Abstract
Mammalian kidneys are specialized to maintain fluid and electrolyte homeostasis. The epithelial transport processes along the renal tubule that match output to input have long been the subject of experimental and theoretical study. However, emerging data have identified a new dimension of investigation: sex. Like most tissues, the structure and function of the kidney is regulated by sex hormones and chromosomes. Available data demonstrate sex differences in the abundance of kidney solute and electrolyte transporters, establishing that renal tubular organization and operation are distinctly different in females and males. Newer studies have provided insights into the physiological consequences of these sex differences. Computational simulations predict that sex differences in transporter abundance are likely driven to optimize reproduction, enabling adaptive responses to the nutritional requirements of serial pregnancies and lactation — normal life-cycle changes that challenge the ability of renal transporters to maintain fluid and electrolyte homeostasis. Later in life, females may also undergo menopause, which is associated with changes in disease risk. Although numerous knowledge gaps remain, ongoing studies will provide further insights into the sex-specific mechanisms of sodium, potassium, acid–base and volume physiology throughout the life cycle, which may lead to therapeutic opportunities.
Key points
-
Renal tubule organization differs in female compared with male rodents, notably in the abundance and expression of transporters in individual segments; generally, androgens regulate transporter abundance along the proximal tubule and oestrogens regulate transporter abundance along the distal tubule.
-
Compared with males, female rats exhibit lower fractional reabsorption of sodium along the proximal nephron (associated with a lower activity of NHE3 and lower abundance of claudin2 and AQP1) and higher fractional reabsorption of sodium along distal segments (associated with a higher abundance of NKCC2, NCC, ENaC and phosphorylated AQP2).
-
Female rats excrete a saline load more rapidly than males and achieve sodium homeostasis with a high salt diet more rapidly than males; moreover, female, but not male, diabetic mice maintain normotension when administered a high-salt diet.
-
Angiotensin infusion provokes similar changes in blood pressure, ENaC activation and K+ loss in both sexes, along with a rise in the expression of distal renal tubule transporters and a lowering of proximal transporters in females.
-
Male and female kidneys differ in the mechanisms used to maintain acid–base homeostasis; for example, they demonstrate differences in baseline ammoniagenesis and their acid–base transporters, and prioritize different adaptations to acid load; key differences are androgen receptor dependent.
-
Computer simulations of pregnant rat kidney function indicate that known sex differences in renal transporters can serve to prepare females to meet the fluid and electrolyte demands of the offspring.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Murphy, D. et al. Trends in prevalence of chronic kidney disease in the United States. Ann. Intern. Med. 165, 473–481 (2016).
Ricardo, A. C. et al. Sex-related disparities in CKD progression. J. Am. Soc. Nephrol. 30, 137–146 (2019).
Swartling, O. et al. Sex differences in the recognition, monitoring, and management of CKD in health care: an observational cohort study. J. Am. Soc. Nephrol. 33, 1903–1914 (2022).
Neugarten, J., Acharya, A. & Silbiger, S. R. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J. Am. Soc. Nephrol. 11, 319–329 (2000).
Carrero, J. J. Gender differences in chronic kidney disease: underpinnings and therapeutic implications. Kidney Blood Press. Res. 33, 383–392 (2010).
Carrero, J. J., Hecking, M., Chesnaye, N. C. & Jager, K. J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 14, 151–164 (2018).
Denic, A. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).
Silbiger, S. R. & Neugarten, J. The impact of gender on the progression of chronic renal disease. Am. J. Kidney Dis. 25, 515–533 (1995).
Seliger, S. L., Davis, C. & Stehman-Breen, C. Gender and the progression of renal disease. Curr. Opin. Nephrol. Hypertens. 10, 219–225 (2001).
Cobo, G. et al. Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis. Clin. Sci. 130, 1147–1163 (2016).
Mills, K. T., Stefanescu, A. & He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 16, 223–237 (2020).
Mehta, L. S. et al. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation 133, 916–947 (2016).
Benjamin, E. J. et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135, e146–e603 (2017).
Colafella, K. M. M. & Denton, K. M. Sex-specific differences in hypertension and associated cardiovascular disease. Nat. Rev. Nephrol. 14, 185–201 (2018).
Ivy, J. R. & Bailey, M. A. Pressure natriuresis and the renal control of arterial blood pressure. J. Physiol. 592, 3955–3967 (2014).
Hall, J. E. Renal dysfunction, rather than nonrenal vascular dysfunction, mediates salt-induced hypertension. Circulation 133, 894–906 (2016).
Veiras, L. C. et al. Sexual dimorphic pattern of renal transporters and electrolyte homeostasis. J. Am. Soc. Nephrol. 28, 3504–3517 (2017).
Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 294, 63–69 (2015).
Bjornstad, P. & Cherney, D. Z. Renal hyperfiltration in adolescents with type 2 diabetes: physiology, sex differences, and implications for diabetic kidney disease. Curr. Diabetes Rep. 18, 22 (2018).
Hamman, R. F. et al. The SEARCH for diabetes in youth study: rationale, findings, and future directions. Diabetes Care 37, 3336–3344 (2014).
Lovshin, J. A. et al. Hyperfiltration, urinary albumin excretion, and ambulatory blood pressure in adolescents with Type 1 diabetes mellitus. Am. J. Physiol. Renal Physiol. 314, F667–F674 (2018).
Shepard, B. D. Sex differences in diabetes and kidney disease: mechanisms and consequences. Am. J. Physiol. Renal Physiol. 317, F456–F462 (2019).
Harris, A. N. & Weiner, I. D. Sex differences in renal ammonia metabolism. Am. J. Physiol. Renal Physiol. 320, F55–F60 (2021).
Ransick, A. et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev. Cell 51, 399–413 e397 (2019).
Veiras, L. C. et al. Electrolyte and transporter responses to angiotensin II induced hypertension in female and male rats and mice. Acta Physiol. 229, e13448 (2020).
Veiras, L. C. et al. Renal inflammation induces salt sensitivity in male db/db mice through dysregulation of ENaC. J. Am. Soc. Nephrol. 32, 1131–1149 (2021).
Ljubojevic, M. et al. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am. J. Physiol. Renal Physiol. 287, F124–F138 (2004).
Sabolic, I. et al. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am. J. Physiol. Cell Physiol. 302, C1174–C1188 (2012).
Breljak, D., Brzica, H., Sweet, D. H., Anzai, N. & Sabolic, I. Sex-dependent expression of Oat3 (Slc22a8) and Oat1 (Slc22a6) proteins in murine kidneys. Am. J. Physiol. Renal Physiol. 304, F1114–F1126 (2013).
Huang, L. et al. Single-cell profiling reveals sex diversity in human renal proximal tubules. Gene 752, 144790 (2020).
Torres-Pinzon, D. L., Ralph, D. L., Veiras, L. C. & McDonough, A. A. Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles. Am. J. Physiol. Cell Physiol. 321, C897–C909 (2021).
Tiwari, S., Li, L., Riazi, S., Halagappa, V. K. & Ecelbarger, C. M. Sex differences in adaptive downregulation of pre-macula densa sodium transporters with ANG II infusion in mice. Am. J. Physiol. Renal Physiol. 298, F187–F195 (2010).
Li, J. et al. Gender difference in kidney electrolyte transport. I. Role of AT1a receptor in thiazide-sensitive Na+-Cl− cotransporter activity and expression in male and female mice. Am. J. Physiol. Renal Physiol. 313, F505–F513 (2017).
Li, J. et al. Sex difference in kidney electrolyte transport II: impact of K+ intake on thiazide-sensitive cation excretion in male and female mice. Am. J. Physiol. Renal Physiol. 317, F967–F977 (2019).
Xu, S. et al. Sex difference in kidney electrolyte transport III: impact of low K intake on thiazide-sensitive cation excretion in male and female mice. Pflugers Arch. 473, 1749–1760 (2021).
Chen, L., Chou, C. L. & Knepper, M. A. A comprehensive Map of mRNAs and their isoforms across all 14 renal tubule segments of mouse. J. Am. Soc. Nephrol. 32, 897–912 (2021).
Limbutara, K., Chou, C. L. & Knepper, M. A. Quantitative proteomics of all 14 renal tubule segments in rat. J. Am. Soc. Nephrol. 31, 1255–1266 (2020).
Sandberg, M. B., Maunsbach, A. B. & McDonough, A. A. Redistribution of distal tubule Na+-Cl− cotransporter (NCC) in response to a high-salt diet. Am. J. Physiol. Renal Physiol. 291, F503–F508 (2006).
Yang, L. E., Maunsbach, A. B., Leong, P. K. & McDonough, A. A. Differential traffic of proximal tubule Na+ transporters during hypertension or PTH: NHE3 to base of microvilli vs. NaPi2 to endosomes. Am. J. Physiol. Renal Physiol. 287, F896–F906 (2004).
Bacic, D. et al. The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int. 69, 495–503 (2006).
Richardson, C. & Alessi, D. R. The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J. Cell Sci. 121, 3293–3304 (2008).
Carattino, M. D. et al. Prostasin interacts with the epithelial Na+ channel and facilitates cleavage of the gamma-subunit by a second protease. Am. J. Physiol. Renal Physiol. 307, F1080–F1087 (2014).
Girardi, A. C., Degray, B. C., Nagy, T., Biemesderfer, D. & Aronson, P. S. Association of Na+-H+ exchanger isoform NHE3 and dipeptidyl peptidase IV in the renal proximal tubule. J. Biol. Chem. 276, 46671–46677 (2001).
Zaika, O., Tomilin, V., Mamenko, M., Bhalla, V. & Pochynyuk, O. New perspective of ClC-Kb/2 Cl− channel physiology in the distal renal tubule. Am. J. Physiol. Renal Physiol. 310, F923–F930 (2016).
McDonough, A. A., Geering, K. & Farley, R. A. The sodium pump needs its beta subunit. FASEB J. 4, 1598–1605 (1990).
Svenningsen, P., Hinrichs, G. R., Zachar, R., Ydegaard, R. & Jensen, B. L. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch. 469, 1415–1423 (2017).
Chambrey, R. & Picard, N. Role of tissue kallikrein in regulation of tubule function. Curr. Opin. Nephrol. Hypertens. 20, 523–528 (2011).
Arnold, A. P. Four core genotypes and XY* mouse models: update on impact on SABV research. Neurosci. Biobehav. Rev. 119, 1–8 (2020).
Lewis, S. et al. “SLC-omics” of the kidney: solute transporters along the nephron. Am. J. Physiol. Cell Physiol. 321, C507–C518 (2021).
Basit, A., Radi, Z., Vaidya, V. S., Karasu, M. & Prasad, B. Kidney cortical transporter expression across species using quantitative proteomics. Drug Metab. Dispos. 47, 802–808 (2019).
Lee, J. W., Chou, C. L. & Knepper, M. A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015).
Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).
Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA 116, 19619–19625 (2019).
Chen, L., Chou, C. L. & Knepper, M. A. Targeted single-cell RNA-seq identifies minority cell types of kidney distal nephron. J. Am. Soc. Nephrol. 32, 886–896 (2021).
Sung, C. C. et al. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus. Kidney Int. 96, 363–377 (2019).
Rinschen, M. M., Limbutara, K., Knepper, M. A., Payne, D. M. & Pisitkun, T. From molecules to mechanisms: functional proteomics and its application to renal tubule physiology. Physiol. Rev. 98, 2571–2606 (2018).
Chen, L., Chou, C. L., Yang, C. R. & Knepper, M. A. Multiomics analyses reveal sex differences in mouse renal proximal subsegments. J. Am. Soc. Nephrol. 34, 829–845 (2023).
Berlin, C. M. & Schimke, R. T. Influence of turnover rates on the responses of enzymes to cortisone. Mol. Pharmacol. 1, 149–156 (1965).
Lescale-Matys, L., Putnam, D. S. & McDonough, A. A. Na+-K+-ATPase α1- and β1-subunit degradation: evidence for multiple subunit specific rates. Am. J. Physiol. 264, C583–C590 (1993).
Ibrahim, H., Lee, Y. J. & Curthoys, N. P. Renal response to metabolic acidosis: role of mRNA stabilization. Kidney Int. 73, 11–18 (2008).
Xiong, L. et al. Direct androgen receptor control of sexually dimorphic gene expression in the mammalian kidney. Devel. Cell https://doi.org/10.1016/j.devcel.2023.08.010 (2023).
Hyndman, K. A. & Crossman, D. K. Kidney cell type-specific changes in the chromatin and transcriptome landscapes following epithelial Hdac1 and Hdac2 knockdown. Physiol. Genomics 54, 45–57 (2022).
Hyndman, K. A. et al. Fluid-electrolyte homeostasis requires histone deacetylase function. JCI Insight https://doi.org/10.1172/jci.insight.137792 (2020).
Wu, H., Lai, C. F., Chang-Panesso, M. & Humphreys, B. D. Proximal tubule translational profiling during kidney fibrosis reveals proinflammatory and long noncoding RNA expression patterns with sexual dimorphism. J. Am. Soc. Nephrol. 31, 23–38 (2020).
Herak-Kramberger, C. M. et al. Sex-dependent expression of water channel AQP1 along the rat nephron. Am. J. Physiol. Renal Physiol. 308, F809–F821 (2015).
McDonough, A. A., Veiras, L. C., Minas, J. N. & Ralph, D. L. Considerations when quantitating protein abundance by immunoblot. Am. J. Physiol. Cell Physiol. 308, C426–C433 (2015).
Balen, D. et al. Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am. J. Physiol. Cell Physiol. 295, C475–C489 (2008).
Ljubojevic, M. et al. Renal expression of organic anion transporter OAT2 in rats and mice is regulated by sex hormones. Am. J. Physiol. Renal Physiol. 292, F361–F372 (2007).
Groves, C. E., Suhre, W. B., Cherrington, N. J. & Wright, S. H. Sex differences in the mRNA, protein, and functional expression of organic anion transporter (Oat) 1, Oat3, and organic cation transporter (Oct) 2 in rabbit renal proximal tubules. J. Pharmacol. Exp. Ther. 316, 743–752 (2006).
Harris, A. N., Lee, H. W., Fang, L., Verlander, J. W. & Weiner, I. D. Differences in acidosis-stimulated renal ammonia metabolism in the male and female kidney. Am. J. Physiol. Renal Physiol. 317, F890–F905 (2019).
Li, Q., McDonough, A. A., Layton, H. E. & Layton, A. T. Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis. Am. J. Physiol. Renal Physiol. 315, F692–F700 (2018).
Nguyen, Q. H., Pervolarakis, N., Nee, K. & Kessenbrock, K. Experimental considerations for single-cell RNA sequencing approaches. Front. Cell Dev. Biol. 6, 108 (2018).
Hu, R., McDonough, A. A. & Layton, A. T. Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis. Am. J. Physiol. Renal Physiol. 317, F1462–F1474 (2019).
Harris, A. N. et al. Differences in renal ammonia metabolism in male and female kidney. Am. J. Physiol. Renal Physiol. 315, F211–F222 (2018).
Gupta, S. & Sen, U. More than just an enzyme: dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol. Res. 147, 104391 (2019).
Chen, L. et al. Reply to Edemir: Physiological regulation and single-cell RNA sequencing. Proc. Natl Acad. Sci. USA 115, E351–E352 (2018).
Stadt, M. M. & Layton, A. T. Sex and species differences in epithelial transport in rat and mouse kidneys: modeling and analysis. Front. Physiol. 13, 991705 (2022).
Kwekel, J. C., Desai, V. G., Moland, C. L., Vijay, V. & Fuscoe, J. C. Sex differences in kidney gene expression during the life cycle of F344 rats. Biol. Sex. Differ. 4, 14 (2013).
Harris, A. N., Castro, R. A., Lee, H. W., Verlander, J. W. & Weiner, I. D. Role of the renal androgen receptor in sex differences in ammonia metabolism. Am. J. Physiol. Renal Physiol. 321, F629–F644 (2021).
Soliman, R. H., Johnston, J. G., Gohar, E. Y., Taylor, C. M. & Pollock, D. M. Greater natriuretic response to ENaC inhibition in male versus female Sprague-Dawley rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R418–R427 (2020).
McDonough, A. A. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R851–R861 (2010).
Hu, R. & Layton, A. A computational model of kidney function in a patient with diabetes. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22115819 (2021).
Chen, Y., Sullivan, J. C., Edwards, A. & Layton, A. T. Sex-specific computational models of the spontaneously hypertensive rat kidneys: factors affecting nitric oxide bioavailability. Am. J. Physiol. Renal Physiol. 313, F174–F183 (2017).
Sabolic, I. et al. Gender differences in kidney function. Pflugers Arch. 455, 397–429 (2007).
Kocinsky, H. S., Dynia, D. W., Wang, T. & Aronson, P. S. NHE3 phosphorylation at serines 552 and 605 does not directly affect NHE3 activity. Am. J. Physiol. Renal Physiol. 293, F212–F218 (2007).
Brasen, J. C., Burford, J. L., McDonough, A. A., Holstein-Rathlou, N. H. & Peti-Peterdi, J. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule. Am. J. Physiol. Renal Physiol. 307, F1249–F1262 (2014).
Pei, L. et al. Paracellular epithelial sodium transport maximizes energy efficiency in the kidney. J. Clin. Invest. 126, 2509–2518 (2016).
Nigam, S. K. et al. Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin. J. Am. Soc. Nephrol. 10, 2039–2049 (2015).
Spencer, A. M., Sack, J. & Hong, S. K. Relationship between PAH transport and Na-K-ATPase activity in the rabbit kidney. Am. J. Physiol. 236, F126–F130 (1979).
Nigam, S. K. et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol. Rev. 95, 83–123 (2015).
Fan, J., Tatum, R., Hoggard, J. & Chen, Y. H. Claudin-7 modulates Cl− and Na+ homeostasis and WNK4 expression in renal collecting duct cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20153798 (2019).
Sassi, A. et al. Interaction between epithelial sodium channel gamma-subunit and claudin-8 modulates paracellular sodium permeability in renal collecting duct. J. Am. Soc. Nephrol. 31, 1009–1023 (2020).
Nachbaur, J., Clarke, M. R., Provost, J. P. & Dancla, J. L. Variations of sodium, potassium, and chloride plasma levels in the rat with age and sex. Lab. Anim. Sci. 27, 972–975 (1977).
Ellison, D. H. & Terker, A. S. Why your mother was right: how potassium intake reduces blood pressure. Trans. Am. Clin. Climatol. Assoc. 126, 46–55 (2015).
West, C. A., McDonough, A. A., Masilamani, S. M., Verlander, J. W. & Baylis, C. Renal NCC is unchanged in the midpregnant rat and decreased in the late pregnant rat despite avid renal Na+ retention. Am. J. Physiol. Renal Physiol. 309, F63–F70 (2015).
Knepper, M. A., Kwon, T. H. & Nielsen, S. Molecular physiology of water balance. N. Engl. J. Med. 372, 1349–1358 (2015).
Bairey Merz, C. N. et al. Sex and the kidneys: current understanding and research opportunities. Nat. Rev. Nephrol. 15, 776–783 (2019).
Tahaei, E., Coleman, R., Saritas, T., Ellison, D. H. & Welling, P. A. Distal convoluted tubule sexual dimorphism revealed by advanced 3D imaging. Am. J. Physiol. Renal Physiol. 319, F754–F764 (2020).
Yang, L. E., Sandberg, M. B., Can, A. D., Pihakaski-Maunsbach, K. & McDonough, A. A. Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status. Am. J. Physiol. Renal Physiol. 295, F1003–F1016 (2008).
Frindt, G. & Palmer, L. G. Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. Am. J. Physiol. Renal Physiol. 297, F1249–F1255 (2009).
Gohar, E. Y. et al. Acclimation to a high-salt diet is sex dependent. J. Am. Heart Assoc. 11, e020450 (2022).
Nguyen, M. T., Han, J., Ralph, D. L., Veiras, L. C. & McDonough, A. A. Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron. Physiol. Rep. https://doi.org/10.14814/phy2.12496 (2015).
Gonzalez-Villalobos, R. A. et al. The absence of intrarenal ACE protects against hypertension. J. Clin. Invest. 123, 2011–2023 (2013).
Nguyen, M. T., Lee, D. H., Delpire, E. & McDonough, A. A. Differential regulation of Na+ transporters along nephron during ANG II-dependent hypertension: distal stimulation counteracted by proximal inhibition. Am. J. Physiol. Renal Physiol. 305, F510–F519 (2013).
McDonough, A. A. & Nguyen, M. T. Maintaining balance under pressure: integrated regulation of renal transporters during hypertension. Hypertension 66, 450–455 (2015).
Gurley, S. B. et al. AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab. 13, 469–475 (2011).
Weiner, I. D. & Verlander, J. W. Ammonia transporters and their role in acid-base balance. Physiol. Rev. 97, 465–494 (2017).
Weiner, I. D. & Verlander, J. W. Renal ammonia metabolism and transport. Compr. Physiol. 3, 201–220 (2013).
Welbourne, T., Weber, M. & Bank, N. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. J. Clin. Invest. 51, 1852–1860 (1972).
Curthoys, N. P. & Moe, O. W. Proximal tubule function and response to acidosis. Clin. J. Am. Soc. Nephrol. 9, 1627–1638 (2014).
Conjard, A. et al. Inhibition of glutamine synthetase in the mouse kidney: a novel mechanism of adaptation to metabolic acidosis. J. Biol. Chem. 278, 38159–38166 (2003).
Verlander, J. W., Chu, D., Lee, H. W., Handlogten, M. E. & Weiner, I. D. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia. Am. J. Physiol. Renal Physiol. 305, F701–F713 (2013).
Lee, H. W. et al. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism. Am. J. Physiol. Renal Physiol. 310, F1229–F1242 (2016).
Weiner, I. D., Mitch, W. E. & Sands, J. M. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol. 10, 1444–1458 (2015).
Weiner, I. D. & Verlander, J. W. Emerging features of ammonia metabolism and transport in acid-base balance. Semin. Nephrol. 39, 394–405 (2019).
Moranne, O. et al. Timing of onset of CKD-related metabolic complications. J. Am. Soc. Nephrol. 20, 164–171 (2009).
Goraya, N., Simoni, J., Jo, C. H. & Wesson, D. E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 86, 1031–1038 (2014).
de Brito-Ashurst, I., Varagunam, M., Raftery, M. J. & Yaqoob, M. M. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J. Am. Soc. Nephrol. 20, 2075–2084 (2009).
Koenig, H., Goldstone, A., Blume, G. & Lu, C. Y. Testosterone-mediated sexual dimorphism of mitochondria and lysosomes in mouse kidney proximal tubules. Science 209, 1023–1026 (1980).
Quan, A. et al. Androgens augment proximal tubule transport. Am. J. Physiol. Renal Physiol. 287, F452–F459 (2004).
Loh, S. Y., Giribabu, N. & Salleh, N. Effects of gonadectomy and testosterone treatment on aquaporin expression in the kidney of normotensive and hypertensive rats. Exp. Biol. Med. 242, 1376–1386 (2017).
Hsu, Y. J. et al. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins. Kidney Int. 77, 601–608 (2010).
Harris, A. N., Lee, H. W., Verlander, J. W. & Weiner, I. D. Testosterone modulates renal ammonia metabolism. Am. J. Physiol. Renal Physiol. 318, F922–F935 (2020).
Zhang, M. Z. et al. The role of the EGF receptor in sex differences in kidney injury. J. Am. Soc. Nephrol. 30, 1659–1673 (2019).
Robert, R. et al. Gender difference and sex hormone production in rodent renal ischemia reperfusion injury and repair. J. Inflamm. 8, 14 (2011).
Metcalfe, P. D. & Meldrum, K. K. Sex differences and the role of sex steroids in renal injury. J. Urol. 176, 15–21 (2006).
Rojas-Vega, L. et al. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation. Am. J. Physiol. Renal Physiol. 308, F799–F808 (2015).
Musselman, T. M., Zhang, Z. & Masilamani, S. M. Differential regulation of the bumetanide-sensitive cotransporter (NKCC2) by ovarian hormones. Steroids 75, 760–765 (2010).
Gohar, E. Y. et al. Evidence for G-protein-coupled estrogen receptor as a pronatriuretic factor. J. Am. Heart Assoc. 9, e015110 (2020).
Cheng, L. et al. Rapid aldosterone-mediated signaling in the DCT increases activity of the thiazide-sensitive NaCl cotransporter. J. Am. Soc. Nephrol. 30, 1454–1470 (2019).
Goldman, J. M., Murr, A. S. & Cooper, R. L. The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res. B Dev. Reprod. Toxicol. 80, 84–97 (2007).
Dayton, A. et al. Breaking the cycle: estrous variation does not require increased sample size in the study of female rats. Hypertension 68, 1139–1144 (2016).
Bittel, D. C. et al. Comparison of X-chromosome inactivation patterns in multiple tissues from human females. J. Med. Genet. 45, 309–313 (2008).
Orstavik, K. H. X chromosome inactivation in clinical practice. Hum. Genet. 126, 363–373 (2009).
Layton, A. T. A new microscope for the kidney: mathematics. Am. J. Physiol. Renal Physiol. 312, F671–F672 (2017).
Layton, A. T., Laghmani, K., Vallon, V. & Edwards, A. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors. Am. J. Physiol. Renal Physiol. 311, F1217–F1229 (2016).
Layton, A. T. & Vallon, V. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism. Am. J. Physiol. Renal Physiol. 314, F969–F984 (2018).
Weinstein, A. M. A mathematical model of the rat kidney: K+-induced natriuresis. Am. J. Physiol. Renal Physiol. 312, F925–F950 (2017).
Hu, R., McDonough, A. A. & Layton, A. T. Sex differences in solute transport along the nephrons: effects of Na+ transport inhibition. Am. J. Physiol. Renal Physiol. 319, F487–F505 (2020).
Hu, R., McDonough, A. A. & Layton, A. T. Sex differences in solute and water handling in the human kidney: modeling and functional implications. iScience 24, 102667 (2021).
Chung, E. & Leinwand, L. A. Pregnancy as a cardiac stress model. Cardiovasc. Res. 101, 561–570 (2014).
Dunlop, W. Serial changes in renal haemodynamics during normal human pregnancy. Br. J. Obstet. Gynaecol. 88, 1–9 (1981).
Stadt, M. M. & Layton, A. T. Adaptive changes in single-nephron GFR, tubular morphology, and transport in a pregnant rat nephron: modeling and analysis. Am. J. Physiol. Renal Physiol. 322, F121–F137 (2022).
Garland, H. O. & Green, R. Micropuncture study of changes in glomerular filtration and ion and water handling by the rat kidney during pregnancy. J. Physiol. 329, 389–409 (1982).
Lindheimer, M. D. & Katz, A. I. Kidney function in the pregnant rat. J. Lab. Clin. Med. 78, 633–641 (1971).
de Souza, A. M. A. & West, C. A. Adaptive remodeling of renal Na+ and K+ transport during pregnancy. Curr. Opin. Nephrol. Hypertens. 27, 379–383 (2018).
West, C. A. et al. Renal and colonic potassium transporters in the pregnant rat. Am. J. Physiol. Renal Physiol. 314, F251–F259 (2018).
Ohara, M. et al. Upregulation of aquaporin 2 water channel expression in pregnant rats. J. Clin. Invest. 101, 1076–1083 (1998).
Edwards, A., Castrop, H., Laghmani, K., Vallon, V. & Layton, A. T. Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. Am. J. Physiol. Renal Physiol. 307, F137–F146 (2014).
Layton, A. T., Edwards, A. & Vallon, V. Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis. Am. J. Physiol. Renal Physiol. 314, F643–F657 (2018).
Layton, A. T., Vallon, V. & Edwards, A. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am. J. Physiol. Renal Physiol. 308, F1343–F1357 (2015).
Layton, A. T., Vallon, V. & Edwards, A. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am. J. Physiol. Renal Physiol. 310, F1269–F1283 (2016).
Leete, J., Gurley, S. & Layton, A. Modeling sex differences in the renin angiotensin system and the efficacy of antihypertensive therapies. Comput. Chem. Eng. 112, 253–264 (2018).
Smith, D. & Layton, A. The intrarenal renin-angiotensin system in hypertension: insights from mathematical modelling. J. Math. Biol. 86, 58 (2023).
Layton, A. T. & Layton, H. E. A computational model of epithelial solute and water transport along a human nephron. PLoS Comput. Biol. 15, e1006108 (2019).
Madunic, I. V., Breljak, D., Karaica, D., Koepsell, H. & Sabolic, I. Expression profiling and immunolocalization of Na+-D-glucose-cotransporter 1 in mice employing knockout mice as specificity control indicate novel locations and differences between mice and rats. Pflugers Arch. 469, 1545–1565 (2017).
Wang, B., Wang-France, J., Li, H. & Sansom, S. C. Furosemide reduces BK-αβ4-mediated K+ secretion in mice on an alkaline high-K+ diet. Am. J. Physiol. Renal Physiol. 316, F341–F350 (2019).
Carrisoza-Gaytan, R. et al. Intercalated cell BKα subunit is required for flow-induced K+ secretion. JCI Insight https://doi.org/10.1172/jci.insight.130553 (2020).
Acknowledgements
A.A.M. discloses support for the research of this work from the National Institutes of Health (DK083875). A.N.H. discloses support for the research of this work from the National Institutes of Health (K08DK120873). L.(I.)X. discloses support for the research of this work from the National Institutes of Health (R01 DK126925-01). A.T.L. discloses support for the research of this work from: the Canada 150 Research Chairs program, the Natural Sciences and Engineering Research Council (NSERC Discovery award: RGPIN-2019-03916) and the Canadian Institutes of Health Research of Canada, and the Canadian Institutes of Health Research (CIHR) [TNC-174963].
Author information
Authors and Affiliations
Contributions
All authors researched the data for the article, discussed the content, wrote the text, reviewed and edited before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Nephrology thanks Eman Gohar, Michael Butterworth and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Kidney Cell Explorer: https://cello.shinyapps.io/kidneycellexplorer/
Kidney Precision Medicine Project: https://www.kpmp.org/
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
McDonough, A.A., Harris, A.N., Xiong, L.(. et al. Sex differences in renal transporters: assessment and functional consequences. Nat Rev Nephrol 20, 21–36 (2024). https://doi.org/10.1038/s41581-023-00757-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41581-023-00757-2
This article is cited by
-
Sex-related similarities and differences in responses to heart failure therapies
Nature Reviews Cardiology (2024)
-
State of knowledge on ammonia handling by the kidney
Pflügers Archiv - European Journal of Physiology (2024)
-
Effect of SGLT2 inhibition on salt-induced hypertension in female Dahl SS rats
Scientific Reports (2023)