Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug repurposing for glomerular diseases: an underutilized resource

Abstract

Drug repurposing in glomerular disease can deliver opportunities for steroid-free regimens, enable personalized multi-target options for resistant or relapsing disease and enhance treatment options for understudied populations (for example, children) and in resource-limited settings. Identification of drug-repurposing candidates can be data driven, which utilizes existing data on disease pathobiology, drug features and clinical outcomes, or experimental, which involves high-throughput drug screens. Information from databases of approved drugs, clinical trials and PubMed registries suggests that at least 96 drugs on the market cover 49 targets with immunosuppressive potential that could be candidates for drug repurposing in glomerular disease. Furthermore, evidence to support drug repurposing is available for 191 immune drug target–glomerular disease pairs. Non-immunological drug repurposing includes strategies to reduce haemodynamic overload, podocyte injury and kidney fibrosis. Recommended strategies to expand drug-repurposing capacity in glomerular disease include enriching drug databases with glomeruli-specific information, enhancing the accessibility of primary clinical trial data, biomarker discovery to improve participant selection into clinical trials and improve surrogate outcomes and initiatives to reduce patent, regulatory and organizational hurdles.

Key points

  • Drug repurposing can improve the treatment of glomerular disease by providing steroid-free regimens, enabling options for resistant or relapsing disease, enhancing treatment options for understudied populations and increasing therapy options in resource-limited settings.

  • Contemporary methods of identifying drug-repurposing candidates can be data driven or experimental.

  • At least 96 drugs on the market have targets with immunosuppressive potential that could be candidates for repurposing for glomerular disease treatment.

  • Non-immunological drug repurposing for glomerular disease involves strategies to reduce haemodynamic overload, podocyte injury and kidney fibrosis.

  • Strategies to expand drug-repurposing capacity need to enrich datasets with glomeruli-specific information, enhance the accessibility of clinical trial data, improve biomarker discovery and address patent, regulatory and organizational hurdles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methodologies for identifying candidate drugs for repurposing.
Fig. 2: Drug classes targeting innate immune system and complement cascade for repurposing in glomerular disease.
Fig. 3: Drug classes targeting adaptive immune system and downstream mechanisms for repurposing in glomerular disease.
Fig. 4: Current evidence supporting drug target–glomerular disease pairs for drug repurposing.

Similar content being viewed by others

References

  1. Waring, M. J. et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug. Discov. 14, 475–486 (2015). In-depth analysis of attrition data of drug candidates from AstraZeneca, Eli Lilly and Company, GlaxoSmithKline and Pfizer demonstrating that safety and toxicology are the greatest sources of failure.

    Article  CAS  PubMed  Google Scholar 

  2. Papapetropoulos, A. & Szabo, C. Inventing new therapies without reinventing the wheel: the power of drug repurposing. Br. J. Pharmacol. 175, 165–167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smerud, H. K. et al. New treatment for IgA nephropathy: enteric budesonide targeted to the ileocecal region ameliorates proteinuria. Nephrol. Dial. Transpl. 26, 3237–3242 (2011).

    Article  CAS  Google Scholar 

  4. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. U.S. Food and Drug Administration. Drugs@FDA:FDA-Approved Drugs. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm (2024).

  6. Liu, D. et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin. Immunol. 9, 30 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hogan, S. L. et al. Predictors of relapse and treatment resistance in antineutrophil cytoplasmic antibody-associated small-vessel vasculitis. Ann. Intern. Med. 143, 621–631, (2005).

    Article  PubMed  Google Scholar 

  8. Yu, C.-C. et al. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 369, 2416–2423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019). Comprehensive discussion of methods for identifying drug candidates for repurposing.

    Article  CAS  PubMed  Google Scholar 

  10. Huang, H.-J. et al. Drug repurposing screens to identify potential drugs for chronic kidney disease by targeting prostaglandin E2 receptor. Comput. Struct. Biotechnol. J. 21, 3490–3502 (2023). Example of molecular docking analysis being used to identify ritodrine, dofetilide, dobutamine and citalopram as ligands for prostaglandin E2 receptor to attenuate kidney fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kharkar, P. S., Warrier, S. & Gaud, R. S. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med. Chem. 6, 333–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Warren, G. L. et al. A critical assessment of docking programs and scoring functions. J. Med. Chem. 49, 5912–5931 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Vidović, D., Koleti, A. & Schürer, S. C. Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action. Front. Genet. 5, 342 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Xia, M. et al. Identification of hub genes and therapeutic agents for IgA nephropathy through bioinformatics analysis and experimental validation. Front. Med. 9, 881322 (2022). Example of how drug–disease signature matching using data from Connectivity Map identified tetrandrine as a candidate to reverse IgAN differential expression profile.

    Article  Google Scholar 

  15. Xu, W. et al. Tetrandrine inhibits the proliferation of mesangial cells induced by enzymatically deglycosylated human IgA1 via IgA receptor/MAPK/NF-κB signaling pathway. Front. Pharmacol. 14, 1150829 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452.e1417 (2017). Report of L1000 — a low-cost, high-throughput reduced representation expression profiling method for assessing the transcription profile of cells after treatment with a perturbagen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lim, N. & Pavlidis, P. Evaluation of connectivity map shows limited reproducibility in drug repositioning. Sci. Rep. 11, 17624 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campillos, M., Kuhn, M., Gavin, A.-C., Jensen, L. J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 263–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Gaspar, H. A. et al. Using genetic drug-target networks to develop new drug hypotheses for major depressive disorder. Transl. Psychiatry 9, 117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Laudisio, A. et al. Use of proton-pump inhibitors is associated with depression: a population-based study. Int. Psychogeriatr. 30, 153–159 (2018).

    Article  PubMed  Google Scholar 

  21. Gebeshuber, C. A. et al. Computational drug repositioning of clopidogrel as a novel therapeutic option for focal segmental glomerulosclerosis. Transl. Res. 259, 28–34 (2023). Example of pathway mapping being used to identify clopidogrel as a drug repurposing candidate for FSGS.

    Article  CAS  PubMed  Google Scholar 

  22. Daniel-Fischer, L. et al. Clopidogrel for proteinuria reduction in focal segmental glomerulosclerosis: phase 2 trial design. Kidney Int. Rep. 9, 478–481 (2024).

    Article  PubMed  Google Scholar 

  23. Jung, K. et al. Automated detection of off-label drug use. PLoS One 9, e89324 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim, S. et al. Automatic extraction of comprehensive drug safety information from adverse drug event narratives in the Korea adverse event reporting system using natural language processing techniques. Drug. Saf. 46, 781–795 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Fernández-Juárez, G. et al. The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy. Kidney Int. 99, 986–998 (2021).

    Article  PubMed  Google Scholar 

  27. Katikaneni, D., Morel, L. & Scindia, Y. Animal models of lupus nephritis: the past, present and a future outlook. Autoimmunity 57, 2319203 (2024).

    Article  PubMed  Google Scholar 

  28. Dvela-Levitt, M. et al. Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178, 521–535.e523 (2019). Seminal study that involved the development of an automated high-throughput cellular assay that identified BRD4780 for the treatment of MUC1 nephropathy.

    Article  CAS  PubMed  Google Scholar 

  29. Tran, T. et al. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery. Cell Stem Cell 29, 1083–1101.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kroll, K. T. et al. Immune-infiltrated kidney organoid-on-chip model for assessing T cell bispecific antibodies. Proc. Natl Acad. Sci. USA 120, e2305322120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han, J. J. FDA modernization Act 2.0 allows for alternatives to animal testing. Artif. Organs 47, 449–450 (2023).

    Article  PubMed  Google Scholar 

  32. Anders, H.-J., Kitching, A. R., Leung, N. & Romagnani, P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00816-y (2023). Insightful discussion of immunological mechanisms driving glomerular diseases and pathobiology-directed glomerular disease taxonomy.

  33. Lafayette, R. et al. Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NefIgArd): 2-year results from a randomised phase 3 trial. Lancet 402, 859–870 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, L. J. et al. Effects of hydroxychloroquine on proteinuria in IgA nephropathy: a randomized controlled trial. Am. J. Kidney Dis. 74, 15–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Hou, F. F. et al. Effectiveness of mycophenolate mofetil among patients with progressive IgA nephropathy: a randomized clinical trial. JAMA Netw. Open. 6, e2254054–e2254054 (2023).

    Article  PubMed  Google Scholar 

  36. Maes, B. D. et al. Mycophenolate mofetil in IgA nephropathy: results of a 3-year prospective placebo-controlled randomized study. Kidney Int. 65, 1842–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Mei, H. E. et al. Steady-state generation of mucosal IgA+ plasmablasts is not abrogated by B-cell depletion therapy with rituximab. Blood 116, 5181–5190 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Hartono, C. et al. Bortezomib for reduction of proteinuria in IgA nephropathy. Kidney Int. Rep. 3, 861–866 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tam Wk, F. et al. SUN-036 spleen tyrosine kinase (SYK) inhibition in IGA nephropathy: a global, phase II, randomised placebo-controlled trial of fostamatinib. Kidney Int. Rep. 4, S168 (2019).

    Article  Google Scholar 

  40. Bruchfeld, A. et al. C5a receptor inhibitor avacopan in immunoglobulin A nephropathy — an open-label pilot study. Clin. Kidney J. 15, 922–928 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, H. et al. Results of a randomized double-blind placebo-controlled phase 2 study propose iptacopan as an alternative complement pathway inhibitor for IgA nephropathy. Kidney Int. 105, 189–199 (2024). Example of adaptive trial design where the interval 3-month analysis was used to inform iptacopan doses to be evaluated in the subsequent 6 months.

    Article  CAS  PubMed  Google Scholar 

  42. Barratt, J. et al. Wcn24-912 imagination: a global phase 3 trial of Ro7434656, an antisense oligonucleotide inhibitor of complement factor B, in IgA nephropathy. Kidney Int. Rep. 9, S147 (2024).

    Article  Google Scholar 

  43. Chen, A. et al. Interleukin-1 receptor antagonist modulates the progression of a spontaneously occurring IgA nephropathy in mice. Am. J. Kidney Dis. 30, 693–702 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Tektonidou, M. G., Dasgupta, A. & Ward, M. M. Risk of end-stage renal disease in patients with lupus nephritis, 1971-2015: a systematic review and Bayesian meta-analysis. Arthritis Rheumatol. 68, 1432–1441 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Furie, R. et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N. Engl. J. Med. 383, 1117–1128 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Rovin, B. H. et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397, 2070–2080 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Puri, P., Jiang, S. H., Yang, Y., Mackay, F. & Yu, D. Understand SLE heterogeneity in the era of omics, big data, and artificial intelligence. Rheumatol. Autoimmun. 1, 40–51 (2021).

    Article  Google Scholar 

  48. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dein, E., Ingolia, A., Connolly, C., Manno, R. & Timlin, H. Anakinra for recurrent fevers in systemic lupus erythematosus. Cureus 10, e3782 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Jayne, D. et al. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann. Rheum. Dis. 81, 496–506 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Ripoll, È. et al. JAK3-STAT pathway blocking benefits in experimental lupus nephritis. Arthritis Res. Ther. 18, 134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bacalao, M. A. & Satterthwaite, A. B. Recent advances in lupus B cell biology: PI3K, IFNγ, and chromatin. Front. Immunol. 11, 615673 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yougbare, I., Keravis, T. & Lugnier, C. NCS 613, a PDE4 inhibitor, by increasing cAMP level suppresses systemic inflammation and immune complexes deposition in kidney of MRL/lpr lupus-prone mice. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166019 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Reilly, C. M., Regna, N. & Mishra, N. HDAC inhibition in lupus models. Mol. Med. 17, 417–425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baker, M. et al. Phase II, randomised, double-blind, multicentre study evaluating the safety and efficacy of filgotinib and lanraplenib in patients with lupus membranous nephropathy. RMD Open 6, e001490 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gulati, K. et al. Combination treatment with rituximab, low-dose cyclophosphamide and plasma exchange for severe antineutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 100, 1316–1324 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Slot, M. C., Tervaert, J. W. C., Franssen, C. F. M. & Stegeman, C. A. Renal survival and prognostic factors in patients with PR3-ANCA associated vasculitis with renal involvement. Kidney Int. 63, 670–677 (2003).

    Article  PubMed  Google Scholar 

  58. Gopaluni, S. et al. Alemtuzumab for refractory primary systemic vasculitis — a randomised controlled dose ranging clinical trial of efficacy and safety (ALEVIATE). Arthritis Res. Ther. 24, 81 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Amudala, N. A. et al. Obinutuzumab as treatment for ANCA-associated vasculitis. Rheumatology 61, 3814–3817 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. McAdoo, S. P. et al. Ofatumumab for B cell depletion therapy in ANCA-associated vasculitis: a single-centre case series. Rheumatology 55, 1437–1442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ostendorf, L. et al. Daratumumab for the treatment of refractory ANCA-associated vasculitis. RMD Open. 9, e002742 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Novikov, P., Moiseev, S., Bulanov, N. & Shchegoleva, E. Bortezomib in refractory ANCA-associated vasculitis: a new option. Ann. Rheum. Dis. 75, e9 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. McClure, M. et al. A randomised, double-blind, controlled, mechanistic study of rituximab and belimumab combination therapy in PR3 ANCA-associated vasculitis (COMBIVAS): study protocol. Rheumatology 58, kez063.046 (2019).

    Article  Google Scholar 

  64. McAdoo, S. P. et al. Spleen tyrosine kinase inhibition is an effective treatment for established vasculitis in a pre-clinical model. Kidney Int. 97, 1196–1207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. von Borstel, A. et al. Evidence for enhanced Bruton’s tyrosine kinase activity in transitional and naïve B cells of patients with granulomatosis with polyangiitis. Rheumatology 58, 2230–2239 (2019).

    Article  Google Scholar 

  66. Tam, F. W. K. et al. Type IV phosphodiesterase inhibitor is effective in prevention and treatment of experimental crescentic glomerulonephritis. Nephron 84, 58–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Kimura, H. et al. The effect and possible clinical efficacy of in vivo inhibition of neutrophil extracellular traps by blockade of PI3K-gamma on the pathogenesis of microscopic polyangiitis. Mod. Rheumatol. 28, 530–541 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Schreiber, A. et al. Neutrophil serine proteases promote IL-1β generation and injury in necrotizing crescentic glomerulonephritis. J. Am. Soc. Nephrol. 23, 470–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dooley, D. et al. Alkylating histone deacetylase inhibitors may have therapeutic value in experimental myeloperoxidase-ANCA vasculitis. Kidney Int. 94, 926–936 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Rovin, B. H. et al. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 100, S1–S276 (2021).

    Article  Google Scholar 

  71. Floyd, L. et al. Risk stratification to predict renal survival in anti-glomerular basement membrane disease. J. Am. Soc. Nephrol. 34, 505–514 (2023).

    Article  PubMed  Google Scholar 

  72. Tang, W. et al. Anti-glomerular basement membrane antibody disease is an uncommon cause of end-stage renal disease. Kidney Int. 83, 503–510 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Uhlin, F. et al. Endopeptidase cleavage of anti-glomerular basement membrane antibodies in vivo in severe kidney disease: an open-label phase 2a study. J. Am. Soc. Nephrol. 33, 829–838 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schless, B., Yildirim, S., Beha, D., Keller, F. & Czock, D. Rituximab in two cases of Goodpasture’s syndrome. NDT 2, 225–227 (2009).

    Google Scholar 

  75. Nithagon, P. et al. Eculizumab and complement activation in anti-glomerular basement membrane disease. Kidney Int. Rep. 6, 2713–2717 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fakhouri, F., Schwotzer, N., Golshayan, D. & Frémeaux-Bacchi, V. The rational use of complement inhibitors in kidney diseases. Kidney Int. Rep. 7, 1165–1178 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bomback, A. S. et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin. J. Am. Soc. Nephrol. 7, 748–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wong, E. et al. Efficacy and safety of iptacopan in patients with C3 glomerulopathy. Kidney Int. Rep. 8, 2754–2764 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bomback, A. et al. POS-112 effect of avacopan, a selective C5A receptor inhibitor, on complement 3 glomerulopathy histologic index of disease chronicity. Kidney Int. Rep. 7, S47–S48 (2022).

    Article  Google Scholar 

  80. Bomback, A. S. et al. Effect of Avacopan, a Selective C5a Receptor Inhibitor, on C3G Histologic Index of Disease Chronicity. https://www.asn-online.org/education/kidneyweek/2021/program-abstract.aspx?controlId=3639829 (2021).

  81. Nester, C. et al. Clinical outcomes of patients with C3G or IC-MPGN treated with the factor D inhibitor danicopan: final results from two phase 2 studies. Am. J. Nephrol. 53, 687–700 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Barrett, C. et al. Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy. Nephrol. Dial. Transplant. 35, 599–606 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Benoit, S. W., Khandelwal, P. & Grimley, M. S. A case of treatment-resistant membranous nephropathy associated with graft versus host disease successfully treated with daratumumab. Pediatr. Transplant. 26, e14263 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Geara, A. S., Bhoj, V. & Hogan, J. J. Bortezomib treatment for refractory PLA2R-positive membranous nephropathy. Glomerular Dis. 1, 40–43 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cattran, D. & Brenchley, P. Membranous nephropathy: thinking through the therapeutic options. Nephrol. Dial. Transplant. 32, i22–i29 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Maas, R. J., Deegens, J. K., Smeets, B., Moeller, M. J. & Wetzels, J. F. Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat. Rev. Nephrol. 12, 768–776 (2016).

    Article  PubMed  Google Scholar 

  87. Trachtman, H. et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol. 16, 111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Peyser, A. et al. Follow-up of phase I trial of adalimumab and rosiglitazone in FSGS: III. Report of the FONT study group. BMC Nephrol. 11, 2 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sedlacek, M. & Pettus, J. R. Complete remission of tip lesion variant focal segmental glomerulosclerosis (FSGS) with the Janus Kinase (JAK) inhibitor tofacitinib. Cen. Case Rep. 11, 225–230 (2022).

    Article  PubMed  Google Scholar 

  90. Medjeral-Thomas, N. R. et al. Randomized, controlled trial of tacrolimus and prednisolone monotherapy for adults with de novo minimal change disease: a multicenter, randomized, controlled trial. Clin. J. Am. Soc. Nephrol. 15, 209–218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ramachandran, R. et al. Tacrolimus therapy in adult-onset steroid-resistant nephrotic syndrome due to a focal segmental glomerulosclerosis single-center experience. Nephrol. Dial. Transpl. 29, 1918–1924 (2014).

    Article  CAS  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/study/NCT02592798 (2021).

  93. Lafayette, R. A. et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J. Am. Soc. Nephrol. 28, 1306 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Boumediene, A. et al. NEPHRUTIX: a randomized, double-blind, placebo vs rituximab-controlled trial assessing T-cell subset changes in minimal change nephrotic syndrome. J. Autoimmun. 88, 91–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Basu, B. et al. Efficacy of rituximab vs tacrolimus in pediatric corticosteroid-dependent nephrotic syndrome: a randomized clinical trial. JAMA Pediatrics 172, 757–764 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ruggenenti, P. et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J. Am. Soc. Nephrol. 25, 850–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ravani, P. et al. Low-dose ofatumumab for multidrug-resistant nephrotic syndrome in children: a randomized placebo-controlled trial. Pediatr. Nephrol. 35, 997–1003 (2020).

    Article  PubMed  Google Scholar 

  98. Ravani, P. et al. Human or chimeric monoclonal anti-CD20 antibodies for children with nephrotic syndrome: a superiority randomized trial. J. Am. Soc. Nephrol. 32, 2652–2663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kalay, Z. et al. SGLT-2 inhibitors in nephrotic-range proteinuria: emerging clinical evidence. Clin. Kidney J. 16, 52–60 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Wheeler, D. C. et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 100, 215–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Judge, P. K. et al. Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial. Lancet Diabetes Endocrinol. 12, 51–60 (2024).

    Article  Google Scholar 

  102. Wang, H. et al. Safety and efficacy of the SGLT2 inhibitor dapagliflozin in patients with systemic lupus erythematosus: a phase I/II trial. RMD Open 8, e002686 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kohan, D. E. & Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 86, 896–904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim, S. G. et al. Wcn23-1126 atrasentan for the treatment of Iga nephropathy: interim results of the affinity study. Kidney Int. Rep. 8, 1902 (2023).

    Google Scholar 

  105. Rheault, M. N. et al. Sparsentan versus irbesartan in focal segmental glomerulosclerosis. N. Engl. J. Med. 389, 2436–2445 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Heerspink, H. J. L. et al. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 401, 1584–1594 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Chung, E. Y. M., Badve, S. V., Heerspink, H. J. L. & Wong, M. G. Endothelin receptor antagonists in kidney protection for diabetic kidney disease and beyond. Nephrology 28, 97–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Heerspink, H. J. L. et al. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 402, 2004–2017 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Rocha, R. et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 283, H1802–H1810 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Papasotiriou, M. et al. A prospective study of eplerenone in the treatment of patients with glomerulonephritis. Biomedicines 11, 3340 https://doi.org/10.3390/biomedicines11123340 (2023).

  111. Yu, B. C. et al. Efficacy of low-dose spironolactone on top of angiotensin receptor blockade in patients with glomerulonephritis. Kidney Res. Clin. Pract. 37, 257–265 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bianchi, S., Bigazzi, R. & Campese, V. M. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 70, 2116–2123 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Agarwal, R. et al. Hyperkalemia risk with finerenone: results from the FIDELIO-DKD trial. J. Am. Soc. Nephrol. 33, 225–237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Neuen, B. L. et al. Sodium-glucose cotransporter 2 inhibitors and risk of hyperkalemia in people with type 2 diabetes: a meta-analysis of individual participant data from randomized, controlled trials. Circulation 145, 1460–1470 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, J. et al. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition. Mol. Ther. 30, 3017–3033 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Song, A., Zhang, C. & Meng, X. Mechanism and application of metformin in kidney diseases: an update. Biomed. Pharmacother. 138, 111454 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Bai, X. et al. Pirfenidone is a renal protective drug: mechanisms, signalling pathways, and preclinical evidence. Eur. J. Pharmacol. 911, 174503 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. de Morales, A. M. et al. Pentoxifylline, progression of chronic kidney disease (CKD) and cardiovascular mortality: long-term follow-up of a randomized clinical trial. J. Nephrol. 32, 581–587 (2019).

    Article  PubMed  Google Scholar 

  119. Skeby, C. K. et al. Proprotein convertase subtilisin/kexin type 9 targets megalin in the kidney proximal tubule and aggravates proteinuria in nephrotic syndrome. Kidney Int. 104, 754–768 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Muñoz Ramos, P. et al. Proteinuria-lowering effects of proprotein convertase subtilisin/kexin type 9 inhibitors in chronic kidney disease patients: a real-world multicentric study. Metabolites 11, 760 https://doi.org/10.3390/metabo11110760 (2021).

  121. Pippin, J. W. et al. Upregulated PD-1 signaling antagonizes glomerular health in aged kidneys and disease. J. Clin. Invest. 132, e156250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Manohar, S. et al. Programmed cell death protein 1 inhibitor treatment is associated with acute kidney injury and hypocalcemia: meta-analysis. Nephrol. Dial. Transplant. 34, 108–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Kidokoro, K. et al. Insights into the regulation of GFR by the Keap1-Nrf2 pathway. Kidney360 4, 1454–1466 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Krishnamurthy, N., Grimshaw, A. A., Axson, S. A., Choe, S. H. & Miller, J. E. Drug repurposing: a systematic review on root causes, barriers and facilitators. BMC Health Serv. Res. 22, 970 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Leaf, D. E., Appel, G. B. & Radhakrishnan, J. Glomerular disease: why is there a dearth of high quality clinical trials. Kidney Int. 78, 337–342 (2010).

    Article  PubMed  Google Scholar 

  127. Hopkins, A. M., Rowland, A. & Sorich, M. J. Data sharing from pharmaceutical industry sponsored clinical studies: audit of data availability. BMC Med. 16, 165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Modi, N. D. et al. A 10-year update to the principles for clinical trial data sharing by pharmaceutical companies: perspectives based on a decade of literature and policies. BMC Med. 21, 400 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kotecha, D. et al. CODE-EHR best-practice framework for the use of structured electronic health-care records in clinical research. Lancet Digital Health 4, e757–e764 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Carter, S. A. et al. A core outcome set for trials in glomerular disease: a report of the standardized outcomes in nephrology–glomerular disease (SONG-GD) stakeholder workshops. Clin. J. Am. Soc. Nephrol. 17, 53–64 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Liddicoat, J. et al. Repositioning generic drugs: empirical findings and policy implications. IIC — Int. Rev. Intellect. Prop. Competition Law 53, 1287–1322 (2022).

    Article  Google Scholar 

  132. Frail, D. E. et al. Pioneering government-sponsored drug repositioning collaborations: progress and learning. Nat. Rev. Drug. Discov. 14, 833–841 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.S.Y.N. acknowledges support for the research of this work from the Royal Brisbane and Women’s Hospital Foundation (2020 Robert and Janelle Bird Postdoctoral Research Fellowship).

Author information

Authors and Affiliations

Authors

Contributions

M.S.Y.N., G.K. and R.S.F. researched data for the article. M.S.Y.N. wrote the article. All authors made substantial contributions to discussions of the content, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Monica Suet Ying Ng.

Ethics declarations

Competing interests

M.S.Y.N. has received research grants and travel sponsorships from Avant Foundation and postdoctoral research fellowship from the Royal Brisbane and Women’s Hospital Foundation. G.K. has received research grants from the New Zealand Rheumatology Association. R.S.F. has received consultancy fees from Exelixis. C.M.H. has received research grants from Baxter Healthcare. D.W.J. has received consultancy fees, research grants, speaker’s honoraria and travel sponsorships from Baxter Healthcare and Fresenius Medical Care, consultancy fees from Astra Zeneca, Bayer, and AWAK, speaker’s honoraria from Ono and Boehringer Ingelheim & Lilly, and travel sponsorships from Ono and Amgen; D.W.J. is a current recipient of an Australian National Health and Medical Research Council Leadership Investigator Grant.

Peer review

Peer review information

Nature Reviews Nephrology thanks Gabriel Cara Fuentes, Duvuru Geetha, William Smoyer and Vladimir Tesar for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Medicines Agency: https://www.ema.europa.eu/en/medicines

NIH clinical trials database: https://www.clinicaltrials.gov/

US Food and Drug Administration: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm

Supplementary information

Glossary

Adaptive trials

Clinical trials that allow modifications to trial protocol after trial initiation without undermining internal validity. Adaptive trials move away from traditional phase I–III categories and allows a single study to move between different phases of clinical trials.

Bags-of-words

A method of representing text data for natural language processing or machine-learning algorithms that converts text into an unordered collection of words; captures word frequency but not word order.

Basket trials

Clinical trials in which a drug is tested against multiple diseases with a shared disease mechanism (for example, testing an anti-complement drug against lupus nephritis, IgAN, membranous nephropathy, C3 glomerulopathy and dense deposit disease); also known as bucket trials.

First-pass metabolism

Pharmacological phenomenon whereby a drug undergoes metabolism prior to reaching systemic circulation or site of action. The first-pass effect is often associated with the liver, particularly for oral medications, but can also occur in the small intestine, lungs, vasculature or other metabolically active tissues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, M.S.Y., Kaur, G., Francis, R.S. et al. Drug repurposing for glomerular diseases: an underutilized resource. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00864-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00864-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing