5, 1–5 (2001).

    Article  PubMed  Google Scholar 

  81. Hallson, P. C., Choong, S. K., Kasidas, G. P. & Samuell, C. T. Effects of Tamm-Horsfall protein with normal and reduced sialic acid content upon the crystallization of calcium phosphate and calcium oxalate in human urine. Br. J. Urol. 80, 533–538 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Serafini-Cessi, F., Monti, A. & Cavallone, D. N-Glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. Glycoconj. J. 22, 383–394 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, Y. et al. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am. J. Physiol. Renal Physiol. 299, F469–F478 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mo, L. et al. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int. 66, 1159–1166 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Mo, L. et al. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am. J. Physiol. Renal Physiol. 293, F1935–F1943 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Wolf, M. T. F., Wu, X.-R. & Huang, C.-L. Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis. Kidney Int. 84, 130–137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gudbjartsson, D. F. et al. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet. 6, e1001039 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nie, M. et al. Uromodulin regulates renal magnesium homeostasis through the ion channel transient receptor potential melastatin 6 (TRPM6). J. Biol. Chem. 293, 16488–16502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fontan, E. et al. A 92-kDa human immunostimulatory protein. Proc. Natl Acad. Sci. USA 91, 8353–8357 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fontan, E., Jusforgues-Saklani, H., Briend, E. & Fauve, R. M. Purification of a 92 kDa human immunostimulating glycoprotein obtained from the Tamm-Horsfall glycoprotein. J. Immunol. Methods 187, 81–84 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. LaFavers, K. A. et al. Circulating uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel. Sci. Transl. Med. 11, eaaw3639 (2019). Demonstration that circulating uromodulin suppresses systemic oxidative stress.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Alesutan, I. et al. Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovasc. Res. 117, 930–941 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Mutig, K. et al. Activation of the bumetanide-sensitive Na+,K+,2Cl cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J. Biol. Chem. 286, 30200–30210 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Renigunta, A. et al. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J. Biol. Chem. 286, 2224–2235 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Graham, L. A. et al. Validation of uromodulin as a candidate gene for human essential hypertension. Hypertension 63, 551–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Thomas, D. B., Davies, M., Peters, J. R. & Williams, J. D. Tamm Horsfall protein binds to a single class of carbohydrate specific receptors on human neutrophils. Kidney Int. 44, 423–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Patras, K. A. et al. Tamm–Horsfall glycoprotein engages human Siglec-9 to modulate neutrophil activation in the urinary tract. Immunol. Cell Biol. 95, 960–965 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. El-Achkar, T. M. et al. Tamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism. Am. J. Physiol. Renal Physiol. 300, F999–F1007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Micanovic, R. et al. Tamm-Horsfall protein regulates granulopoiesis and systemic neutrophil homeostasis. J. Am. Soc. Nephrol. 26, 2172–2182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zager, R. A., Cotran, R. S. & Hoyer, J. R. Pathologic localization of Tamm-Horsfall protein in interstitial deposits in renal disease. Lab. Invest. 38, 52–57 (1978).

    CAS  PubMed  Google Scholar 

  101. Immler, R. et al. Extratubular polymerized uromodulin induces leukocyte recruitment and inflammation in vivo. Front. Immunol. 11, 588245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Säemann, M. D. et al. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J. Clin. Invest. 115, 468–475 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pfistershammer, K. et al. Identification of the scavenger receptors SREC-I, Cla-1 (SR-BI), and SR-AI as cellular receptors for Tamm-Horsfall protein. J. Leukoc. Biol. 83, 131–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Darisipudi, M. N. et al. Uromodulin triggers IL-1β-dependent innate immunity via the NLRP3 inflammasome. J. Am. Soc. Nephrol. 23, 1783–1789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fontan, E., Saklani-Jusforgues, H. & Fauve, R. M. Immunostimulatory human urinary protein. Proc. Natl Acad. Sci. USA 89, 4358–4362 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McMahon, G. M. & Waikar, S. S. Biomarkers in nephrology: core Curriculum 2013. Am. J. Kidney Dis. 62, 165–178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Scherberich, J. E. et al. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol. Dial. Transpl. 33, 284–295 (2018).

    Article  CAS  Google Scholar 

  108. Youhanna, S. et al. Determination of uromodulin in human urine: influence of storage and processing. Nephrol. Dial. Transpl. 29, 136–145 (2014).

    Article  CAS  Google Scholar 

  109. LaFavers, K. A., Micanovic, R., Sabo, A. R., Maghak, L. A. & El-Achkar, T. M. Evolving concepts in uromodulin biology, physiology, and its role in disease: a tale of two forms. Hypertension 79, 2409–2418 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Pivin, E. et al. Uromodulin and nephron mass. Clin. J. Am. Soc. Nephrol. 13, 1556–1557 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lynn, K. L. & Marshall, R. D. Excretion of Tamm-Horsfall glycoprotein in renal disease. Clin. Nephrol. 22, 253–257 (1984).

    CAS  PubMed  Google Scholar 

  112. Pruijm, M. et al. Associations of urinary uromodulin with clinical characteristics and markers of tubular function in the general population. Clin. J. Am. Soc. Nephrol. 11, 70–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Dawnay, A. B. & Cattell, W. R. Serum Tamm-Horsfall glycoprotein levels in health and in renal disease. Clin. Nephrol. 15, 5–8 (1981).

    CAS  PubMed  Google Scholar 

  114. Risch, L. et al. The serum uromodulin level is associated with kidney function. Clin. Chem. Lab. Med. 52, 1755–1761 (2014).

    CAS  PubMed  Google Scholar 

  115. Fedak, D. et al. Serum uromodulin concentrations correlate with glomerular filtration rate in patients with chronic kidney disease. Pol. Arch. Med. Wewn. 126, 995–1004 (2016).

    PubMed  Google Scholar 

  116. Enko, D. et al. Individual uromodulin serum concentration is independent of glomerular filtration rate in healthy kidney donors. Clin. Chem. Lab. Med. 59, 563–570 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Then, C. et al. Serum uromodulin and risk for cardiovascular morbidity and mortality in the community-based KORA F4 study. Atherosclerosis 297, 1–7 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Denic, A. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Schiel, R. et al. Serum uromodulin in children and adolescents with type 1 diabetes mellitus and controls: its potential role in kidney health. Exp. Clin. Endocrinol. Diabetes 131, 142–152 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Leiherer, A. et al. Serum uromodulin is associated with impaired glucose metabolism. Medicine 96, e5798 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Then, C. et al. Serum uromodulin is associated with but does not predict type 2 diabetes in elderly KORA F4/FF4 study participants. J. Clin. Endocrinol. Metab. 104, 3795–3802 (2019).

    Article  PubMed  Google Scholar 

  123. Wiromrat, P. et al. Serum uromodulin is associated with urinary albumin excretion in adolescents with type 1 diabetes. J. Diabetes Complications 33, 648–650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bjornstad, P. et al. Serum uromodulin predicts less coronary artery calcification and diabetic kidney disease over 12 years in adults with type 1 diabetes: the CACTI study. Diabetes Care 42, 297–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Then, C. et al. Serum uromodulin is inversely associated with the metabolic syndrome in the KORA F4 study. Endocr. Connect. 8, 1363–1371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Then, C. et al. Association of serum uromodulin with adipokines in dependence of type 2 diabetes. Cytokine 150, 155786 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Then, C. et al. Serum uromodulin is inversely associated with biomarkers of subclinical inflammation in the population-based KORA F4 study. Clin. Kidney J. 14, 1618–1625 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Bächle, H. et al. Uromodulin and its association with urinary metabolites: the German Chronic Kidney Disease Study. Nephrol. Dial. Transpl. 38, 70–79 (2023).

    Article  Google Scholar 

  130. Patidar, K. R. et al. Admission plasma uromodulin and the risk of acute kidney injury in hospitalized patients with cirrhosis: a pilot study. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G447–G452 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Garimella, P. S. et al. Association of preoperative urinary uromodulin with AKI after cardiac surgery. Clin. J. Am. Soc. Nephrol. 12, 10–18 (2017).

    Article  PubMed  Google Scholar 

  132. Bullen, A. L. et al. The SPRINT trial suggests that markers of tubule cell function in the urine associate with risk of subsequent acute kidney injury while injury markers elevate after the injury. Kidney Int. 96, 470–479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bennett, M. R., Pyles, O., Ma, Q. & Devarajan, P. Preoperative levels of urinary uromodulin predict acute kidney injury after pediatric cardiopulmonary bypass surgery. Pediatr. Nephrol. 33, 521–526 (2018).

    Article  PubMed  Google Scholar 

  134. Wen, Y. et al. Longitudinal biomarkers and kidney disease progression after acute kidney injury. JCI Insight 8, e167731 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Melchinger, H. et al. Urine uromodulin as a biomarker of kidney tubulointerstitial fibrosis. Clin. J. Am. Soc. Nephrol. 17, 1284–1292 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Puthumana, J. et al. Biomarkers of inflammation and repair in kidney disease progression. J. Clin. Invest. 131, e139927 (2021). Demonstration of the link between urinary uromodulin levels and kidney disease progression in clinical and experimental analyses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vasquez-Rios, G. et al. Joint modeling of clinical and biomarker data in acute kidney injury defines unique subphenotypes with differing outcomes. Clin. J. Am. Soc. Nephrol. 18, 716–726 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Steubl, D. et al. Association of serum uromodulin with ESKD and kidney function decline in the elderly: the Cardiovascular Health Study. Am. J. Kidney Dis. 74, 501–509 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Garimella, P. S. et al. Association of urinary uromodulin with kidney function decline and mortality: the health ABC study. Clin. Nephrol. 87, 278–286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Leiherer, A. et al. The value of uromodulin as a new serum marker to predict decline in renal function. J. Hypertens. 36, 110–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Steubl, D. et al. Association of serum uromodulin with death, cardiovascular events, and kidney failure in CKD. Clin. J. Am. Soc. Nephrol. 15, 616–624 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Garimella, P. S. et al. Urinary uromodulin, kidney function, and cardiovascular disease in elderly adults. Kidney Int. 88, 1126–1134 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jotwani, V. et al. Tubular biomarkers and chronic kidney disease progression in SPRINT participants. Am. J. Nephrol. 51, 797–805 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Steubl, D. et al. Urinary uromodulin independently predicts end-stage renal disease and rapid kidney function decline in a cohort of chronic kidney disease patients. Medicine 98, e15808 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kemmner, S. et al. Pretransplant serum uromodulin and its association with delayed graft function following kidney transplantation-a prospective cohort study. J. Clin. Med. 10, 2586 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Steubl, D. et al. Serum uromodulin predicts graft failure in renal transplant recipients. Biomarkers 22, 171–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Yazdani, B. et al. Combined use of serum uromodulin and eGFR to estimate mortality risk. Front. Med. 8, 723546 (2021).

    Article  Google Scholar 

  148. Steubl, D. et al. Association of serum and urinary uromodulin and their correlates in older adults — The Cardiovascular Health Study. Nephrology 25, 522–526 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Delgado, G. E. et al. Serum uromodulin and mortality risk in patients undergoing coronary angiography. J. Am. Soc. Nephrol. 28, 2201–2210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Leiherer, A. et al. Serum uromodulin is a predictive biomarker for cardiovascular events and overall mortality in coronary patients. Int. J. Cardiol. 231, 6–12 (2017).

    Article  PubMed  Google Scholar 

  151. Garimella, P. S. et al. Markers of kidney tubule function and risk of cardiovascular disease events and mortality in the SPRINT trial. Eur. Heart J. 40, 3486–3493 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Steubl, D. et al. Association of serum uromodulin with mortality and cardiovascular disease in the elderly — the Cardiovascular Health Study. Nephrol. Dial. Transpl. 35, 1399–1405 (2020).

    Article  CAS  Google Scholar 

  153. Safirstein, R. Gene expression in nephrotoxic and ischemic acute renal failure. J. Am. Soc. Nephrol. 4, 1387–1395 (1994).

    Article  CAS  PubMed  Google Scholar 

  154. Safirstein, R. L. Acute renal failure: from renal physiology to the renal transcriptome. Kidney Int. Suppl. S62–S66 https://doi.org/10.1111/j.1523-1755.2004.09110.x (2004).

  155. El-Achkar, T. M. et al. Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. Am. J. Physiol. Renal Physiol. 295, F534–F544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Köttgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009). GWAS that identified the link between UMOD SNPs and high CKD risk.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Pattaro, C. et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet. 8, e1002584 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Köttgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Chambers, J. C. et al. Genetic loci influencing kidney function and chronic kidney disease. Nat. Genet. 42, 373–375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pattaro, C. et al. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level. BMC Med. Genet. 11, 41 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Liu, C.-T. et al. Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. PLoS Genet. 7, e1002264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Okada, Y. et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 44, 904–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gorski, M. et al. Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline. Kidney Int. 99, 926–939 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Gorski, M. et al. Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies. Kidney Int. 102, 624–639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Robinson-Cohen, C. et al. Genome-wide association study of CKD progression. J. Am. Soc. Nephrol. 34, 1547–1559 (2023).

    Article  PubMed  Google Scholar 

  167. Ponte, B. et al. Mendelian randomization to assess causality between uromodulin, blood pressure and chronic kidney disease. Kidney Int. 100, 1282–1291 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Ledo, N. et al. Functional genomic annotation of genetic risk loci highlights inflammation and epithelial biology networks in CKD. J. Am. Soc. Nephrol. 26, 692–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Wang, J. et al. UMOD polymorphisms associated with kidney function, serum uromodulin and risk of mortality among patients with chronic kidney disease, results from the C-STRIDE study. Genes 12, 1687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Devuyst, O. et al. Autosomal dominant tubulointerstitial kidney disease. Nat. Rev. Dis. Prim. 5, 60 (2019).

    Article  PubMed  Google Scholar 

  171. Gast, C. et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 19, 301 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Groopman, E. E. et al. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Eckardt, K.-U. et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management-A KDIGO consensus report. Kidney Int. 88, 676–683 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Olinger, E. et al. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int. 98, 717–731 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Schaeffer, C., Merella, S., Pasqualetto, E., Lazarevic, D. & Rampoldi, L. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS One 12, e0175970 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Jennings, P. et al. Membrane targeting and secretion of mutant uromodulin in familial juvenile hyperuricemic nephropathy. J. Am. Soc. Nephrol. 18, 264–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Bernascone, I. et al. Defective intracellular trafficking of uromodulin mutant isoforms. Traffic 7, 1567–1579 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Vylet’al, P. et al. Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int. 70, 1155–1169 (2006).

    Article  PubMed  Google Scholar 

  179. Kim, Y. et al. MANF stimulates autophagy and restores mitochondrial homeostasis to treat autosomal dominant tubulointerstitial kidney disease in mice. Nat. Commun. 14, 6493 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Trudu, M. et al. Early involvement of cellular stress and inflammatory signals in the pathogenesis of tubulointerstitial kidney disease due to UMOD mutations. Sci. Rep. 7, 7383 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kemter, E. et al. Type of uromodulin mutation and allelic status influence onset and severity of uromodulin-associated kidney disease in mice. Hum. Mol. Genet. 22, 4148–4163 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Johnson, B. G. et al. Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J. Clin. Invest. 127, 3954–3969 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kemter, E., Fröhlich, T., Arnold, G. J., Wolf, E. & Wanke, R. Mitochondrial dysregulation secondary to endoplasmic reticulum stress in autosomal dominant tubulointerstitial kidney disease - UMOD (ADTKD-UMOD). Sci. Rep. 7, 42970 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Piret, S. E. et al. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis. Model. Mech. 10, 773–786 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Ma, L. et al. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia. PLoS One 12, e0186769 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Bernascone, I. et al. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum. Mol. Genet. 19, 2998–3010 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Marshall, J. L. et al. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 25, 104097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Schaeffer, C. et al. Urinary secretion and extracellular aggregation of mutant uromodulin isoforms. Kidney Int. 81, 769–778 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Satanovskij, R. et al. A new missense mutation in UMOD gene leads to severely reduced serum uromodulin concentrations — a tool for the diagnosis of uromodulin-associated kidney disease. Clin. Biochem. 50, 155–158 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Chun, J. et al. Autosomal dominant tubulointerstitial kidney disease-uromodulin misclassified as focal segmental glomerulosclerosis or hereditary glomerular disease. Kidney Int. Rep. 5, 519–529 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Olinger, E. et al. An intermediate-effect size variant in UMOD confers risk for chronic kidney disease. Proc. Natl Acad. Sci. USA 119, e2114734119 (2022). Study raising the possibility that CKD and ADTKD might be part of a broad disease spectrum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Srichai, M. B. et al. Apoptosis of the thick ascending limb results in acute kidney injury. J. Am. Soc. Nephrol. 19, 1538–1546 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mary, S. et al. Role of uromodulin in salt-sensitive hypertension. Hypertension 79, 2419–2429 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Padmanabhan, S. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 6, e1001177 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Then, C. et al. Serum uromodulin is inversely associated with arterial hypertension and the vasoconstrictive prohormone CT-proET-1 in the population-based KORA F4 study. PLoS One 15, e0237364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kemter, E. et al. No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: studies in mouse models of uromodulin-associated kidney disease. J. Biol. Chem. 289, 10715–10726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Dvela-Levitt, M. et al. Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178, 521–535.e23 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. McCallum, L. et al. Rationale and design of the genotype-blinded trial of torasemide for the treatment of hypertension (BHF UMOD). Am. J. Hypertens. 34, 92–99 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Ashkar laboratory, current and past collaborators, and other researchers in the related field. We disclose support for the research of this work from National Institute of Health, National Institute for Diabetes and Digestive and Kidney Diseases (R01DK111651 for TME and R00DK127216 for KAL), a VA Merit Award (5I01BX003935) for TME, and Takeda Science Foundation for AN.

Author information

Authors and Affiliations

Authors

Contributions

T.M.E. and A.N. researched data for the article. T.M.E., A.N. and K.A.L. made substantial contributions to discussions of the content. All authors wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Tarek M. El-Achkar.

Ethics declarations

Competing interests

The authors have two patents related to uromodulin: Modified Tamm–Horsfall protein and related compositions and methods of use (US11053290B2 for T.M.E.) and Materials and methods for quantifying precursor Tamm–Horsfall protein (WO2022155432A1 for T.M.E. and K.A.L.). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks J. Scherberich, D. Steubl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanamatsu, A., de Araújo, L., LaFavers, K.A. et al. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00881-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00881-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research