Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pulmonary hypertension and chronic kidney disease: prevalence, pathophysiology and outcomes

Abstract

Pulmonary hypertension (PH) is common in patients with chronic kidney disease (CKD) or kidney failure, with an estimated prevalence of up to 78% in those referred for right-heart catheterization. PH is independently associated with adverse outcomes in CKD, raising the possibility that early detection and appropriate management of PH might improve outcomes in at-risk patients. Among patients with PH, the prevalence of CKD stages 3 and 4 is estimated to be as high as 36%, and CKD is also independently associated with adverse outcomes. However, the complex, heterogenous pathophysiology and clinical profile of CKD–PH requires further characterization. CKD is often associated with elevated left ventricular filling pressure and volume overload, which presumably leads to pulmonary vascular stiffening and post-capillary PH. By contrast, a distinct subgroup of patients at high risk is characterized by elevated pulmonary vascular resistance and right ventricular dysfunction in the absence of pulmonary venous hypertension, which may represent a right-sided cardiorenal syndrome defined in principle by hypervolaemia, salt avidity, low cardiac output and normal left ventricular function. Current understanding of CKD–PH is limited, despite its potentially important ramifications for clinical decision making. In particular, whether PH should be considered when determining the suitability and timing of kidney replacement therapy or kidney transplantation is unclear. More research is urgently needed to address these knowledge gaps and improve the outcomes of patients with or at risk of CKD–PH.

Key points

  • Pulmonary hypertension (PH) is common and independently associated with increased mortality in patients with chronic kidney disease or kidney failure; conversely, chronic kidney disease and kidney failure are common and independently associated with increased mortality in patients with PH.

  • In left-heart cardiorenal syndrome, impaired left ventricular function leads to pulmonary venous hypertension, which promotes pulmonary hypertension as well as renal dysfunction in the setting of renin–angiotensin–aldosterone system overactivation, salt avidity and hypervolaemia.

  • In right-heart cardiorenal syndrome, pulmonary arterial hypertension leads to severe pulmonary arterial remodelling, right-heart failure and impaired cardiac output, despite normal left-heart function. This process promotes kidney failure via neurohumoral, sympathetic and mechanical mechanisms.

  • Major overlap exists in the pathophysiology of pulmonary arterial remodelling and kidney failure, which could serve as the basis for potential therapeutic targets for both conditions.

  • No clear screening algorithms have been established for PH in kidney failure or kidney failure in PH.

  • PH could be a potential surrogate marker for risk of kidney failure, and opportunities may exist to improve outcomes by considering PH when determining the timing and appropriateness of kidney replacement therapy and/or kidney transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The classic pathophysiology of left-heart cardiorenal syndrome.
Fig. 2: The pathophysiology of pulmonary arterial hypertension (PAH), right-heart failure and cardiorenal syndrome.
Fig. 3: Imaging of the heart and kidneys to assess pulmonary hypertension and renal venous congestion in the setting of right-heart cardiorenal syndrome.
Fig. 4: Hemodynamic effects of an arteriovenous fistula and initiation of haemodialysis on the right and left heart.

Similar content being viewed by others

References

  1. Tang, M. et al. Pulmonary hypertension, mortality, and cardiovascular disease in CKD and ESRD patients: a systematic review and meta-analysis. Am. J. Kidney Dis. 72, 75–83 (2018).

    Article  PubMed  Google Scholar 

  2. Bolignano, D., Pisano, A., Coppolino, G., Tripepi, G. L. & D’Arrigo, G. Pulmonary hypertension predicts adverse outcomes in renal patients: a systematic review and meta-analysis. Ther. Apher. Dial. 23, 369–384 (2019).

    Article  PubMed  Google Scholar 

  3. Edmonston, D. L. et al. Pulmonary hypertension subtypes and mortality in CKD. Am. J. Kidney Dis. 75, 713–724 (2020).

    Article  PubMed  Google Scholar 

  4. Pabst, S. et al. Pulmonary hypertension in patients with chronic kidney disease on dialysis and without dialysis: results of the PEPPER-study. PLoS One 7, e35310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Navaneethan, S. D. et al. Presence and outcomes of kidney disease in patients with pulmonary hypertension. Clin. J. Am. Soc. Nephrol. 9, 855–863 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. O’Leary, J. M. et al. Pulmonary hypertension in patients with chronic kidney disease: invasive hemodynamic etiology and outcomes. Pulm. Circ. 7, 674–683 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wolfe, J. D. et al. Pulmonary vascular resistance determines mortality in end-stage renal disease patients with pulmonary hypertension. Clin. Transplant. 32, e13270 (2018).

    Article  PubMed  Google Scholar 

  8. Brinza, C. et al. Pulmonary arterial hypertension and adverse outcomes after kidney transplantation: a systematic review and meta-analysis. J. Clin. Med. 11, 1944 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chakinala, M. M. et al. Impact of declining renal function on outcomes in pulmonary arterial hypertension: a REVEAL registry analysis. J. Heart Lung Transplant. 37, 696–705 (2018).

    Article  PubMed  Google Scholar 

  10. Shah, S. J. et al. Association of serum creatinine with abnormal hemodynamics and mortality in pulmonary arterial hypertension. Circulation 117, 2475–2483 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Nickel, N. P. et al. Low-grade albuminuria in pulmonary arterial hypertension. Pulm. Circ. 9, 2045894018824564 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Benza, R. L. et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122, 164–172 (2010).

    Article  PubMed  Google Scholar 

  13. Leopold, J. A. et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 13, 189–197 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohn, J. N. & Tognoni, G. Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Velazquez, E. J. et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N. Engl. J. Med. 380, 539–548 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Maron, B. A. et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation 126, 963–974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maron, B. A. & Leopold, J. A. The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulm. Circ. 4, 200–210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maron, B. A. et al. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur. J. Heart Fail. 15, 277–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, J. et al. Treatment effects of pulmonary artery denervation for pulmonary arterial hypertension stratified by REVEAL risk score: results from PADN-CFDA trial. J. Heart Lung Transplant. 42, 1140-1151 (2023).

    Article  PubMed  Google Scholar 

  20. Calvier, L. et al. Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart 102, 390–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Humbert, M. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 61, 2200879 (2023).

    Article  PubMed  Google Scholar 

  22. Leber, L., Beaudet, A. & Muller, A. Epidemiology of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: identification of the most accurate estimates from a systematic literature review. Pulm. Circ. 11, 2045894020977300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maron, B. A. & Galie, N. Diagnosis, treatment, and clinical management of pulmonary arterial hypertension in the contemporary era: a review. JAMA Cardiol. 1, 1056–1065 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stevens, P. E., Levin, A. & Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2013).

    Article  PubMed  Google Scholar 

  25. Ronco, C., Bellasi, A. & Di Lullo, L. Cardiorenal syndrome: an overview. Adv. Chronic Kidney Dis. 25, 382–390 (2018).

    Article  PubMed  Google Scholar 

  26. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article  PubMed  Google Scholar 

  27. Hoeper, M. M. et al. A global view of pulmonary hypertension. Lancet Respir. Med. 4, 306–322 (2016).

    Article  PubMed  Google Scholar 

  28. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  29. Wang, L. et al. Prognostic effect of pulmonary hypertension in patients with chronic kidney disease: univariate and multivariate analyses of factors associated with survival. Front. Med. 9, 972937 (2022).

    Article  Google Scholar 

  30. Yang, Q. M. & Bao, X. R. Pulmonary hypertension in patients with stage 1–3 chronic kidney disease. Genet. Mol. Res. 13, 5695–5703 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Verbrugge, F. H., Guazzi, M., Testani, J. M. & Borlaug, B. A. Altered hemodynamics and end-organ damage in heart failure: impact on the lung and kidney. Circulation 142, 998–1012 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bitker, L. et al. Presence of kidney disease as an outcome predictor in patients with pulmonary arterial hypertension. Am. J. Nephrol. 47, 134–143 (2018).

    Article  PubMed  Google Scholar 

  33. Nickel, N. P. et al. Kidney dysfunction in patients with pulmonary arterial hypertension. Pulm. Circ. 7, 38–54 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rossi, G. P., Cavallin, M., Nussdorfer, G. G. & Pessina, A. C. The endothelin-aldosterone axis and cardiovascular diseases. J. Cardiovasc. Pharmacol. 38, 49 (2001).

    Article  Google Scholar 

  35. Kopitko, C., Gondos, T., Fulop, T. & Medve, L. Reinterpreting renal hemodynamics: the importance of venous congestion and effective organ perfusion in acute kidney injury. Am. J. Med. Sci. 359, 193–205 (2020).

    Article  PubMed  Google Scholar 

  36. Mullens, W., Verbrugge, F. H., Nijst, P. & Tang, W. H. W. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur. Heart J. 38, 1872–1882 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Selektor, Y. & Weber, K. T. The salt-avid state of congestive heart failure revisited. Am. J. Med. Sci. 335, 209–218 (2008).

    Article  PubMed  Google Scholar 

  38. Testani, J. M. & Damman, K. Venous congestion and renal function in heart failure … it’s complicated. Eur. J. Heart Fail. 15, 599–601 (2013).

    Article  PubMed  Google Scholar 

  39. Dilley, J. R., Corradi, A. & Arendshorst, W. J. Glomerular ultrafiltration dynamics during increased renal venous pressure. Am. J. Physiol. 244, 650 (1983).

    Google Scholar 

  40. Braam, B., Cupples, W. A., Joles, J. A. & Gaillard, C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail. Rev. 17, 161–175 (2012).

    Article  PubMed  Google Scholar 

  41. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Uthoff, H. et al. Central venous pressure and impaired renal function in patients with acute heart failure. Eur. J. Heart Fail. 13, 432–439 (2011).

    Article  PubMed  Google Scholar 

  43. Gambardella, I. et al. Congestive kidney failure in cardiac surgery: the relationship between central venous pressure and acute kidney injury. Interact. Cardiovasc. Thorac. Surg. 23, 800–805 (2016).

    Article  PubMed  Google Scholar 

  44. Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 53, 582–588 (2009).

    Article  PubMed  Google Scholar 

  45. Marik, P. E., Baram, M. & Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134, 172–178 (2008).

    Article  PubMed  Google Scholar 

  46. Castrop, H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol. 189, 3–14 (2007).

    Article  CAS  Google Scholar 

  47. Bell, T. D. & Welch, W. J. Regulation of renal arteriolar tone by adenosine: novel role for type 2 receptors. Kidney Int. 75, 769–771 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Agarwal, R. Prevalence, determinants and prognosis of pulmonary hypertension among hemodialysis patients. Nephrol. Dial. Transplant. 27, 3908–3914 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Abedini, M., Sadeghi, M., Naini, A. E., Atapour, A. & Golshahi, J. Pulmonary hypertension among patients on dialysis and kidney transplant recipients. Ren. Fail. 35, 560–565 (2013).

    Article  PubMed  Google Scholar 

  50. Ramasubbu, K., Deswal, A., Herdejurgen, C., Aguilar, D. & Frost, A. E. A prospective echocardiographic evaluation of pulmonary hypertension in chronic hemodialysis patients in the United States: prevalence and clinical significance. Int. J. Gen. Med. 3, 279–286 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Issa, N. et al. Pulmonary hypertension is associated with reduced patient survival after kidney transplantation. Transplantation 86, 1384–1388 (2008).

    Article  PubMed  Google Scholar 

  52. de Albuquerque Suassuna, P. G., Sanders-Pinheiro, H. & de Paula, R. B. Uremic cardiomyopathy: a new piece in the chronic kidney disease-mineral and bone disorder puzzle. Front. Med. 5, 206 (2018).

    Article  Google Scholar 

  53. Ma, Z. et al. β-Arrestin-mediated angiotensin II type 1 receptor activation promotes pulmonary vascular remodeling in pulmonary hypertension. JACC Basic. Transl. Sci. 6, 854–869 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. de Man, F. S. et al. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186, 780–789 (2012).

    Article  PubMed  Google Scholar 

  55. Houston, B. A., Brittain, E. L. & Tedford, R. J. Right ventricular failure. N. Engl. J. Med. 388, 1111–1125 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Wu, D. & Birukov, K. Endothelial cell mechano-metabolomic coupling to disease states in the lung microvasculature. Front. Bioeng. Biotechnol. 7, 172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Silva, P. L. et al. Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Crit. Care 14, R114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tonelli, A. R., Plana, J. C., Heresi, G. A. & Dweik, R. A. Prevalence and prognostic value of left ventricular diastolic dysfunction in idiopathic and heritable pulmonary arterial hypertension. Chest 141, 1457–1465 (2012).

    Article  PubMed  Google Scholar 

  59. Stern, A. B. & Klemmer, P. J. High-output heart failure secondary to arteriovenous fistula. Hemodial. Int. 15, 104–107 (2011).

    Article  PubMed  Google Scholar 

  60. Reddy, Y. N. V., Melenovsky, V., Redfield, M. M., Nishimura, R. A. & Borlaug, B. A. High-output heart failure: a 15-year experience. J. Am. Coll. Cardiol. 68, 473–482 (2016).

    Article  PubMed  Google Scholar 

  61. Holman, E. Abnormal arteriovenous communications. Great variability of effects with particular reference to delayed development of cardiac failure. Circulation 32, 1001–1009 (1965).

    Article  CAS  PubMed  Google Scholar 

  62. Warren, J. V., Elkin, D. C. & Nickerson, J. L. The blood volume in patients with arteriovenous fistulas. J. Clin. Invest. 30, 220–226 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rao, N. N., Dundon, B. K., Worthley, M. I. & Faull, R. J. The impact of arteriovenous fistulae for hemodialysis on the cardiovascular system. Semin. Dial. 29, 214–221 (2016).

    Article  PubMed  Google Scholar 

  64. MacRae, J. M., Pandeya, S., Humen, D. P., Krivitski, N. & Lindsay, R. M. Arteriovenous fistula-associated high-output cardiac failure: a review of mechanisms. Am. J. Kidney Dis. 43, 17 (2004).

    Article  Google Scholar 

  65. Ori, Y. et al. The contribution of an arteriovenous access for hemodialysis to left ventricular hypertrophy. Am. J. Kidney Dis. 40, 745–752 (2002).

    Article  PubMed  Google Scholar 

  66. Malik, J. et al. Hemodialysis vascular access affects heart function and outcomes: tips for choosing the right access for the individual patient. J. Vasc. Access. 22, 32–41 (2021).

    Article  PubMed  Google Scholar 

  67. Iwashima, Y. et al. Effects of the creation of arteriovenous fistula for hemodialysis on cardiac function and natriuretic peptide levels in CRF. Am. J. Kidney Dis. 40, 974–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Reddy, Y. N. V. et al. Long-term cardiovascular changes following creation of arteriovenous fistula in patients with end stage renal disease. Eur. Heart J. 38, 1913–1923 (2017).

    Article  PubMed  Google Scholar 

  69. Unger, P., Wissing, K. M., de Pauw, L., Neubauer, J. & van de Borne, P. Reduction of left ventricular diameter and mass after surgical arteriovenous fistula closure in renal transplant recipients. Transplantation 74, 73–79 (2002).

    Article  PubMed  Google Scholar 

  70. van Duijnhoven, E. C., Cheriex, E. C., Tordoir, J. H., Kooman, J. P. & van Hooff, J. P. Effect of closure of the arteriovenous fistula on left ventricular dimensions in renal transplant patients. Nephrol. Dial. Transplant. 16, 368–372 (2001).

    Article  PubMed  Google Scholar 

  71. Gumus, F. & Saricaoglu, M. C. Assessment of right heart functions in the patients with arteriovenous fistula for hemodialysis access: right ventricular free wall strain and tricuspid regurgitation jet velocity as the predictors of right heart failure. Vascular 28, 96–103 (2020).

    Article  PubMed  Google Scholar 

  72. Manzur-Pineda, K. et al. Echocardiographic changes after arteriovenous fistula creation in hemodialysis patients. Clin. Nephrol. 98, 229–238 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hetz, P. et al. Prophylactic ligature of AV fistula prevents high output heart failure after kidney transplantation. Am. J. Nephrol. 51, 511–519 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Stoumpos, S. & Mark, P. B. Should we ligate arteriovenous fistulas in asymptomatic patients after kidney transplantation? Circulation 139, 2819–2821 (2019).

    Article  PubMed  Google Scholar 

  75. Rodriguez-Espinosa, D. et al. Multimodal strategies for the diagnosis and management of refractory congestion. an integrated cardiorenal approach. Front. Physiol. 13, 913580 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Southgate, L., Machado, R. D., Graf, S. & Morrell, N. W. Molecular genetic framework underlying pulmonary arterial hypertension. Nat. Rev. Cardiol. 17, 85–95 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Hassoun, P. M. Pulmonary arterial hypertension. N. Engl. J. Med. 385, 2361–2376 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Kaiser, R., Seiler, S., Held, M., Bals, R. & Wilkens, H. Prognostic impact of renal function in precapillary pulmonary hypertension. J. Intern. Med. 275, 116–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. D’Apolito, M. et al. Urea-induced ROS cause endothelial dysfunction in chronic renal failure. Atherosclerosis 239, 393–400 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Giaid, A. et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 328, 1732–1739 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Chester, A. H. & Yacoub, M. H. The role of endothelin-1 in pulmonary arterial hypertension. Glob. Cardiol. Sci. Pract. 2014, 62–78 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Shao, D., Park, J. E. S. & Wort, S. J. The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol. Res. 63, 504–511 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Din, S., Sarathchandra, P., Yacoub, M. H. & Chester, A. H. Interaction between bone morphogenetic proteins and endothelin-1 in human pulmonary artery smooth muscle. Vasc. Pharmacol. 51, 344–349 (2009).

    Article  CAS  Google Scholar 

  84. Ern Yeoh, S. et al. Endothelin-1, outcomes in patients with heart failure and reduced ejection fraction, and effects of dapagliflozin: findings from DAPA-HF. Circulation 147, 1670–1683 (2023).

    Article  Google Scholar 

  85. Rossi, G. P., Belloni, A. S., Nussdorfer, G. G. & Pessina, A. C. Endothelin-1 and the adrenal gland. J. Cardiovasc. Pharmacol. 35, 17 (2000).

    Article  Google Scholar 

  86. Miller, W. L., Redfield, M. M. & Burnett, J. C. J. Integrated cardiac, renal, and endocrine actions of endothelin. J. Clin. Invest. 83, 317–320 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cao, L. Q. & Banks, R. O. Cardiorenal actions of endothelin, Part II: effects of cyclooxygenase inhibitors. Life Sci. 46, 585–590 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Boehm, M. et al. Eplerenone attenuates pathological pulmonary vascular rather than right ventricular remodeling in pulmonary arterial hypertension. BMC Pulm. Med. 18, 41–4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lariviere, R. et al. Increased immunoreactive endothelin-1 levels in blood vessels and glomeruli of rats with reduced renal mass. Kidney Blood Press. Res. 20, 372–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Zager, R. A., Johnson, A. C. M., Andress, D. & Becker, K. Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int. 84, 703–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Raina, R. et al. Relationship of urinary endothelin-1 with estimated glomerular filtration rate in autosomal dominant polycystic kidney disease: a pilot cross-sectional analysis. BMC Nephrol. 17, 22–28 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Long, L. et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat. Med. 21, 777–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yeh, C. H., Chang, C. K., Cheng, M. F., Lin, H. J. & Cheng, J. T. Decrease of bone morphogenetic protein-7 (BMP-7) and its type II receptor (BMP-RII) in kidney of type 1-like diabetic rats. Horm. Metab. Res. 41, 605–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Jiang, Q. et al. Dysregulation of BMP9/BMPR2/SMAD signalling pathway contributes to pulmonary fibrosis and pulmonary hypertension induced by bleomycin in rats. Br. J. Pharmacol. 178, 203–216 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Star, G. P., Giovinazzo, M. & Langleben, D. Bone morphogenic protein-9 stimulates endothelin-1 release from human pulmonary microvascular endothelial cells: a potential mechanism for elevated ET-1 levels in pulmonary arterial hypertension. Microvasc. Res. 80, 349–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Park, J. E. S. et al. BMP-9 induced endothelial cell tubule formation and inhibition of migration involves Smad1 driven endothelin-1 production. PLoS One 7, e30075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tu, L. et al. Selective BMP-9 inhibition partially protects against experimental pulmonary hypertension. Circ. Res. 124, 846–855 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Zhu, D. et al. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway. J. Cell. Mol. Med. 19, 165–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Zeisberg, M. et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, S., Lapage, J. & Hirschberg, R. Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J. Am. Soc. Nephrol. 12, 2392–2399 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Kong, L. et al. Sulforaphane ameliorates diabetes-induced renal fibrosis through epigenetic up-regulation of BMP-7. Diabetes Metab. J. 45, 909–920 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zeisberg, M. et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol. 285, 1060 (2003).

    Article  Google Scholar 

  103. Mitu, G. & Hirschberg, R. Bone morphogenetic protein-7 (BMP7) in chronic kidney disease. Front. Biosci. 13, 4726–4739 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Morrissey, J. et al. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J. Am. Soc. Nephrol. 13, 14 (2002).

    Article  Google Scholar 

  105. Schrankl, J. et al. Localization of angiotensin II type 1 receptor gene expression in rodent and human kidneys. Am. J. Physiol. Renal Physiol. 320, F644–F653 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Rianto, F., Hoang, T., Revoori, R. & Sparks, M. A. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol. Cell. Endocrinol. 529, 111259 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Betjes, M. G. H., Sablik, K. A., Litjens, N. H. R., Otten, H. G. & de Weerd, A. E. ARHGDIB and AT1R autoantibodies are differentially related to the development and presence of chronic antibody-mediated rejection and fibrosis in kidney allografts. Hum. Immunol. 82, 89–96 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Xu, Z. et al. Gentiopicroside ameliorates diabetic renal tubulointerstitial fibrosis via inhibiting the AT1R/CK2/NF-κB pathway. Front. Pharmacol. 13, 848915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Block, G. A. et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 15, 2208–2218 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Tentori, F. et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 52, 519–530 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Kestenbaum, B. et al. Survival following parathyroidectomy among United States dialysis patients. Kidney Int. 66, 2010–2016 (2004).

    Article  PubMed  Google Scholar 

  112. Komaba, H. et al. Parathyroidectomy and survival among Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 88, 350–359 (2015).

    Article  PubMed  Google Scholar 

  113. Ivarsson, K. M. et al. The effect of parathyroidectomy on patient survival in secondary hyperparathyroidism. Nephrol. Dial. Transplant. 30, 2027–2033 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ulrich, S. et al. Bone mineral density and secondary hyperparathyroidism in pulmonary hypertension. Open. Respir. Med. J. 3, 53–60 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Genctoy, G., Arikan, S. & Gedik, O. Secondary hyperparathyroidism is associated with pulmonary hypertension in older patients with chronic kidney disease and proteinuria. Int. Urol. Nephrol. 47, 353–358 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Amin, M., Fawzy, A., Hamid, M. A. & Elhendy, A. Pulmonary hypertension in patients with chronic renal failure: role of parathyroid hormone and pulmonary artery calcifications. Chest 124, 2093–2097 (2003).

    Article  PubMed  Google Scholar 

  117. Acarturk, G. et al. The relationship between arteriovenous fistula blood flow rate and pulmonary artery pressure in hemodialysis patients. Int. Urol. Nephrol. 40, 509–513 (2008).

    Article  PubMed  Google Scholar 

  118. Akmal, M., Barndt, R. R., Ansari, A. N., Mohler, J. G. & Massry, S. G. Excess PTH in CRF induces pulmonary calcification, pulmonary hypertension and right ventricular hypertrophy. Kidney Int. 47, 158–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Komaba, H. & Fukagawa, M. The role of FGF23 in CKD — with or without Klotho. Nat. Rev. Nephrol. 8, 484–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Miri, M., Ahmadi, M. & Hatami, M. Correlation between fibroblast growth factor-23 and pulmonary arterial hypertension in hemodialysis patients. Iran. J. Kidney Dis. 15, 300–305 (2021).

    PubMed  Google Scholar 

  121. Widmann, L. et al. Fibroblast growth factor 23 as a biomarker of right ventricular dysfunction in pulmonary hypertension. Clin. Res. Cardiol. 112, 1382–1393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu, M. C. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 22, 124–136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mitani, H. et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension 39, 838–843 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Varshney, R., Ali, Q., Wu, C. & Sun, Z. Monocrotaline-induced pulmonary hypertension involves downregulation of antiaging protein Klotho and eNOS activity. Hypertension 68, 1255–1263 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Batlahally, S. et al. Soluble Klotho, a biomarker and therapeutic strategy to reduce bronchopulmonary dysplasia and pulmonary hypertension in preterm infants. Sci. Rep. 10, 12368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chadban, S. J. et al. KDIGO clinical practice guideline on the evaluation and management of candidates for kidney transplantation. Transplantation 104, S11–S103 (2020).

    Article  PubMed  Google Scholar 

  128. Abramowicz, D. et al. European renal best practice guideline on kidney donor and recipient evaluation and perioperative care. Nephrol. Dial. Transplant. 30, 1790–1797 (2015).

    Article  PubMed  Google Scholar 

  129. Knoll, G. et al. Canadian Society of Transplantation: consensus guidelines on eligibility for kidney transplantation. CMAJ 173, 1 (2005).

    Article  Google Scholar 

  130. Frost, A. E. et al. The echocardiographic course of pretransplant pulmonary hypertension following kidney transplantation and associated outcomes. Pulm. Circ. 12, e12030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hoeper, M. M. et al. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N. Engl. J. Med. 388, 1478–1490 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Stickel, S., Gin-Sing, W., Wagenaar, M. & Gibbs, J. S. R. The practical management of fluid retention in adults with right heart failure due to pulmonary arterial hypertension. Eur. Heart J. Suppl. 21, K46–K53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Webb, D. J., Vachiery, J., Hwang, L. & Maurey, J. O. Sildenafil improves renal function in patients with pulmonary arterial hypertension. Br. J. Clin. Pharmacol. 80, 235–241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393, 1937–1947 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Krowka, M. J. et al. International Liver Transplant Society practice guidelines: diagnosis and management of hepatopulmonary syndrome and portopulmonary hypertension. Transplantation 100, 1440–1452 (2016).

    Article  PubMed  Google Scholar 

  136. Nevola, R. et al. Cardiorenal impact of SGLT-2 inhibitors: a conceptual revolution in the management of type 2 diabetes, heart failure and chronic kidney disease. Rev. Cardiovasc. Med. 23, 106 (2022).

    Article  PubMed  Google Scholar 

  137. Nassif, M. E. et al. Empagliflozin effects on pulmonary artery pressure in patients with heart failure: results from the EMBRACE-HF trial. Circulation 143, 1673–1686 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Pellicori, P. et al. Ultrasound imaging of congestion in heart failure: examinations beyond the heart. Eur. J. Heart Fail. 23, 703–712 (2021).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.Z., E.D.S. and B.A.M. researched the data for the article. K.Z. and B.A.M. wrote the manuscript. All authors made substantial contributions to discussions of the content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Bradley A. Maron.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Daniel Edmonston, Faeq Husain-Syed, who co-reviewed with Khodr Tello, and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Backward congestion

In right-heart failure, the right ventricle is unable to pump sufficient blood into the pulmonary arteries. Thus, blood pools in the systemic veins, leading to increased volume and pressure.

Cardiac index

A haemodynamic parameter that relays the blood flow (measured in litres per minute) from the left ventricle to the body surface area and provides a measure of heart performance in relation to the body size of the individual.

E/E′ ratio

An echocardiographic measure for the diastolic function of the left ventricle.

Plexogenic vasculopathy

Vascular changes of the small pulmonary arteries in patients with pulmonary arterial hypertension, predominated by arterial medial hypertrophy, intimal proliferation and development of plexiform lesions

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeder, K., Siew, E.D., Kovacs, G. et al. Pulmonary hypertension and chronic kidney disease: prevalence, pathophysiology and outcomes. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00857-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00857-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing