Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors

Abstract

G protein-coupled receptors (GPCRs) regulate every aspect of kidney function by mediating the effects of various endogenous and exogenous substances. A key concept in GPCR function is biased signalling, whereby certain ligands may selectively activate specific pathways within the receptor’s signalling repertoire. For example, different agonists may induce biased signalling by stabilizing distinct active receptor conformations — a concept that is supported by advances in structural biology. However, the processes underlying functional selectivity in receptor signalling are extremely complex, involving differences in subcellular compartmentalization and signalling dynamics. Importantly, the molecular mechanisms of spatiotemporal bias, particularly its connection to ligand binding kinetics, have been detailed for GPCRs critical to kidney function, such as the AT1 angiotensin receptor (AT1R), V2 vasopressin receptor (V2R) and the parathyroid hormone 1 receptor (PTH1R). This expanding insight into the multifaceted nature of biased signalling paves the way for innovative strategies for targeting GPCR functions; the development of novel biased agonists may represent advanced pharmacotherapeutic approaches to the treatment of kidney diseases and related systemic conditions, such as hypertension, diabetes and heart failure.

Key points

  • G protein-coupled receptors (GPCRs) are abundantly expressed in cells of the kidney and represent important pharmacological targets; of note, the ligands and functions of numerous GPCRs are unknown.

  • GPCRs can be targeted by orthosteric and allosteric ligands; ligand binding can stabilize distinct active or inactive receptor conformations to promote receptor signalling.

  • In addition to canonical signal transmission from the plasma membrane, GPCRs can also signal from intracellular organelles, contributing to the complex spatiotemporal organization of GPCR signalling.

  • Functionally selective ligands have the potential to selectively activate or inhibit certain GPCR-mediated signalling pathways, providing promising drug candidates with greater effectiveness and better safety profiles than currently available therapeutics.

  • Biased signalling can result from multiple mechanisms, including biased receptor conformations, variations of signalling kinetics or location-specific actions of certain compounds.

  • Preclinical studies with biased drugs have demonstrated promising results; success in clinical trials has so far been limited, although progress in biased therapeutics is anticipated in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression profile of GPCRs in human adult kidneys.
Fig. 2: Molecular principles of GPCR signalling initiation.
Fig. 3: Spatiotemporal organization of GPCR signalling.
Fig. 4: Different types of signalling bias.
Fig. 5: Mechanisms to exploit functional selectivity for the long-term control of receptor sensitivity.

Similar content being viewed by others

References

  1. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Munk, C. et al. An online resource for GPCR structure determination and analysis. Nat. Methods 16, 151–162 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Calebiro, D., Koszegi, Z., Lanoiselée, Y., Miljus, T. & O’Brien, S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol. Rev. 101, 857–906 (2021).

    CAS  PubMed  Google Scholar 

  4. Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kenakin, T. Biased receptor signaling in drug discovery. Pharmacol. Rev. 71, 267–315 (2019).

    CAS  PubMed  Google Scholar 

  6. Kolb, P. et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br. J. Pharmacol. 179, 3651–3674 (2022). This guideline establishes a consensus and framework for reporting biased agonism and the application of specific terminology.

    CAS  PubMed  Google Scholar 

  7. Poll, B. G., Chen, L., Chou, C.-L., Raghuram, V. & Knepper, M. A. Landscape of GPCR expression along the mouse nephron. Am. J. Physiol. Renal Physiol. 321, F50–F68 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stewart, A. P. & Clatworthy, M. R. Single-cell genomics sheds light on kidney tissue immunity. Nat. Rev. Nephrol. 20, 71–72 (2024).

    CAS  PubMed  Google Scholar 

  9. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rajkumar, P. & Pluznick, J. L. Unsung renal receptors: orphan G-protein-coupled receptors play essential roles in renal development and homeostasis. Acta Physiol. 220, 189–200 (2017).

    CAS  Google Scholar 

  11. Cazorla-Vázquez, S. & Engel, F. B. Adhesion GPCRs in kidney development and disease. Front. Cell Dev. Biol. 6, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Gardella, T. J. & Vilardaga, J.-P. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors–family B G protein-coupled receptors. Pharmacol. Rev. 67, 310–337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vincenzi, M. et al. Therapeutic potential of targeting prokineticin receptors in diseases. Pharmacol. Rev. 75, 1167–1199 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).

    CAS  PubMed  Google Scholar 

  15. Ballesteros, J. A. & Weinstein, H. in Receptor Molecular Biology 25 (ed Sealfon, S. C.) 366–428 (Elsevier, 1995).

  16. Erdélyi, L. S. et al. Altered agonist sensitivity of a mutant V2 receptor suggests a novel therapeutic strategy for nephrogenic diabetes insipidus. Mol. Endocrinol. 28, 634–643 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Gáborik, Z. et al. The role of a conserved region of the second intracellular loop in AT1 angiotensin receptor activation and signaling. Endocrinology 144, 2220–2228 (2003).

    PubMed  Google Scholar 

  18. Wei, H. et al. Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl Acad. Sci. USA 100, 10782–10787 (2003). This study demonstrated that G protein- and β-arrestin-mediated signalling of AT1R can be regulated selectively.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rosenthal, W., Antaramian, A., Gilbert, S. & Birnbaumer, M. Nephrogenic diabetes insipidus. A V2 vasopressin receptor unable to stimulate adenylyl cyclase. J. Biol. Chem. 268, 13030–13033 (1993).

    CAS  PubMed  Google Scholar 

  20. Barak, L. S., Oakley, R. H., Laporte, S. A. & Caron, M. G. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc. Natl Acad. Sci. USA 98, 93–98 (2001).

    CAS  PubMed  Google Scholar 

  21. Kocan, M. et al. Agonist-independent interactions between β-arrestins and mutant vasopressin type II receptors associated with nephrogenic syndrome of inappropriate antidiuresis. Mol. Endocrinol. 23, 559–571 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Feldman, B. J. et al. Nephrogenic syndrome of inappropriate antidiuresis. N. Engl. J. Med. 352, 1884–1890 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vilardaga, J.-P. et al. Molecular mechanisms of PTH/PTHrP class B GPCR signaling and pharmacological implications. Endocr. Rev. 44, 474–491 (2023).

    PubMed  Google Scholar 

  24. Hauser, A. S. et al. GPCR activation mechanisms across classes and macro/microscales. Nat. Struct. Mol. Biol. 28, 879–888 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dale, N. C., Johnstone, E. K. M. & Pfleger, K. D. G. GPCR heteromers: an overview of their classification, function and physiological relevance. Front. Endocrinol. 13, 931573 (2022).

    Google Scholar 

  26. Seyedabadi, M., Gharghabi, M., Gurevich, E. V. & Gurevich, V. V. Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Trends Biochem. Sci. 47, 570–581 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, F. Accessory proteins for heterotrimeric G-proteins in the kidney. Front. Physiol. 6, 219 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Tutunea-Fatan, E., Lee, J. C., Denker, B. M. & Gunaratnam, L. Heterotrimeric Gα12/13 proteins in kidney injury and disease. Am. J. Physiol. Renal Physiol. 318, F660–F672 (2020).

    PubMed  Google Scholar 

  29. Sussman, C. R., Wang, X., Chebib, F. T. & Torres, V. E. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell. Signal. 72, 109649 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gurevich, V. V. & Gurevich, E. V. GPCR signaling regulation: the role of GRKs and arrestins. Front. Pharmacol. 10, 125 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wess, J., Oteng, A.-B., Rivera-Gonzalez, O., Gurevich, E. V. & Gurevich, V. V. β-arrestins: structure, function, physiology, and pharmacological perspectives. Pharmacol. Rev. 75, 854–884 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Matthees, E. S. F., Haider, R. S., Hoffmann, C. & Drube, J. Differential regulation of GPCRs-are GRK expression levels the key? Front. Cell Dev. Biol. 9, 687489 (2021).

    PubMed  PubMed Central  Google Scholar 

  33. Ren, X.-R. et al. Different G protein-coupled receptor kinases govern G protein and β-arrestin-mediated signaling of V2 vasopressin receptor. Proc. Natl Acad. Sci. USA 102, 1448–1453 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, J. et al. Functional antagonism of different G protein-coupled receptor kinases for β-arrestin-mediated angiotensin II receptor signaling. Proc. Natl Acad. Sci. USA 102, 1442–1447 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tobin, A. B., Butcher, A. J. & Kong, K. C. Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol. Sci. 29, 413–420 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nobles, K. N. et al. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 4, ra51 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, M.-H. et al. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature 531, 665–668 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Peterson, Y. K. & Luttrell, L. M. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol. Rev. 69, 256–297 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tóth, A. D. et al. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. J. Biol. Chem. 293, 876–892 (2018).

    PubMed  Google Scholar 

  41. Eichel, K., Jullié, D. & von Zastrow, M. β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat. Cell Biol. 18, 303–310 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Grundmann, M. et al. Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun. 9, 341 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Luttrell, L. M. et al. Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci. Signal. 11, eaat7650 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Smith, J. S. et al. Noncanonical scaffolding of Gαi and β-arrestin by G protein-coupled receptors. Science 371, eaay1833 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomsen, A. R. B. et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell 166, 907–919 (2016). This work provided important biochemical and structural insights into the formation of GPCR–Gs protein–β-arrestin supercomplexes, important units for sustained endosomal signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S. & Caron, M. G. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-β-arrestin complexes after receptor endocytosis*. J. Biol. Chem. 276, 19452–19460 (2001).

    CAS  PubMed  Google Scholar 

  47. Tóth, A. D. et al. ArreSTick motif controls β-arrestin-binding stability and extends phosphorylation-dependent β-arrestin interactions to non-receptor proteins. Cell Rep. 43, 114241 (2024).

    PubMed  Google Scholar 

  48. Oakley, R. H., Laporte, S. A., Holt, J. A., Caron, M. G. & Barak, L. S. Differential affinities of visual arrestin, βarrestin1, and βarrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201–17210 (2000).

    CAS  PubMed  Google Scholar 

  49. Luttrell, L. M. et al. Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc. Natl Acad. Sci. USA 98, 2449–2454 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Grimes, J. et al. Plasma membrane preassociation drives β-arrestin coupling to receptors and activation. Cell 186, 2238–2255.e20 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Srivastava, A., Gupta, B., Gupta, C. & Shukla, A. K. Emerging functional divergence of β-arrestin isoforms in GPCR function. Trends Endocrinol. Metab. 26, 628–642 (2015).

    CAS  PubMed  Google Scholar 

  52. Xiao, K. et al. Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc. Natl Acad. Sci. USA 104, 12011–12016 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahn, S., Wei, H., Garrison, T. R. & Lefkowitz, R. J. Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by β-arrestins 1 and 2. J. Biol. Chem. 279, 7807–7811 (2004).

    CAS  PubMed  Google Scholar 

  54. Lohse, M. J., Nuber, S. & Hoffmann, C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol. Rev. 64, 299–336 (2012).

    CAS  PubMed  Google Scholar 

  55. Lohse, M. J., Bock, A. & Zaccolo, M. G protein-coupled receptor signaling: new insights define cellular nanodomains. Annu. Rev. Pharmacol. Toxicol. 64, 387–415 (2024).

    CAS  PubMed  Google Scholar 

  56. Sungkaworn, T. et al. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550, 543–547 (2017).

    CAS  PubMed  Google Scholar 

  57. Anton, S. E. et al. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 185, 1130–1142.e11 (2022).

    CAS  PubMed  Google Scholar 

  58. Bock, A. et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 182, 1519–1530.e17 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Grundmann, M. & Kostenis, E. Temporal bias: time-encoded dynamic GPCR signaling. Trends Pharmacol. Sci. 38, 1110–1124 (2017).

    CAS  PubMed  Google Scholar 

  60. Slessareva, J. E., Routt, S. M., Temple, B., Bankaitis, V. A. & Dohlman, H. G. Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein α subunit at the endosome. Cell 126, 191–203 (2006).

    CAS  PubMed  Google Scholar 

  61. Irannejad, R. & von Zastrow, M. GPCR signaling along the endocytic pathway. Curr. Opin. Cell Biol. 27, 109–116 (2014).

    CAS  PubMed  Google Scholar 

  62. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013). This provided evidence that GPCRs can adopt active conformation even after receptor endocytosis, permitting them to signal intracellularly.

    CAS  PubMed  Google Scholar 

  63. Stoeber, M. et al. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron 98, 963–976.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wan, Q. et al. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J. Biol. Chem. 293, 7466–7473 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wright, S. C. et al. BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated Gq activation at early endosomes. Proc. Natl Acad. Sci. USA 118, e2025846118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Daly, C. et al. β-Arrestin-dependent and -independent endosomal G protein activation by the vasopressin type 2 receptor. eLife 12, RP87754 (2023).

    PubMed  PubMed Central  Google Scholar 

  67. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009). Together with ref. 69, this was one of the first studies demonstrating that internalized GPCRs may transmit G protein signalling from endosomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Feinstein, T. N. et al. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J. Biol. Chem. 288, 27849–27860 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Calebiro, D. et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLOS Biol. 7, e1000172 (2009). Together with ref. 67, this was one of the first studies demonstrating that internalized GPCRs may transmit G protein signalling from endosomes.

    PubMed  PubMed Central  Google Scholar 

  70. Kotowski, S. J., Hopf, F. W., Seif, T., Bonci, A. & von Zastrow, M. Endocytosis promotes rapid dopaminergic signaling. Neuron 71, 278–290 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mullershausen, F. et al. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat. Chem. Biol. 5, 428–434 (2009).

    CAS  PubMed  Google Scholar 

  72. Daly, C. & Plouffe, B. Gαq signalling from endosomes: a new conundrum. Br. J. Pharmacol. https://doi.org/10.1111/bph.16248 (2023).

  73. Tóth, A. D. et al. G protein–coupled receptor endocytosis generates spatiotemporal bias in β-arrestin signaling. Sci. Signal. 17, eadi0934 (2024). This study demonstrated that the spatial and temporal dimensions of bias are inherently linked by the process of receptor endocytosis.

    PubMed  Google Scholar 

  74. Kwon, Y. et al. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 611, 173–179 (2022). This study highlighted the crucial role of endocytosis in MAP kinase signalling of the β2-adrenergic receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsvetanova, N. G. & von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat. Chem. Biol. 10, 1061–1065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Murphy, J. E., Padilla, B. E., Hasdemir, B., Cottrell, G. S. & Bunnett, N. W. Endosomes: a legitimate platform for the signaling train. Proc. Natl Acad. Sci. USA 106, 17615–17622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gidon, A. et al. Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase. Nat. Chem. Biol. 10, 707–709 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Roosterman, D. et al. Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling. Proc. Natl Acad. Sci. USA 104, 11838–11843 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sibley, D. R., Strasser, R. H., Benovic, J. L., Daniel, K. & Lefkowitz, R. J. Phosphorylation/dephosphorylation of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc. Natl Acad. Sci. USA 83, 9408–9412 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yen, H.-Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Janetzko, J. et al. Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Cell 185, 4560–4573.e19 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Erdélyi, L. S., Hunyady, L. & Balla, A. V2 vasopressin receptor mutations: future personalized therapy based on individual molecular biology. Front. Endocrinol. 14, 1173601 (2023).

    Google Scholar 

  83. Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Holloway, A. C. et al. Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol. Pharmacol. 61, 768–777 (2002).

    CAS  PubMed  Google Scholar 

  85. Rajagopal, S. et al. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80, 367–377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Saulière, A. et al. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat. Chem. Biol. 8, 622–630 (2012).

    PubMed  Google Scholar 

  87. Namkung, Y. et al. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Sci. Signal. 11, eaat1631 (2018).

    CAS  PubMed  Google Scholar 

  88. Wingler, L. M. et al. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science 367, 888–892 (2020). This study revealed the structural basis of biased AT1R activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Klein Herenbrink, C. et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat. Commun. 7, 10842 (2016). This study provided a systematic analysis of the role of kinetics in the observed functional selectivity, highlighting the importance of the kinetic context in reporting bias.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389.e12 (2017). This study demonstrated the role of ligand residence time in the efficacy of β-arrestin recruitment.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Irannejad, R. et al. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol. 13, 799–806 (2017). This study showed that GPCR ligands may access the intracellular, signalling-competent pool of receptors differently, providing a potential mechanism for functional selectivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Eiger, D. S. et al. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nat. Commun. 13, 5846 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Szakadáti, G. et al. Investigation of the fate of type I angiotensin receptor after biased activation. Mol. Pharmacol. 87, 972–981 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Masuho, I., Skamangas, N. K., Muntean, B. S. & Martemyanov, K. A. Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Syst. 12, 324–337.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Patwardhan, A., Cheng, N. & Trejo, J. Post-translational modifications of G protein-coupled receptors control cellular signaling dynamics in space and time. Pharmacol. Rev. 73, 120–151 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaur, S. et al. The ubiquitination status of the glucagon receptor determines signal bias. J. Biol. Chem. 299, 104690 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Caroli, J. et al. A community biased signaling atlas. Nat. Chem. Biol. 19, 531–535 (2023).

    CAS  PubMed  Google Scholar 

  98. Nielsen, S. et al. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl Acad. Sci. USA 92, 1013–1017 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fushimi, K., Sasaki, S. & Marumo, F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem. 272, 14800–14804 (1997).

    CAS  PubMed  Google Scholar 

  100. Hoffert, J. D. et al. Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J. Biol. Chem. 283, 24617–24627 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Knepper, M. A., Kwon, T.-H. & Nielsen, S. Molecular physiology of water balance. N. Engl. J. Med. 372, 1349–1358 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947.e25 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Avet, C. et al. Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. eLife 11, e74101 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Heydenreich, F. M. et al. Michaelis-Menten quantification of ligand signaling bias applied to the promiscuous vasopressin V2 receptor. Mol. Pharmacol. 102, 139–149 (2022).

    CAS  PubMed  Google Scholar 

  105. Okashah, N. et al. Agonist-induced formation of unproductive receptor-G12 complexes. Proc. Natl Acad. Sci. USA 117, 21723–21730 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, C. et al. Molecular mechanisms of antidiuretic effect of oxytocin. J. Am. Soc. Nephrol. 19, 225–232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Joo, K. W. et al. Antidiuretic action of oxytocin is associated with increased urinary excretion of aquaporin-2. Nephrol. Dial. Transpl. 19, 2480–2486 (2004).

    CAS  Google Scholar 

  108. Potter, R. R. Water retention due to oxytocin. Obstet. Gynecol. 23, 699–702 (1964).

    CAS  PubMed  Google Scholar 

  109. Zalyapin, E. A. et al. Effects of the renal medullary pH and ionic environment on vasopressin binding and signaling. Kidney Int. 74, 1557–1567 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jean-Alphonse, F. et al. Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 20, 2190–2203 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Azzi, M. et al. β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl Acad. Sci. USA 100, 11406–11411 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rahmeh, R. et al. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc. Natl Acad. Sci. USA 109, 6733–6738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Erdélyi, L. S. et al. Mutation in the V2 vasopressin receptor gene, AVPR2, causes nephrogenic syndrome of inappropriate diuresis. Kidney Int. 88, 1070–1078 (2015).

    PubMed  Google Scholar 

  114. Gaibelet, G. et al. Biased activation of the vasopressin V2 receptor probed by NMR, paramagnetic ligands, and molecular dynamics simulations. Preprint at bioRxiv https://doi.org/10.1101/2023.06.06.543947 (2023).

  115. Silver, J. & Naveh-Many, T. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat. Rev. Nephrol. 9, 641–649 (2013).

    CAS  PubMed  Google Scholar 

  116. Agoro, R. & White, K. E. Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions. Nat. Rev. Nephrol. 19, 185–193 (2023).

    CAS  PubMed  Google Scholar 

  117. Martin, T. J. Parathyroid hormone-related protein, its regulation of cartilage and bone development, and role in treating bone diseases. Physiol. Rev. 96, 831–871 (2016).

    CAS  PubMed  Google Scholar 

  118. Ortega, A. et al. Role of parathyroid hormone-related protein in tubulointerstitial apoptosis and fibrosis after folic acid-induced nephrotoxicity. J. Am. Soc. Nephrol. 17, 1594–1603 (2006).

    CAS  PubMed  Google Scholar 

  119. Ardura, J. A., Sanz, A. B., Ortiz, A. & Esbrit, P. Parathyroid hormone-related protein protects renal tubuloepithelial cells from apoptosis by activating transcription factor Runx2. Kidney Int. 83, 825–834 (2013).

    CAS  PubMed  Google Scholar 

  120. Schilling, T. et al. Parathyroid hormone-related protein (PTHrP) does not regulate 1,25-dihydroxyvitamin D serum levels in hypercalcemia of malignancy. J. Clin. Endocrinol. Metab. 76, 801–803 (1993).

    CAS  PubMed  Google Scholar 

  121. Shimizu, M. et al. Pharmacodynamic actions of a long-acting PTH analog (LA-PTH) in thyroparathyroidectomized (TPTX) rats and normal monkeys. J. Bone Miner. Res. 31, 1405–1412 (2016).

    CAS  PubMed  Google Scholar 

  122. Zhao, L.-H. et al. Structure and dynamics of the active human parathyroid hormone receptor-1. Science 364, 148–153 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. White, A. D. et al. Spatial bias in cAMP generation determines biological responses to PTH type 1 receptor activation. Sci. Signal. 14, eabc5944 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ho, P. W. M., Chan, A. S., Pavlos, N. J., Sims, N. A. & Martin, T. J. Brief exposure to full length parathyroid hormone-related protein (PTHrP) causes persistent generation of cyclic AMP through an endocytosis-dependent mechanism. Biochem. Pharmacol. 169, 113627 (2019).

    CAS  PubMed  Google Scholar 

  125. Peña, K. A. et al. Biased GPCR signaling by the native parathyroid hormone-related protein 1 to 141 relative to its N-terminal fragment 1 to 36. J. Biol. Chem. 298, 102332 (2022).

    PubMed  PubMed Central  Google Scholar 

  126. White, A. D. et al. Ca2+ allostery in PTH-receptor signaling. Proc. Natl Acad. Sci. USA 116, 3294–3299 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gesty-Palmer, D. et al. Distinct β-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J. Biol. Chem. 281, 10856–10864 (2006).

    CAS  PubMed  Google Scholar 

  128. Cupp, M. E., Nayak, S. K., Adem, A. S. & Thomsen, W. J. Parathyroid hormone (PTH) and PTH-related peptide domains contributing to activation of different PTH receptor-mediated signaling pathways. J. Pharmacol. Exp. Ther. 345, 404–418 (2013).

    CAS  PubMed  Google Scholar 

  129. van der Lee, M. M. C. et al. β-Arrestin-biased signaling of PTH analogs of the type 1 parathyroid hormone receptor. Cell. Signal. 25, 527–538 (2013).

    PubMed  Google Scholar 

  130. Gesty-Palmer, D. et al. A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci. Transl. Med. 1, 1ra1 (2009).

    PubMed  PubMed Central  Google Scholar 

  131. Luttrell, L. M., Maudsley, S. & Gesty-Palmer, D. Translating in vitro ligand bias into in vivo efficacy. Cell. Signal. 41, 46–55 (2018).

    CAS  PubMed  Google Scholar 

  132. Kobayashi, K. et al. Class B1 GPCR activation by an intracellular agonist. Nature 618, 1085–1093 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao, L.-H. et al. Conserved class B GPCR activation by a biased intracellular agonist. Nature 621, 635–641 (2023).

    CAS  PubMed  Google Scholar 

  134. Sutkeviciute, I. et al. Precise druggability of the PTH type 1 receptor. Nat. Chem. Biol. 18, 272–280 (2022).

    CAS  PubMed  Google Scholar 

  135. Negri, L. & Ferrara, N. The prokineticins: neuromodulators and mediators of inflammation and myeloid cell-dependent angiogenesis. Physiol. Rev. 98, 1055–1082 (2018).

    CAS  PubMed  Google Scholar 

  136. Boulberdaa, M. et al. Genetic inactivation of prokineticin receptor-1 leads to heart and kidney disorders. Arterioscler. Thromb. Vasc. Biol. 31, 842–850 (2011).

    CAS  PubMed  Google Scholar 

  137. Dormishian, M. et al. Prokineticin receptor-1 is a new regulator of endothelial insulin uptake and capillary formation to control insulin sensitivity and cardiovascular and kidney functions. J. Am. Heart Assoc. 2, e000411 (2013).

    PubMed  PubMed Central  Google Scholar 

  138. Arora, H. et al. Prokineticin receptor 1 is required for mesenchymal-epithelial transition in kidney development. FASEB J. 30, 2733–2740 (2016).

    CAS  PubMed  Google Scholar 

  139. Casella, I. & Ambrosio, C. Prokineticin receptors interact unselectively with several G protein subtypes but bind selectively to β-arrestin 2. Cell. Signal. 83, 110000 (2021).

    CAS  PubMed  Google Scholar 

  140. Karnik, S. S. et al. International Union of Basic and Clinical Pharmacology. XCIX. angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol. Rev. 67, 754–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lin, H. et al. Kidney angiotensin in cardiovascular disease: formation and drug targeting. Pharmacol. Rev. 74, 462–505 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Dallagnol, J. C. C., Volkovich, M., Chatenet, D., Allen, B. G. & Hébert, T. E. G protein-biased agonists for intracellular angiotensin receptors promote collagen secretion in myofibroblasts. ACS Chem. Biol. 18, 2050–2062 (2023).

    CAS  PubMed  Google Scholar 

  143. Galandrin, S. et al. Cardioprotective angiotensin-(1–7) peptide acts as a natural-biased ligand at the angiotensin II type 1 receptor. Hypertension 68, 1365–1374 (2016).

    CAS  PubMed  Google Scholar 

  144. Teixeira, L. B. et al. Ang-(1-7) is an endogenous β-arrestin-biased agonist of the AT1 receptor with protective action in cardiac hypertrophy. Sci. Rep. 7, 11903 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Duarte, D. A., Parreiras-e-Silva, L. T., Oliveira, E. B., Bouvier, M. & Costa-Neto, C. M. Angiotensin II type 1 receptor tachyphylaxis is defined by agonist residence time. Hypertension 79, 115–125 (2022).

    CAS  PubMed  Google Scholar 

  146. Kawakami, K. et al. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias. Nat. Commun. 13, 487 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Shukla, A. K. et al. Distinct conformational changes in β-arrestin report biased agonism at seven-transmembrane receptors. Proc. Natl Acad. Sci. USA 105, 9988–9993 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zimmerman, B. et al. Differential β-arrestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. Sci. Signal. 5, ra33 (2012).

    PubMed  Google Scholar 

  149. Wang, J., Hanada, K., Gareri, C. & Rockman, H. A. Mechanoactivation of the angiotensin II type 1 receptor induces β-arrestin-biased signaling through Gαi coupling. J. Cell. Biochem. 119, 3586–3597 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Wingler, L. M. et al. Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell 176, 468–478.e11 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Violin, J. D. et al. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335, 572–579 (2010).

    CAS  PubMed  Google Scholar 

  152. Boerrigter, G. et al. Cardiorenal actions of TRV120027, a novel ß-arrestin-biased ligand at the angiotensin II type I receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure. Circ. Heart Fail. 4, 770–778 (2011).

    CAS  PubMed  Google Scholar 

  153. Boerrigter, G., Soergel, D. G., Violin, J. D., Lark, M. W. & Burnett, J. C. TRV120027, a novel β-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ. Heart Fail. 5, 627–634 (2012).

    CAS  PubMed  Google Scholar 

  154. Mathieu, N. M. et al. ARRB2 (β-Arrestin-2) deficiency alters fluid homeostasis and blood pressure regulation. Hypertension 79, 2480–2492 (2022).

    CAS  PubMed  Google Scholar 

  155. Zanaty, M. et al. β-arrestin-biased agonist targeting the brain AT1R (Angiotensin II Type 1 Receptor) increases aversion to saline and lowers blood pressure in deoxycorticosterone acetate-salt hypertension. Hypertension 77, 420–431 (2021).

    CAS  PubMed  Google Scholar 

  156. Ryba, D. M. et al. Long-term biased β-arrestin signaling improves cardiac structure and function in dilated cardiomyopathy. Circulation 135, 1056–1070 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jara, Z. P. et al. Distinct mechanisms of β-arrestin–biased agonist and blocker of AT1R in preventing aortic aneurysm and associated mortality. Hypertension 80, 385–402 (2023).

    CAS  PubMed  Google Scholar 

  158. Pang, P. S. et al. Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF). Eur. Heart J. 38, 2364–2373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Cotter, G. et al. Relationship between baseline systolic blood pressure and long-term outcomes in acute heart failure patients treated with TRV027: an exploratory subgroup analysis of BLAST-AHF. Clin. Res. Cardiol. 107, 170–181 (2018).

    PubMed  Google Scholar 

  160. Lymperopoulos, A. et al. An adrenal β-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc. Natl Acad. Sci. USA 106, 5825–5830 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ma, Z. et al. β-arrestin-mediated angiotensin II type 1 receptor activation promotes pulmonary vascular remodeling in pulmonary hypertension. JACC Basic. Transl. Sci. 6, 854–869 (2021).

    PubMed  PubMed Central  Google Scholar 

  162. Liu, C.-H. et al. Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling. Nat. Commun. 8, 14335 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Semenikhina, M. et al. β-Arrestin pathway activation by selective ATR1 agonism promotes calcium influx in podocytes, leading to glomerular damage. Clin. Sci. 137, 1789–1804 (2023).

    CAS  Google Scholar 

  164. Wang, Y. et al. β-Arrestin-biased AT1R stimulation promotes extracellular matrix synthesis in renal fibrosis. Am. J. Physiol. Renal Physiol. 313, F1–F8 (2017).

    CAS  PubMed  Google Scholar 

  165. Esmaeeli, A., Ebrahimi, F., Tanha, K., Assadi, M. & Seyedabadi, M. Low-dose angiotensin AT1 receptor β-arrestin-biased ligand, TRV027, protects against cisplatin-induced nephrotoxicity. Pharmacol. Rep. 72, 1676–1684 (2020).

    CAS  PubMed  Google Scholar 

  166. Grim, T. W., Acevedo-Canabal, A. & Bohn, L. M. Toward directing opioid receptor signaling to refine opioid therapeutics. Biol. Psychiatry 87, 15–21 (2020).

    CAS  PubMed  Google Scholar 

  167. Kelly, E., Conibear, A. & Henderson, G. Biased agonism: lessons from studies of opioid receptor agonists. Annu. Rev. Pharmacol. Toxicol. 63, 491–515 (2023).

    CAS  PubMed  Google Scholar 

  168. Gillis, A. et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signal. 13, eaaz3140 (2020).

    CAS  PubMed  Google Scholar 

  169. Singleton, S. et al. TRV130 partial agonism and capacity to induce anti-nociceptive tolerance revealed through reducing available μ-opioid receptor number. Br. J. Pharmacol. 178, 1855–1868 (2021).

    CAS  PubMed  Google Scholar 

  170. El Eid, L., Reynolds, C. A., Tomas, A. & Jones, B. Biased agonism and polymorphic variation at the GLP-1 receptor: implications for the development of personalised therapeutics. Pharmacol. Res. 184, 106411 (2022).

    CAS  PubMed  Google Scholar 

  171. van Raalte, D. H. et al. Combination therapy for kidney disease in people with diabetes mellitus. Nat. Rev. Nephrol. 20, 433–446 (2024).

    PubMed  Google Scholar 

  172. Jones, B. et al. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat. Commun. 9, 1602 (2018).

    PubMed  PubMed Central  Google Scholar 

  173. Novikoff, A. et al. Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Mol. Metab. 49, 101181 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Brodde, O. E. β1- and β2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol. Rev. 43, 203–242 (1991).

    CAS  PubMed  Google Scholar 

  175. Basu, S. et al. Beneficial effects of intravenous and oral carvedilol treatment in acute myocardial infarction. A placebo-controlled, randomized trial. Circulation 96, 183–191 (1997).

    CAS  PubMed  Google Scholar 

  176. Kim, I.-M. et al. β-blockers alprenolol and carvedilol stimulate β-arrestin-mediated EGFR transactivation. Proc. Natl Acad. Sci. USA 105, 14555–14560 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang, J. et al. Gαi is required for carvedilol-induced β1 adrenergic receptor β-arrestin biased signaling. Nat. Commun. 8, 1706 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Kindermann, M. et al. Carvedilol but not metoprolol reduces β-adrenergic responsiveness after complete elimination from plasma in vivo. Circulation 109, 3182–3190 (2004).

    CAS  PubMed  Google Scholar 

  179. Sala, D., Batebi, H., Ledwitch, K., Hildebrand, P. W. & Meiler, J. Targeting in silico GPCR conformations with ultra-large library screening for hit discovery. Trends Pharmacol. Sci. 44, 150–161 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Slosky, L. M. et al. β-arrestin-biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell 181, 1364–1379.e14 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Cheloha, R. W. et al. Improved GPCR ligands from nanobody tethering. Nat. Commun. 11, 2087 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Jensen, D. D. et al. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Sci. Transl. Med. 9, eaal3447 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Ramírez-García, P. D. et al. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat. Nanotechnol. 14, 1150–1159 (2019).

    PubMed  PubMed Central  Google Scholar 

  184. Spahn, V. et al. A nontoxic pain killer designed by modelling of pathological receptor conformations. Science 355, 966–969 (2017).

    CAS  PubMed  Google Scholar 

  185. CZI Single-Cell Biology. An atlas of healthy and injured cell states and niches in the human kidney. CZ CELLxGENE. https://cellxgene.cziscience.com/collections/bcb61471-2a44-4d00-a0af-ff085512674c.

  186. Zhou, Y. et al. TTD: therapeutic target database describing target druggability information. Nucleic Acids Res. 52, D1465–D1477 (2024).

    PubMed  Google Scholar 

  187. Alexander, S. P. H. et al. The concise guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br. J. Pharmacol. 180, S23–S144 (2023).

    PubMed  Google Scholar 

  188. Devost, D. et al. Conformational profiling of the AT1 angiotensin II receptor reflects biased agonism, G protein coupling, and cellular context. J. Biol. Chem. 292, 5443–5456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR-G-protein activation. Nature 547, 68–73 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.H. and G.T. are supported by the Hungarian National Research, Development and Innovation Fund (NVKP_16-1-2016-0039, NKFI K 139231, NKFI FK 138862), L.H. is supported by the Ministry for National Economy (Competitive Central Hungary Operational Programme VEKOP-2.3.2-16-2016-00002). G.T. is supported by the János Bolyai Research Scholarship and János Bolyai Research Scholarship Plus of the Hungarian Academy of Sciences BO/00807/21. The authors used ChatGPT to assist with grammar and language of the initial draft of the manuscript prior to submission; however, it was not used for generating text content.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to László Hunyady.

Ethics declarations

Competing interests

G.T. and L.H. serve as scientific advisers and research collaborators of Gedeon Richter Plc., on topics not directly related to the content of this manuscript. A.D.T. declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks the anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Biased Signalling Atlas: https://BiasedSignalingAtlas.org

CellxGene: https://cellxgene.cziscience.com/

Ensembl: https://ensembl.org/

GPCRdb: https://gpcrdb.org/

Therapeutic Target Database: https://db.idrblab.net/ttd/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tóth, A.D., Turu, G. & Hunyady, L. Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00869-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00869-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research