Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex differences in renal transporters: assessment and functional consequences

Subjects

Abstract

Mammalian kidneys are specialized to maintain fluid and electrolyte homeostasis. The epithelial transport processes along the renal tubule that match output to input have long been the subject of experimental and theoretical study. However, emerging data have identified a new dimension of investigation: sex. Like most tissues, the structure and function of the kidney is regulated by sex hormones and chromosomes. Available data demonstrate sex differences in the abundance of kidney solute and electrolyte transporters, establishing that renal tubular organization and operation are distinctly different in females and males. Newer studies have provided insights into the physiological consequences of these sex differences. Computational simulations predict that sex differences in transporter abundance are likely driven to optimize reproduction, enabling adaptive responses to the nutritional requirements of serial pregnancies and lactation — normal life-cycle changes that challenge the ability of renal transporters to maintain fluid and electrolyte homeostasis. Later in life, females may also undergo menopause, which is associated with changes in disease risk. Although numerous knowledge gaps remain, ongoing studies will provide further insights into the sex-specific mechanisms of sodium, potassium, acid–base and volume physiology throughout the life cycle, which may lead to therapeutic opportunities.

Key points

  • Renal tubule organization differs in female compared with male rodents, notably in the abundance and expression of transporters in individual segments; generally, androgens regulate transporter abundance along the proximal tubule and oestrogens regulate transporter abundance along the distal tubule.

  • Compared with males, female rats exhibit lower fractional reabsorption of sodium along the proximal nephron (associated with a lower activity of NHE3 and lower abundance of claudin2 and AQP1) and higher fractional reabsorption of sodium along distal segments (associated with a higher abundance of NKCC2, NCC, ENaC and phosphorylated AQP2).

  • Female rats excrete a saline load more rapidly than males and achieve sodium homeostasis with a high salt diet more rapidly than males; moreover, female, but not male, diabetic mice maintain normotension when administered a high-salt diet.

  • Angiotensin infusion provokes similar changes in blood pressure, ENaC activation and K+ loss in both sexes, along with a rise in the expression of distal renal tubule transporters and a lowering of proximal transporters in females.

  • Male and female kidneys differ in the mechanisms used to maintain acid–base homeostasis; for example, they demonstrate differences in baseline ammoniagenesis and their acid–base transporters, and prioritize different adaptations to acid load; key differences are androgen receptor dependent.

  • Computer simulations of pregnant rat kidney function indicate that known sex differences in renal transporters can serve to prepare females to meet the fluid and electrolyte demands of the offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Female-specific changes in kidney function that occur through life stages.
Fig. 2: Sex- and species-specific differences in the abundance of renal transporters along the renal tubule.
Fig. 3: Regulation of selected sodium transporters in female versus male mice.
Fig. 4: Expression of sex hormone genes along the renal tubule.
Fig. 5: Impact of transporter sex differences on fluid and electrolyte handling along the renal tubule.

Similar content being viewed by others

References

  1. Murphy, D. et al. Trends in prevalence of chronic kidney disease in the United States. Ann. Intern. Med. 165, 473–481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ricardo, A. C. et al. Sex-related disparities in CKD progression. J. Am. Soc. Nephrol. 30, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Swartling, O. et al. Sex differences in the recognition, monitoring, and management of CKD in health care: an observational cohort study. J. Am. Soc. Nephrol. 33, 1903–1914 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neugarten, J., Acharya, A. & Silbiger, S. R. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J. Am. Soc. Nephrol. 11, 319–329 (2000).

    Article  PubMed  Google Scholar 

  5. Carrero, J. J. Gender differences in chronic kidney disease: underpinnings and therapeutic implications. Kidney Blood Press. Res. 33, 383–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Carrero, J. J., Hecking, M., Chesnaye, N. C. & Jager, K. J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 14, 151–164 (2018).

    Article  PubMed  Google Scholar 

  7. Denic, A. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Silbiger, S. R. & Neugarten, J. The impact of gender on the progression of chronic renal disease. Am. J. Kidney Dis. 25, 515–533 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Seliger, S. L., Davis, C. & Stehman-Breen, C. Gender and the progression of renal disease. Curr. Opin. Nephrol. Hypertens. 10, 219–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Cobo, G. et al. Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis. Clin. Sci. 130, 1147–1163 (2016).

    Article  Google Scholar 

  11. Mills, K. T., Stefanescu, A. & He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 16, 223–237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mehta, L. S. et al. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation 133, 916–947 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Benjamin, E. J. et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135, e146–e603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Colafella, K. M. M. & Denton, K. M. Sex-specific differences in hypertension and associated cardiovascular disease. Nat. Rev. Nephrol. 14, 185–201 (2018).

    Article  PubMed  Google Scholar 

  15. Ivy, J. R. & Bailey, M. A. Pressure natriuresis and the renal control of arterial blood pressure. J. Physiol. 592, 3955–3967 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hall, J. E. Renal dysfunction, rather than nonrenal vascular dysfunction, mediates salt-induced hypertension. Circulation 133, 894–906 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Veiras, L. C. et al. Sexual dimorphic pattern of renal transporters and electrolyte homeostasis. J. Am. Soc. Nephrol. 28, 3504–3517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 294, 63–69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bjornstad, P. & Cherney, D. Z. Renal hyperfiltration in adolescents with type 2 diabetes: physiology, sex differences, and implications for diabetic kidney disease. Curr. Diabetes Rep. 18, 22 (2018).

    Article  Google Scholar 

  20. Hamman, R. F. et al. The SEARCH for diabetes in youth study: rationale, findings, and future directions. Diabetes Care 37, 3336–3344 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lovshin, J. A. et al. Hyperfiltration, urinary albumin excretion, and ambulatory blood pressure in adolescents with Type 1 diabetes mellitus. Am. J. Physiol. Renal Physiol. 314, F667–F674 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Shepard, B. D. Sex differences in diabetes and kidney disease: mechanisms and consequences. Am. J. Physiol. Renal Physiol. 317, F456–F462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harris, A. N. & Weiner, I. D. Sex differences in renal ammonia metabolism. Am. J. Physiol. Renal Physiol. 320, F55–F60 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Ransick, A. et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev. Cell 51, 399–413 e397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Veiras, L. C. et al. Electrolyte and transporter responses to angiotensin II induced hypertension in female and male rats and mice. Acta Physiol. 229, e13448 (2020).

    Article  CAS  Google Scholar 

  26. Veiras, L. C. et al. Renal inflammation induces salt sensitivity in male db/db mice through dysregulation of ENaC. J. Am. Soc. Nephrol. 32, 1131–1149 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ljubojevic, M. et al. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am. J. Physiol. Renal Physiol. 287, F124–F138 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Sabolic, I. et al. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am. J. Physiol. Cell Physiol. 302, C1174–C1188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Breljak, D., Brzica, H., Sweet, D. H., Anzai, N. & Sabolic, I. Sex-dependent expression of Oat3 (Slc22a8) and Oat1 (Slc22a6) proteins in murine kidneys. Am. J. Physiol. Renal Physiol. 304, F1114–F1126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, L. et al. Single-cell profiling reveals sex diversity in human renal proximal tubules. Gene 752, 144790 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Torres-Pinzon, D. L., Ralph, D. L., Veiras, L. C. & McDonough, A. A. Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles. Am. J. Physiol. Cell Physiol. 321, C897–C909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tiwari, S., Li, L., Riazi, S., Halagappa, V. K. & Ecelbarger, C. M. Sex differences in adaptive downregulation of pre-macula densa sodium transporters with ANG II infusion in mice. Am. J. Physiol. Renal Physiol. 298, F187–F195 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Li, J. et al. Gender difference in kidney electrolyte transport. I. Role of AT1a receptor in thiazide-sensitive Na+-Cl cotransporter activity and expression in male and female mice. Am. J. Physiol. Renal Physiol. 313, F505–F513 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, J. et al. Sex difference in kidney electrolyte transport II: impact of K+ intake on thiazide-sensitive cation excretion in male and female mice. Am. J. Physiol. Renal Physiol. 317, F967–F977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xu, S. et al. Sex difference in kidney electrolyte transport III: impact of low K intake on thiazide-sensitive cation excretion in male and female mice. Pflugers Arch. 473, 1749–1760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, L., Chou, C. L. & Knepper, M. A. A comprehensive Map of mRNAs and their isoforms across all 14 renal tubule segments of mouse. J. Am. Soc. Nephrol. 32, 897–912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Limbutara, K., Chou, C. L. & Knepper, M. A. Quantitative proteomics of all 14 renal tubule segments in rat. J. Am. Soc. Nephrol. 31, 1255–1266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sandberg, M. B., Maunsbach, A. B. & McDonough, A. A. Redistribution of distal tubule Na+-Cl cotransporter (NCC) in response to a high-salt diet. Am. J. Physiol. Renal Physiol. 291, F503–F508 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Yang, L. E., Maunsbach, A. B., Leong, P. K. & McDonough, A. A. Differential traffic of proximal tubule Na+ transporters during hypertension or PTH: NHE3 to base of microvilli vs. NaPi2 to endosomes. Am. J. Physiol. Renal Physiol. 287, F896–F906 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Bacic, D. et al. The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int. 69, 495–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Richardson, C. & Alessi, D. R. The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J. Cell Sci. 121, 3293–3304 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Carattino, M. D. et al. Prostasin interacts with the epithelial Na+ channel and facilitates cleavage of the gamma-subunit by a second protease. Am. J. Physiol. Renal Physiol. 307, F1080–F1087 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Girardi, A. C., Degray, B. C., Nagy, T., Biemesderfer, D. & Aronson, P. S. Association of Na+-H+ exchanger isoform NHE3 and dipeptidyl peptidase IV in the renal proximal tubule. J. Biol. Chem. 276, 46671–46677 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Zaika, O., Tomilin, V., Mamenko, M., Bhalla, V. & Pochynyuk, O. New perspective of ClC-Kb/2 Cl channel physiology in the distal renal tubule. Am. J. Physiol. Renal Physiol. 310, F923–F930 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McDonough, A. A., Geering, K. & Farley, R. A. The sodium pump needs its beta subunit. FASEB J. 4, 1598–1605 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Svenningsen, P., Hinrichs, G. R., Zachar, R., Ydegaard, R. & Jensen, B. L. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch. 469, 1415–1423 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Chambrey, R. & Picard, N. Role of tissue kallikrein in regulation of tubule function. Curr. Opin. Nephrol. Hypertens. 20, 523–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Arnold, A. P. Four core genotypes and XY* mouse models: update on impact on SABV research. Neurosci. Biobehav. Rev. 119, 1–8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lewis, S. et al. “SLC-omics” of the kidney: solute transporters along the nephron. Am. J. Physiol. Cell Physiol. 321, C507–C518 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Basit, A., Radi, Z., Vaidya, V. S., Karasu, M. & Prasad, B. Kidney cortical transporter expression across species using quantitative proteomics. Drug Metab. Dispos. 47, 802–808 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, J. W., Chou, C. L. & Knepper, M. A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA 116, 19619–19625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, L., Chou, C. L. & Knepper, M. A. Targeted single-cell RNA-seq identifies minority cell types of kidney distal nephron. J. Am. Soc. Nephrol. 32, 886–896 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sung, C. C. et al. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus. Kidney Int. 96, 363–377 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rinschen, M. M., Limbutara, K., Knepper, M. A., Payne, D. M. & Pisitkun, T. From molecules to mechanisms: functional proteomics and its application to renal tubule physiology. Physiol. Rev. 98, 2571–2606 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, L., Chou, C. L., Yang, C. R. & Knepper, M. A. Multiomics analyses reveal sex differences in mouse renal proximal subsegments. J. Am. Soc. Nephrol. 34, 829–845 (2023).

    Article  PubMed  Google Scholar 

  58. Berlin, C. M. & Schimke, R. T. Influence of turnover rates on the responses of enzymes to cortisone. Mol. Pharmacol. 1, 149–156 (1965).

    CAS  PubMed  Google Scholar 

  59. Lescale-Matys, L., Putnam, D. S. & McDonough, A. A. Na+-K+-ATPase α1- and β1-subunit degradation: evidence for multiple subunit specific rates. Am. J. Physiol. 264, C583–C590 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Ibrahim, H., Lee, Y. J. & Curthoys, N. P. Renal response to metabolic acidosis: role of mRNA stabilization. Kidney Int. 73, 11–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Xiong, L. et al. Direct androgen receptor control of sexually dimorphic gene expression in the mammalian kidney. Devel. Cell https://doi.org/10.1016/j.devcel.2023.08.010 (2023).

    Article  Google Scholar 

  62. Hyndman, K. A. & Crossman, D. K. Kidney cell type-specific changes in the chromatin and transcriptome landscapes following epithelial Hdac1 and Hdac2 knockdown. Physiol. Genomics 54, 45–57 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Hyndman, K. A. et al. Fluid-electrolyte homeostasis requires histone deacetylase function. JCI Insight https://doi.org/10.1172/jci.insight.137792 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wu, H., Lai, C. F., Chang-Panesso, M. & Humphreys, B. D. Proximal tubule translational profiling during kidney fibrosis reveals proinflammatory and long noncoding RNA expression patterns with sexual dimorphism. J. Am. Soc. Nephrol. 31, 23–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Herak-Kramberger, C. M. et al. Sex-dependent expression of water channel AQP1 along the rat nephron. Am. J. Physiol. Renal Physiol. 308, F809–F821 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McDonough, A. A., Veiras, L. C., Minas, J. N. & Ralph, D. L. Considerations when quantitating protein abundance by immunoblot. Am. J. Physiol. Cell Physiol. 308, C426–C433 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Balen, D. et al. Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am. J. Physiol. Cell Physiol. 295, C475–C489 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Ljubojevic, M. et al. Renal expression of organic anion transporter OAT2 in rats and mice is regulated by sex hormones. Am. J. Physiol. Renal Physiol. 292, F361–F372 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Groves, C. E., Suhre, W. B., Cherrington, N. J. & Wright, S. H. Sex differences in the mRNA, protein, and functional expression of organic anion transporter (Oat) 1, Oat3, and organic cation transporter (Oct) 2 in rabbit renal proximal tubules. J. Pharmacol. Exp. Ther. 316, 743–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Harris, A. N., Lee, H. W., Fang, L., Verlander, J. W. & Weiner, I. D. Differences in acidosis-stimulated renal ammonia metabolism in the male and female kidney. Am. J. Physiol. Renal Physiol. 317, F890–F905 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, Q., McDonough, A. A., Layton, H. E. & Layton, A. T. Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis. Am. J. Physiol. Renal Physiol. 315, F692–F700 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen, Q. H., Pervolarakis, N., Nee, K. & Kessenbrock, K. Experimental considerations for single-cell RNA sequencing approaches. Front. Cell Dev. Biol. 6, 108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hu, R., McDonough, A. A. & Layton, A. T. Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis. Am. J. Physiol. Renal Physiol. 317, F1462–F1474 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harris, A. N. et al. Differences in renal ammonia metabolism in male and female kidney. Am. J. Physiol. Renal Physiol. 315, F211–F222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gupta, S. & Sen, U. More than just an enzyme: dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol. Res. 147, 104391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, L. et al. Reply to Edemir: Physiological regulation and single-cell RNA sequencing. Proc. Natl Acad. Sci. USA 115, E351–E352 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stadt, M. M. & Layton, A. T. Sex and species differences in epithelial transport in rat and mouse kidneys: modeling and analysis. Front. Physiol. 13, 991705 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kwekel, J. C., Desai, V. G., Moland, C. L., Vijay, V. & Fuscoe, J. C. Sex differences in kidney gene expression during the life cycle of F344 rats. Biol. Sex. Differ. 4, 14 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Harris, A. N., Castro, R. A., Lee, H. W., Verlander, J. W. & Weiner, I. D. Role of the renal androgen receptor in sex differences in ammonia metabolism. Am. J. Physiol. Renal Physiol. 321, F629–F644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Soliman, R. H., Johnston, J. G., Gohar, E. Y., Taylor, C. M. & Pollock, D. M. Greater natriuretic response to ENaC inhibition in male versus female Sprague-Dawley rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R418–R427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McDonough, A. A. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R851–R861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu, R. & Layton, A. A computational model of kidney function in a patient with diabetes. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22115819 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chen, Y., Sullivan, J. C., Edwards, A. & Layton, A. T. Sex-specific computational models of the spontaneously hypertensive rat kidneys: factors affecting nitric oxide bioavailability. Am. J. Physiol. Renal Physiol. 313, F174–F183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sabolic, I. et al. Gender differences in kidney function. Pflugers Arch. 455, 397–429 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Kocinsky, H. S., Dynia, D. W., Wang, T. & Aronson, P. S. NHE3 phosphorylation at serines 552 and 605 does not directly affect NHE3 activity. Am. J. Physiol. Renal Physiol. 293, F212–F218 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Brasen, J. C., Burford, J. L., McDonough, A. A., Holstein-Rathlou, N. H. & Peti-Peterdi, J. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule. Am. J. Physiol. Renal Physiol. 307, F1249–F1262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pei, L. et al. Paracellular epithelial sodium transport maximizes energy efficiency in the kidney. J. Clin. Invest. 126, 2509–2518 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nigam, S. K. et al. Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin. J. Am. Soc. Nephrol. 10, 2039–2049 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spencer, A. M., Sack, J. & Hong, S. K. Relationship between PAH transport and Na-K-ATPase activity in the rabbit kidney. Am. J. Physiol. 236, F126–F130 (1979).

    CAS  PubMed  Google Scholar 

  90. Nigam, S. K. et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol. Rev. 95, 83–123 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fan, J., Tatum, R., Hoggard, J. & Chen, Y. H. Claudin-7 modulates Cl and Na+ homeostasis and WNK4 expression in renal collecting duct cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20153798 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sassi, A. et al. Interaction between epithelial sodium channel gamma-subunit and claudin-8 modulates paracellular sodium permeability in renal collecting duct. J. Am. Soc. Nephrol. 31, 1009–1023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nachbaur, J., Clarke, M. R., Provost, J. P. & Dancla, J. L. Variations of sodium, potassium, and chloride plasma levels in the rat with age and sex. Lab. Anim. Sci. 27, 972–975 (1977).

    CAS  PubMed  Google Scholar 

  94. Ellison, D. H. & Terker, A. S. Why your mother was right: how potassium intake reduces blood pressure. Trans. Am. Clin. Climatol. Assoc. 126, 46–55 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. West, C. A., McDonough, A. A., Masilamani, S. M., Verlander, J. W. & Baylis, C. Renal NCC is unchanged in the midpregnant rat and decreased in the late pregnant rat despite avid renal Na+ retention. Am. J. Physiol. Renal Physiol. 309, F63–F70 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Knepper, M. A., Kwon, T. H. & Nielsen, S. Molecular physiology of water balance. N. Engl. J. Med. 372, 1349–1358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bairey Merz, C. N. et al. Sex and the kidneys: current understanding and research opportunities. Nat. Rev. Nephrol. 15, 776–783 (2019).

    Article  PubMed  Google Scholar 

  98. Tahaei, E., Coleman, R., Saritas, T., Ellison, D. H. & Welling, P. A. Distal convoluted tubule sexual dimorphism revealed by advanced 3D imaging. Am. J. Physiol. Renal Physiol. 319, F754–F764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yang, L. E., Sandberg, M. B., Can, A. D., Pihakaski-Maunsbach, K. & McDonough, A. A. Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status. Am. J. Physiol. Renal Physiol. 295, F1003–F1016 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Frindt, G. & Palmer, L. G. Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. Am. J. Physiol. Renal Physiol. 297, F1249–F1255 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gohar, E. Y. et al. Acclimation to a high-salt diet is sex dependent. J. Am. Heart Assoc. 11, e020450 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nguyen, M. T., Han, J., Ralph, D. L., Veiras, L. C. & McDonough, A. A. Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron. Physiol. Rep. https://doi.org/10.14814/phy2.12496 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gonzalez-Villalobos, R. A. et al. The absence of intrarenal ACE protects against hypertension. J. Clin. Invest. 123, 2011–2023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nguyen, M. T., Lee, D. H., Delpire, E. & McDonough, A. A. Differential regulation of Na+ transporters along nephron during ANG II-dependent hypertension: distal stimulation counteracted by proximal inhibition. Am. J. Physiol. Renal Physiol. 305, F510–F519 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McDonough, A. A. & Nguyen, M. T. Maintaining balance under pressure: integrated regulation of renal transporters during hypertension. Hypertension 66, 450–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Gurley, S. B. et al. AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab. 13, 469–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weiner, I. D. & Verlander, J. W. Ammonia transporters and their role in acid-base balance. Physiol. Rev. 97, 465–494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Weiner, I. D. & Verlander, J. W. Renal ammonia metabolism and transport. Compr. Physiol. 3, 201–220 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Welbourne, T., Weber, M. & Bank, N. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. J. Clin. Invest. 51, 1852–1860 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Curthoys, N. P. & Moe, O. W. Proximal tubule function and response to acidosis. Clin. J. Am. Soc. Nephrol. 9, 1627–1638 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Conjard, A. et al. Inhibition of glutamine synthetase in the mouse kidney: a novel mechanism of adaptation to metabolic acidosis. J. Biol. Chem. 278, 38159–38166 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Verlander, J. W., Chu, D., Lee, H. W., Handlogten, M. E. & Weiner, I. D. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia. Am. J. Physiol. Renal Physiol. 305, F701–F713 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee, H. W. et al. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism. Am. J. Physiol. Renal Physiol. 310, F1229–F1242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Weiner, I. D., Mitch, W. E. & Sands, J. M. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol. 10, 1444–1458 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Weiner, I. D. & Verlander, J. W. Emerging features of ammonia metabolism and transport in acid-base balance. Semin. Nephrol. 39, 394–405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Moranne, O. et al. Timing of onset of CKD-related metabolic complications. J. Am. Soc. Nephrol. 20, 164–171 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Goraya, N., Simoni, J., Jo, C. H. & Wesson, D. E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 86, 1031–1038 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. de Brito-Ashurst, I., Varagunam, M., Raftery, M. J. & Yaqoob, M. M. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J. Am. Soc. Nephrol. 20, 2075–2084 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Koenig, H., Goldstone, A., Blume, G. & Lu, C. Y. Testosterone-mediated sexual dimorphism of mitochondria and lysosomes in mouse kidney proximal tubules. Science 209, 1023–1026 (1980).

    Article  CAS  PubMed  Google Scholar 

  120. Quan, A. et al. Androgens augment proximal tubule transport. Am. J. Physiol. Renal Physiol. 287, F452–F459 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Loh, S. Y., Giribabu, N. & Salleh, N. Effects of gonadectomy and testosterone treatment on aquaporin expression in the kidney of normotensive and hypertensive rats. Exp. Biol. Med. 242, 1376–1386 (2017).

    Article  CAS  Google Scholar 

  122. Hsu, Y. J. et al. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins. Kidney Int. 77, 601–608 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Harris, A. N., Lee, H. W., Verlander, J. W. & Weiner, I. D. Testosterone modulates renal ammonia metabolism. Am. J. Physiol. Renal Physiol. 318, F922–F935 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, M. Z. et al. The role of the EGF receptor in sex differences in kidney injury. J. Am. Soc. Nephrol. 30, 1659–1673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Robert, R. et al. Gender difference and sex hormone production in rodent renal ischemia reperfusion injury and repair. J. Inflamm. 8, 14 (2011).

    Article  Google Scholar 

  126. Metcalfe, P. D. & Meldrum, K. K. Sex differences and the role of sex steroids in renal injury. J. Urol. 176, 15–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Rojas-Vega, L. et al. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation. Am. J. Physiol. Renal Physiol. 308, F799–F808 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Musselman, T. M., Zhang, Z. & Masilamani, S. M. Differential regulation of the bumetanide-sensitive cotransporter (NKCC2) by ovarian hormones. Steroids 75, 760–765 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gohar, E. Y. et al. Evidence for G-protein-coupled estrogen receptor as a pronatriuretic factor. J. Am. Heart Assoc. 9, e015110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cheng, L. et al. Rapid aldosterone-mediated signaling in the DCT increases activity of the thiazide-sensitive NaCl cotransporter. J. Am. Soc. Nephrol. 30, 1454–1470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Goldman, J. M., Murr, A. S. & Cooper, R. L. The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res. B Dev. Reprod. Toxicol. 80, 84–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Dayton, A. et al. Breaking the cycle: estrous variation does not require increased sample size in the study of female rats. Hypertension 68, 1139–1144 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Bittel, D. C. et al. Comparison of X-chromosome inactivation patterns in multiple tissues from human females. J. Med. Genet. 45, 309–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Orstavik, K. H. X chromosome inactivation in clinical practice. Hum. Genet. 126, 363–373 (2009).

    Article  PubMed  Google Scholar 

  135. Layton, A. T. A new microscope for the kidney: mathematics. Am. J. Physiol. Renal Physiol. 312, F671–F672 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Layton, A. T., Laghmani, K., Vallon, V. & Edwards, A. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors. Am. J. Physiol. Renal Physiol. 311, F1217–F1229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Layton, A. T. & Vallon, V. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism. Am. J. Physiol. Renal Physiol. 314, F969–F984 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weinstein, A. M. A mathematical model of the rat kidney: K+-induced natriuresis. Am. J. Physiol. Renal Physiol. 312, F925–F950 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hu, R., McDonough, A. A. & Layton, A. T. Sex differences in solute transport along the nephrons: effects of Na+ transport inhibition. Am. J. Physiol. Renal Physiol. 319, F487–F505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hu, R., McDonough, A. A. & Layton, A. T. Sex differences in solute and water handling in the human kidney: modeling and functional implications. iScience 24, 102667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chung, E. & Leinwand, L. A. Pregnancy as a cardiac stress model. Cardiovasc. Res. 101, 561–570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dunlop, W. Serial changes in renal haemodynamics during normal human pregnancy. Br. J. Obstet. Gynaecol. 88, 1–9 (1981).

    Article  CAS  PubMed  Google Scholar 

  143. Stadt, M. M. & Layton, A. T. Adaptive changes in single-nephron GFR, tubular morphology, and transport in a pregnant rat nephron: modeling and analysis. Am. J. Physiol. Renal Physiol. 322, F121–F137 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Garland, H. O. & Green, R. Micropuncture study of changes in glomerular filtration and ion and water handling by the rat kidney during pregnancy. J. Physiol. 329, 389–409 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lindheimer, M. D. & Katz, A. I. Kidney function in the pregnant rat. J. Lab. Clin. Med. 78, 633–641 (1971).

    CAS  PubMed  Google Scholar 

  146. de Souza, A. M. A. & West, C. A. Adaptive remodeling of renal Na+ and K+ transport during pregnancy. Curr. Opin. Nephrol. Hypertens. 27, 379–383 (2018).

    Article  PubMed  Google Scholar 

  147. West, C. A. et al. Renal and colonic potassium transporters in the pregnant rat. Am. J. Physiol. Renal Physiol. 314, F251–F259 (2018).

    Article  PubMed  Google Scholar 

  148. Ohara, M. et al. Upregulation of aquaporin 2 water channel expression in pregnant rats. J. Clin. Invest. 101, 1076–1083 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Edwards, A., Castrop, H., Laghmani, K., Vallon, V. & Layton, A. T. Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. Am. J. Physiol. Renal Physiol. 307, F137–F146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Layton, A. T., Edwards, A. & Vallon, V. Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis. Am. J. Physiol. Renal Physiol. 314, F643–F657 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Layton, A. T., Vallon, V. & Edwards, A. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am. J. Physiol. Renal Physiol. 308, F1343–F1357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Layton, A. T., Vallon, V. & Edwards, A. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am. J. Physiol. Renal Physiol. 310, F1269–F1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Leete, J., Gurley, S. & Layton, A. Modeling sex differences in the renin angiotensin system and the efficacy of antihypertensive therapies. Comput. Chem. Eng. 112, 253–264 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Smith, D. & Layton, A. The intrarenal renin-angiotensin system in hypertension: insights from mathematical modelling. J. Math. Biol. 86, 58 (2023).

    Article  PubMed  Google Scholar 

  155. Layton, A. T. & Layton, H. E. A computational model of epithelial solute and water transport along a human nephron. PLoS Comput. Biol. 15, e1006108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Madunic, I. V., Breljak, D., Karaica, D., Koepsell, H. & Sabolic, I. Expression profiling and immunolocalization of Na+-D-glucose-cotransporter 1 in mice employing knockout mice as specificity control indicate novel locations and differences between mice and rats. Pflugers Arch. 469, 1545–1565 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang, B., Wang-France, J., Li, H. & Sansom, S. C. Furosemide reduces BK-αβ4-mediated K+ secretion in mice on an alkaline high-K+ diet. Am. J. Physiol. Renal Physiol. 316, F341–F350 (2019).

    Article  PubMed  Google Scholar 

  158. Carrisoza-Gaytan, R. et al. Intercalated cell BKα subunit is required for flow-induced K+ secretion. JCI Insight https://doi.org/10.1172/jci.insight.130553 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.A.M. discloses support for the research of this work from the National Institutes of Health (DK083875). A.N.H. discloses support for the research of this work from the National Institutes of Health (K08DK120873). L.(I.)X. discloses support for the research of this work from the National Institutes of Health (R01 DK126925-01). A.T.L. discloses support for the research of this work from: the Canada 150 Research Chairs program, the Natural Sciences and Engineering Research Council (NSERC Discovery award: RGPIN-2019-03916) and the Canadian Institutes of Health Research of Canada, and the Canadian Institutes of Health Research (CIHR) [TNC-174963].

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, discussed the content, wrote the text, reviewed and edited before submission.

Corresponding author

Correspondence to Alicia A. McDonough.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Eman Gohar, Michael Butterworth and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Kidney Cell Explorer: https://cello.shinyapps.io/kidneycellexplorer/

Kidney Precision Medicine Project: https://www.kpmp.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonough, A.A., Harris, A.N., Xiong, L.(. et al. Sex differences in renal transporters: assessment and functional consequences. Nat Rev Nephrol 20, 21–36 (2024). https://doi.org/10.1038/s41581-023-00757-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00757-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing