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Abstract

Tertiary lymphoid structures (TLSs) are ectopic lymphoid tissues 
that drive antigen-specific immune responses at sites of chronic 
inflammation. Unlike secondary lymphoid organs such as lymph nodes, 
TLSs lack capsules and have their own unique characteristics and 
functions. The presumed influence of TLSs on the disease course has 
led to widespread interest in obtaining a better understanding of their 
biology and function. Studies using single-cell analyses have suggested 
heterogeneity in TLS composition and phenotype, and consequently, 
functional correlates with disease progression are sometimes 
conflicting. The presence of TLSs correlates with a favourable disease 
course in cancer and infection. Conversely, in autoimmune diseases 
and chronic age-related inflammatory diseases including chronic 
kidney disease, the presence of TLSs is associated with a more severe 
disease course. However, the detailed mechanisms that underlie these 
clinical associations are not fully understood. To what extent the 
mechanisms of TLS development and maturation are shared across 
organs and diseases is also still obscure. Improved understanding of 
TLS development and function at the cellular and molecular levels may 
enable the exploitation of these structures to improve therapies for 
chronic diseases, including chronic kidney disease.
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immune responses are generated within TLSs that are located near to 
tumours14,15 and the presence of TLSs is associated with improved 
response to therapies in some, but not all, types of cancer16. Similarly, 
TLSs induced by infections generate anti-pathogen immune responses 
that are beneficial for the host17,18. Conversely, in autoimmunity, TLSs 
promote activation of autoreactive lymphocytes, resulting in autoan-
tibody production, and the presence of TLSs is associated with a poor 
prognosis19. The development of TLSs also contributes to the progres-
sion of kidney diseases such as acute kidney injury (AKI) in elderly 
people13,20. Age-dependent TLS formation has been reported in the 
kidney, lung and other organs and has a role in age-related chronic 
inflammatory diseases7,8,13,21–23. These findings suggest that TLSs are 
important sites for modulating local immunity and are of critical 
importance when considering therapeutic strategies to prevent the 
progression of chronic diseases.

In this Review, we discuss TLS development, maintenance and 
function, with a focus on the roles of TLSs in autoimmune disease, can-
cer, infection and chronic age-related inflammatory diseases, including 
CKD. We also discuss the clinical implications and therapeutic potential 
of TLSs in various tissues and diseases.

Characteristics of TLSs and SLOs
TLSs and SLOs are mainly composed of lymphocytes with the support 
of specialized fibroblasts and are associated with HEVs. Molecules that 
are essential for SLO maintenance and function, including homeostatic 
chemokines and lymphotoxin, are also detected in TLSs5. In addition, 
both structures promote induction of adaptive immune responses and 
can contain germinal centres that are essential for cognate T cell–B cell 
interactions, consecutive antibody somatic hypermutation and affin-
ity maturation3,24. Activation of the adaptive immune responses 
distinguishes TLSs from simple inflammatory cell infiltrates.

TLSs also have some unique characteristics and functions, par-
ticularly with respect to local tissue responses (Fig. 1, Table 1). The 
homeo static chemokines CXCL13, CCL19 and CCL21 have crucial roles in  
the development and maintenance of SLOs, but CCL21 is not involved 
in age-dependent TLS formation in the kidney, bladder, or liver7,22,23. 
Development of TLSs is induced after birth (discussed further below) 
and depends on CD4 T cells or other types of immune cells7,25,26, whereas 
SLO development depends on specialized embryonic lymphoid tissue 
inducer (LTi) cells that mediate the transition of embryonic mesenchy-
mal lymphoid tissue organizer cells into CXCL13-producing follicular 
dendritic cells (FDCs) and CCL19/CCL21-producing fibroblastic reticu-
lar cells in a lymphoid tissue-dependent manner5. LTi cells promote 
lymphoid organogenesis via lymphotoxin and tumour necrosis factor 
(TNF)27 and FDCs are specialized mesenchymal cells that support B cell 
activation28. After birth, other cell types such as T helper 17 (Th17) cells 
or B cells take over the function of LTi cells, and parenchymal and mes-
enchymal cells become lymphoid tissue organizer cells in adult organs 
during lymphoid neogenesis25,26,29,30.

In SLOs, autoreactive B cells are eliminated via a process that 
depends on competition between cells with different specificities31.  
A key feature of this censoring mechanism is the selective exclusion of 
self-antigen-binding B cells from the normal migration route into B cell 
follicles, which leads to their premature death (B cells that are excluded 
from follicles have a half-life of less than a day)31,32. By contrast, autore-
active B cells can enter the follicular niche, receive survival factors and 
survive in TLSs33. In autoimmunity, disease-specific autoantibodies 
are produced in TLSs in target organs34,35. Autoantibody production 
in TLSs has also been reported in aged, injured kidneys20.

Key points

 • Tertiary lymphoid structures (TLSs) are organized lymphoid 
aggregates that develop in perivascular areas in response to disturbed 
tissue homeostasis.

 • TLSs serve as local immune niches to promote adaptive immunity; 
their unencapsulated structure enables direct exposure to diverse 
stimuli from an inflamed environment.

 • The development of TLSs in different organs involves common 
mechanisms that are presumably regulated by tissue-specific cues.

 • The presence of TLSs correlates with a favourable disease course in 
many types of cancer and infection.

 • In autoimmunity, chronic inflammation and ageing, the presence of 
TLSs correlates with pathological conditions and a more severe disease 
course.

 • Functional characterization of TLSs in human diseases and the 
development of interventions to induce or reduce TLSs could lead 
to promising therapeutic avenues.

Introduction
The prevalence of age-related chronic diseases, including cardiovas-
cular disease, cancer, infections and chronic kidney disease (CKD) 
is increasing owing to the increase in mean global life expectancy1. 
Age-related diseases are characterized by chronic inflammation, 
which is a key contributor to the pathogenesis of these diseases and 
an important therapeutic target1. Inflammation is a protective response 
that can restore tissue homeostasis following tissue injury or infec-
tion; however, sustained or unresolved inflammation has detrimental 
effects that can contribute to the development and progression of 
chronic diseases.

Tertiary lymphoid structures (TLSs) (also known as tertiary lym-
phoid tissues, tertiary lymphoid organs or ectopic lymphoid tissues) 
develop in non-lymphoid organs during chronic inflammatory con-
ditions, including cancer, infection, autoimmunity and age-related 
diseases2–5. TLSs are organized lymphoid aggregates with a network 
of specialized fibroblasts that share many functional and structural 
characteristics with secondary lymphoid organs (SLOs), particularly 
lymph nodes. For example, TLSs and SLOs can drive antigen-specific 
immune responses5 and are equipped with specialized blood vessels 
known as high endothelial venules (HEVs) that facilitate transmigration 
of lymphocytes from the blood into lymphoid tissues6. However, TLSs 
are less organized than SLOs and develop in response to cues that are 
associated with disturbed homeostasis. For example, tissue-resident 
cells can transdifferentiate into TLS cellular components in response to 
microenvironmental stimuli during tissue inflammation7. The advent 
of single-cell sequencing techniques has led to new insights into cel-
lular diversity and molecular heterogeneity during the various stages 
of TLS development.

Interest in TLSs is increasing because of their presence in  
and presumed contribution to chronic inflammatory conditions and 
ageing8–13. The role of TLSs in these diseases is context-dependent 
and can be beneficial or detrimental. In cancer, for example, antitumour 
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SLOs are encapsulated and thereby physically separated from 
the inflammatory environment, whereas TLSs are directly exposed to 
antigens, cytokines, damage-associated molecular patterns (DAMPs) 
and other inflammatory factors6,24. This difference makes the immune 
response that is generated in TLSs more effective than that generated 
in SLOs. For example, TLSs in the lungs, termed inducible bronchus-
associated lymphoid tissue (iBALT), develop in response to infec-
tion and contribute to protective immunity, even in the absence of 
SLOs36. Germinal centres in iBALT comprise plasma cells and memory 
B cells with greater cross-protective potential than those in the lymph 
nodes and spleen18. B cells in iBALT also proliferate more upon antigen 
encounter than those in lymph nodes or the spleen18.

Heterogeneity and development of TLSs
TLSs vary in their cellular composition from loose T cell–B cell clus-
ters to highly organized structures with distinct T cell zones and B cell 
areas that harbour germinal centres. TLS development is thought to 
be a gradual process, but detailed analysis of TLS phenotypes and 
the clinical relevance of TLS maturation stages is challenging. Tissue 
samples from patients with chronic inflammatory diseases are lim-
ited and the time of disease initiation in these samples is unknown, so 
establishing a correlation between TLS status and disease progression 
is difficult. In addition, methods for qualitative and quantitative TLS 
evaluation are not standardized, which might partly explain conflict-
ing results regarding the clinical relevance of TLSs in the kidney and 
other organs37–40.

Stages of maturation
To stratify the definition of TLSs, we analysed surgically resected kidney 
samples from patients with complicated pyelonephritis and from older 
patients (≥60 years) with renal cell carcinoma (RCC) as well as aged 

mouse kidneys with ischaemia–reperfusion injury-induced TLSs21. We 
defined TLSs as clusters of lymphocytes with signs of proliferation and 
showed that TLS development in human and murine kidneys occurs 
through distinct stages21 (Fig. 2a). Similar TLS maturation stages have 
been found in patients with various types of cancer and in mouse lungs 
after experimental TLS induction41,42. These data suggest that a com-
mon developmental sequence mediates lymphoid neogenesis across 
different organs.

TLS can be induced in an antigen-dependent or antigen- 
independent manner (Box 1). They initially appear as small aggregates 
containing mainly T cells and B cells and then expand and mature into 
clusters with B cell areas supported by CD21+ FDCs with or without distinct  
T cell areas13,21,41. Finally, a germinal centre reaction can be activated in 
the B cell areas of TLSs. We found that TLS development arrests before 
germinal centre development in mildly injured kidneys, whereas TLSs 
in severely injured kidneys are fully mature. This finding suggests that 
TLS maturation is associated with the severity of inflammation, kidney 
injury and kidney dysfunction21.

A single-cell RNA sequencing analysis of B cells derived from 
human tumours identified unswitched IgD+ B cells, switched IgG+ B cells 
and a wide range of B cells that expressed genes that are associated with 
immature or mature germinal centres11,12. Analysis of B cell receptor 
sequences from the B cells further confirmed their clonal expansion11. 
These data support in situ B cell proliferation and maturation within 
TLSs in human cancer tissues.

Consistent with the observation that TLSs disappear when 
inflammation is resolved17,43, TLS maturation can be reversed with 
immunosuppressive treatments21, including corticosteroids28,41. In a 
retrospective study of kidney biopsy samples from clinically stable 
transplanted renal allografts, we found TLS s in 50% of the allografts 
1 month after transplantation. Mature TLS, defined as those with FDCs, 
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Fig. 1 | Structural differences between secondary lymphoid organs and 
tertiary lymphoid structures. a, In lymph nodes, immune cell subpopulations 
are distributed in a regular pattern and form sub-compartments. B cells form 
B cell follicles and occasionally develop germinal centres during antigen 
stimulation, whereas most T cells reside in the T cell area adjacent to B cell 
follicles. A fibrous capsule surrounds these distinct cellular compartments.  

b, In tertiary lymphoid structures (TLSs), T cells and B cells are mostly 
intermingled with each other but occasionally form distinct B cell and T cell 
compartments similar to those that are present in lymph nodes. TLSs lack a 
capsule and are exposed to local antigens, danger-associated molecular patterns, 
cytokines and various ions. HEV, high endothelial venule.
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were present in 19% of the allografts 1 year after transplantation. The 
presence of mature TLSs, but not immature TLS, in 1-year biopsy 
samples was associated with poor graft function44. These results sug-
gest that classification of TLSs into distinct maturation stages might 
improve their prognostic power in inflammatory kidney diseases, 
including kidney transplant rejection.

Involvement of perivascular cells
In most organs, TLSs develop in perivascular areas21,29,45,46, which are 
rich in extracellular matrix components, small blood vessels, lymphatic 
vessels and neurons. Perivascular areas are conserved across organs 
and can act as a niche for tissue-resident immune cells47,48. Several types 
of unique cells that are involved in TLS formation and maintenance 
reside in the perivascular area.

Perivascular fibroblasts have a pivotal role in TLS formation7,49,50 
(Fig. 2b). These cells transdifferentiate into specialized fibroblasts 
that produce homeostatic chemokines and provide cues for optimal 
spatial immune cell organization7,9,51–54. The molecular cues that induce 
this phenotypic change are context dependent. For example, in lung 
fibroblasts, CXCL13 expression was induced by type I interferon (IFN) 
signalling52, IL-17A, or TNF25, whereas in salivary gland fibroblasts 
CXCL13 expression was induced by IL-22 (ref. 55).

The anatomical relationship between TLSs and the vasculature 
suggests a functional connection between blood vessels and lymphoid 
neogenesis. In the kidney, arteries, veins and lymphatic vessels run in 
parallel and TLSs are detected in perivascular, periglomerular, and 
subcapsular areas and in the renal pelvis, all of which contain arterial 
circuits21,51,56. Loss of Notch signalling in vascular endothelial cells, but 
not in lymphatic vessel endothelial cells, led to TLS formation in mouse 
kidneys57. In this model, arteries located within TLSs acquire the HEV 
phenotype and promote lymphocyte recruitment.

Lymphatic vessels might also have an important role in TLS induc-
tion and maintenance. These vessels spread along the arteries and veins 
within organs and form a dense network throughout the body6,58. They 
serve as conduits for various immune cells, including lymphocytes 
and dendritic cells, to traffic from peripheral non-lymphoid organs to 
SLOs59. In a model of chronic ileitis caused by TNF overabundance, TLS 
develop in the mesentery at the sites of lymphatic valves60. Lymphatic 
vessels, particularly lymphatic endothelial cells, produce IL-7, which is a 

non-redundant regulator of T cell homeostasis in SLOs and TLSs61,62 and 
contributes to TLS maintenance. Genetic deletion or pharmacological 
neutralization of IL-7-producing lymphatic endothelial cells resulted in 
defective TLS formation and a decrease in the number of CD4+ tissue-
resident memory T (TRM) cells in the mouse lung61,63. Thus, interaction 
between immune cells and non-immune cells in the perivascular area is 
vital for TLS development across organs including the kidney and lung.

TLSs in pathological conditions
The clinical relevance of TLSs in diseases including autoimmune condi-
tions, cancer, infection, chronic inflammatory diseases and in ageing 
is context dependent. Even in the same organ, TLSs can be beneficial 
or detrimental depending on their composition and the aetiology and 
phase of the disease.

Autoimmune diseases
The formation of TLSs has been reported in almost all organ-specific 
human autoimmune diseases, including rheumatoid arthritis64, lupus 
nephritis65, type 1 diabetes mellitus66, Crohn disease67 and Sjogren syn-
drome33. The reported prevalence of TLSs in these diseases ranges from 
almost 100% in patients with Hashimoto thyroiditis68 to almost 20% 
in patients with juvenile dermatomyositis69. Most, but not all, clinical 
studies have shown a direct correlation between the presence of TLS 
and disease activity34. The reasons for this inconsistency are unknown 
but may include differences in TLS definition, disease stage and treat-
ment history as well as sampling techniques (for example, biopsy or 
surgical resection) and errors.

TLSs may promote breaking of self-tolerance in autoimmune dis-
ease. This hypothesis is exemplified by the finding that transplantation 
of tissue containing TLSs from patients with rheumatoid arthritis and 
myasthenia gravis into immunodeficient mice resulted in sustained 
production of anti-cyclic citrullinated peptide (CCP) antibodies and 
anti-acetylcholine receptor antibodies19,70. The fact that TLSs can 
also be detected in seronegative patients with arthritis, such as those 
with spondyloarthropathies71,72, suggests that TLS can contribute to 
autoimmune disease pathogenesis via multiple mechanisms.

Lupus nephritis affects 30–60% of patients with SLE and is one 
of the most serious complications of this disease73. Although lupus 
nephritis is characterized by heterogeneous glomerulonephritis, 

Table 1 | Differences between secondary lymphoid organs and tertiary lymphoid structures

Feature Secondary lymphoid organ Tertiary lymphoid structure Refs.

Induction During embryonic development After birth 5,6,34,43

Location Key locations under control of developmental 
programme

Perivascular sites in non-lymphoid organs or tissues in the setting of 
inflammation owing to injury, cancer, infection, autoimmunity, organ 
transplantation or ageing

21,24,29, 
45,46,48

Development Pre-programmed developmental programme Tissue- and trigger-specific local inflammatory signals 5,6,34,43

Capsule The capsule physically separates the secondary 
lymphoid organ from the environment

The tertiary lymphoid structure is not encapsulated so is directly exposed to 
factors in the tissue microenvironment including cytokines, antigens, ions 
and danger-associated molecular patterns

6,24,195

Structure Compartmentalized T cell and B cell areas Variable (ranging from mixed T cells and B cells to compartmentalized T cell 
and B cell areas)

5,6,21,24,195

Self-tolerance Maintained Disturbed (autoantibody production etc.) 19,20, 
31–34,195

Function Generation of adaptive immune responses to 
delivered antigens

Generation of adaptive immune responses to locally presented antigens 5,6,34,195
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tubulointerstitial inflammation is common and determines the kidney 
prognosis74. Several studies have reported TLS formation in lupus 
nephritis65,75. An analysis of micro-dissected TLSs from patient kidney 
biopsy samples detected clonal B cells with a high degree of somatic 
hypermutation65. These findings indicate in situ germinal centre 
responses and the generation of autoantibodies, which could poten-
tially contribute to kidney disease progression by binding proximal 

tubular cells and stimulating cytokine production76. The presence of 
follicular T cell-like CD4 T cells in kidney biopsy samples was associ-
ated with lower estimated glomerular filtration rate in patients with 
lupus nephritis75, suggesting a pathogenic contribution of TLSs in 
this disease77.

Interestingly, TLSs are also detected in the central nervous system 
in patients with SLE78. Similarly, in patients with rheumatoid arthritis, 

a  Maturation of TLS

b  Fibroblast phenotypic shift during TLS maturation c  Antigen presentation d  Cognate T cell–B cell interaction

Normal kidney Immature TLS Mature TLS

Perivascular
fibroblast

• Cytokines
(IL17, IL22 etc.)

• Retinoic acid

CXCL13– and CCL19-producing
immunofibroblasts within the TLS

• Lymphotoxin
• TNF

FDCs in B cell area FRCs in T cell area

?
T cell

T cell proliferation
and activation

MHC class I or II
Antigen

Tfh-like or Tph cell

CD154

ICOS

CD153

CD30

ICOSL

CD40

B cell transdi�erentiation
into germinal centre B cell

• IL21
• IL10
•  IFNγ

TCR

B cell follicleGerminal
centre

T cell area

Proliferating
lymphocyte

Lymphatic vessel

Vein Artery

Proximal tubule

T cell B cell  HEV

• Antigen presentation
• T cell–B cell interaction

• A�inity maturation
• Somatic hypermutation
• Class switching

B cellDC

MHC
class II

Fig. 2 | Maturation of tertiary lymphoid structures. a, In the kidney and 
most other organs, arteries, veins and lymphatic vessels run together. Tertiary 
lymphoid structures (TLSs) first appear as small aggregates containing mainly 
T cells and B cells at perivascular sites, and then expand and mature into clusters 
with distinct B cell and T cell areas. In immature TLSs, antigen presentation 
and intimate T cell–B cell interactions drive activation of lymphocytes and TLS 
maturation. Mature TLSs contain high endothelial venules (HEVs), which are 
specialized blood vessels that are adapted for lymphocyte trafficking. Some 
of the B cell areas (follicles) contain germinal centres, which are histologically 
defined as clusters of proliferating B cells. The germinal centres support B cell 
affinity maturation, class switching and somatic hypermutation. b, In parallel 
to TLS maturation, resident fibroblasts transdifferentiate into several distinct 
phenotypes and orchestrate TLS development. First, in response to IL-17, 
IL-22 and retinoic acid, perivascular fibroblasts acquire the ability to produce 

homeostatic chemokines such as CXC-chemokine ligand 13 (CXCL13) and CC-
chemokine ligand 19 (CCL19) and recruit immune cells. These immunofibroblasts 
then further transdifferentiate into follicular dendritic cells (FDCs) and follicular 
reticular cells (FRCs), which form and support the B cell and T cell areas, 
respectively. Lymphotoxin (LT) and tumour necrosis factor (TNF) promote 
the transdifferentiation of immunofibroblasts into FDCs50, but the signalling 
pathways that drive FRC differentiation are unknown. c, Within TLSs, dendritic 
cells and B cells may present local antigens to T cells, leading to T cell activation 
and proliferation. d, CD4 T cells with B cell helper functions, T follicular 
helper-like cells (Tfh-like cells) and T peripheral helper (Tph) cells187, interact 
with B cells in TLSs via several co-stimulation molecules, including ICOS–ICOSL, 
CD154–CD40 and CD153–CD30, in synergy with cytokines such as IL-21 and IL-10 
(ref. 13). These interactions promote B cell transdifferentiation into germinal  
centre B cells.
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TLSs are detected not only in synovial tissues, but also in lung79 and 
bone marrow80. These findings suggest the involvement of circulating 
cells or humoral factors in TLS development in autoimmune diseases.

Cancer
Inflammation and cancer are often accompanied by TLSs81 but their 
density varies between tumour types and between individuals with 
the same disease (Fig. 3; Supplementary Table 1). The reasons for this 
heterogeneity are unclear but tumour-intrinsic molecular features may 
contribute. For example, higher mutational burden is associated with 
higher TLS density in colorectal82–84, bladder85 and pancreatic cancers86. 
HER2 loss and hormone receptor-positivity in breast cancer87–89, and 
ALK rearrangements in non-small-cell lung cancer90, are associated 
with reduced TLS density, whereas the expression of viral antigens 
in head and neck squamous cell carcinoma shows conflicting data 
concerning correlation with TLS density91,92. A positive correlation 
between TLSs and the survival of patients with bladder cancer was 
first reported in 1970 (ref. 93) and similar findings have been reported 
for many other cancer types42. The presence of TLSs in the tumour 
microenvironment correlates with increased infiltration of adaptive 
immune cells42, and evidence suggests that B and T cells in TLSs are 
tumour specific15,94–99. T cell priming may take place in TLSs indepen-
dently of lymph nodes, suggesting a unique local function for TLSs in 
the tumour microenvironment.

The maturation stage of TLSs in cancer varies from B cell aggre-
gates to organized structures with germinal centres42,96. In untreated 
lung40,41, colorectal83 and bladder cancer100, mature, germinal 

centre-positive TLSs are a positive prognosticator of survival, whereas 
immature TLSs have either no association or a weak association  
with survival. In hepatocellular carcinoma, mature TLSs correlate with  
improved survival101–103, whereas immature TLSs serve as survival 
niches for tumour progenitor cells and confer a worse prognosis104. 
Similarly, in kidney cancer, TLSs are mostly immature and a higher 
density of these TLSs correlates with a dismal prognosis100, a phenom-
enon that is replicated in RCC-derived lung metastases105. Thus, TLSs 
correlate with improved outcome in many but not all cancer types, 
and differences in the TLS composition or maturation may explain 
this discrepancy.

Based on their presumed role in B and T cell priming, a high TLS 
density was expected to be associated with response to immunothera-
pies including immune checkpoint inhibitors (ICI). Some but not all 
studies have reported such an association. Methodological differ-
ences, small cohort sizes and other limitations might underlie these 
conflicting results, underscoring the need to establish standardized 
TLS definitions and quantification methods for future studies.

Two studies that used transcriptomic data to quantify TLSs in 
tumour samples reported that these structures were associated with 
improved response to ICI therapy in patients with metastatic kidney 
cancer and melanoma11,12. However, a large fraction of the samples 
that were analysed at baseline were lymph node metastases, which 
may make it difficult to attribute the transcriptomic data specifically 
to TLSs.

A study in patients with sarcoma who received anti-PD1 therapy 
reported an objective response rate of 30% in those who were selected 
based on baseline TLS positivity compared with 2.4% in an all-comer 
cohort106,107. However, the sarcoma histological subtypes differed 
significantly between the TLS-positive and the all-comer cohorts107, 
which could be a confounding factor108,109. In patients with high-risk 
bladder cancer, TLS density predicted response to ICI in a US phase I 
trial110 but not in the phase Ib NABUCCO trial in the Netherlands28; all 
clinical variables in these trials were comparable. TLS density is highly 
variable even among patients with the same disease; thus, the small 
sample sizes of these phase I trials lack sufficient statistical power to 
analyse the biomarker potential of TLS and may explain the conflict-
ing results. Retrospective analyses of patients with gastric cancer111 
and other tumour types including RCC112 reported that the presence 
of mature TLSs before ICI treatment was associated with improved 
responses to this therapy. Together, these findings suggest that the 
composition of TLSs is a more reliable predictive or prognostic factor 
than their density. Large prospective cohort studies are needed to 
determine whether TLSs are associated with a positive ICI response in 
kidney cancer and, if so, whether the discrepancy between this positive 
response and the negative prognostic association of TLSs in untreated 
patients100,105 can be attributed to the quality of the TLSs.

A meta-analysis showed that tumour mutation burden and CXCL13 
expression by tumour-infiltrating T cells were the main positive pre-
dictors of the response to ICIs across seven different cancer types113. 
Similarly, CXCL13-expressing PD-1+CD8+ T cells predicted the clinical 
response to ICI in lung cancer114. The relationship between CXCL13-
expressing T cells and TLSs remains to be investigated. Analyses 
of tumour samples from patients who have received ICI therapy or 
the GVAX tumour vaccine have consistently shown that those from 
responders have higher TLS density or higher levels of TLS-related 
transcripts than do those of non-responders11,28,85,115,116. This finding sug-
gests that TLSs develop in the tumour microenvironment in response 
to an ongoing immune response.

Box 1

Antigen exposure and TLS 
formation
Tertiary lymphoid structure (TLS) formation is thought to occur in 
response to chronic inflammatory cues in non-lymphoid organs 
in an antigen-dependent manner. In the settings of infection, 
cancer, transplant rejection and some autoimmune diseases, the 
presence of an antigen is obvious. Furthermore, evidence suggests 
that TLSs develop and persist owing to antigen exposure and 
resolve after antigen clearance. For example, in type 1 diabetes 
mellitus, the destruction of islet of Langerhans β-cells is caused by 
autoreactive T cells activated within TLSs, which resolve after the 
antigen stimulus is removed196. However, a 2022 study elegantly 
showed that a genetic deficiency in endothelial Notch signalling 
in blood vessels is sufficient to drive TLS formation in the kidney 
without any alterations of secondary lymphoid organs57. This 
finding is consistent with the observation that several organs in 
superaged (2-year-old) mice exhibit TLS without any injury7,21, 
possibly as a result of the decline in endothelial Notch signalling 
that occurs with age188. Further studies are needed to identify the 
roles of TLSs that are induced in an antigen-independent manner, 
establish whether these TLSs differ from those that are induced 
by antigen-specific lymphocytes and identify the mechanisms by 
which TLSs are induced and maintained in the absence of antigens.
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No data are currently available from sufficiently large cohorts 
to determine whether TLSs are a cause or a consequence of tumour-
specific immunity3. However, evidence suggests that TLS induction 
might have therapeutic potential as a stand-alone treatment or in 
combination with other (immune) therapies. In a mouse model of 
ovarian cancer, administration of recombinant CXCL13 induced TLSs 
and had antitumour efficacy117. In a peritoneal melanoma model, TLS 
development was increased by ICI therapy and correlated with tumour 
reduction53. Several studies have reported that treatment with ICIs in 
combination with intratumoural CXCL13 injection118, administration 
of stimulator of interferon genes (STING) agonist119 or TLR9 agonist120, 
targeted delivery of LIGHT (also known as TNSF14), which is a ligand 
of the lymphotoxin β-receptor (LTβR)121,122, or injection of lymph node-
derived stromal cells123, resulted in TLS development and improved 
control of experimental tumours compared with monotherapies 
(ICI or the second component alone). Synergistic effects were also 
observed when chemotherapy was combined with intratumoural 
CXCL13 and CCL21 injection to induce TLS development in a pancre-
atic cancer model124. In a chemotherapy-resistant colorectal cancer 
model, the combination of antiangiogenic agents with agonistic anti-
CD40 antibody induced vascular normalization, TLS development and  
T cell-mediated tumour control125. However, in experimental glioma, 
agonistic anti-CD40 antibody induced immature TLSs, which corre-
lated with an impaired response to ICI126. In a model of autochthonous 
pancreatic ductal adenocarcinoma, tumour antigen-specific DNA 
vaccination induced expansion of antigen-specific T cells and the 
development of mature TLSs but the effects on tumour growth were 
not reported127. For all of these treatments, TLS induction was just one 
of many immunostimulatory effects; thus, further studies are needed 
to investigate the specific contributions of TLSs to spontaneous or 
therapy-induced antitumour immunity.

HEVs could have crucial roles in TLS induction and represent a 
predecessor to TLSs. They develop in inflamed tissues, can promote 
the formation of T cell aggregates128,129 and are major sites of lympho-
cyte entry into tumours130. In patients with metastatic melanoma, the 
presence of tumour-associated HEVs was associated with a greater 
clinical response to treatment with ICIs, including improved survival130. 
Administration of an agonistic antibody to LTβR increased the pres-
ence of HEVs in experimental sarcoma, resulting in improved effector  
T cell function and a reduction in tumour growth130. Furthermore, com-
bined treatment with anti-VEGFR2 and anti-PDL1 antibodies stimulated 
tumour immunity by inducing HEVs in murine models131. Similarly, 
in a mouse metastatic breast cancer model, targeted delivery of an 
anti-neoplastic drug to tumours using a monoclonal antibody against 
surface molecules on HEVs improved tumour control132. Although the 
presence of HEVs is insufficient to drive TLS development, their role in 
this process warrants further investigation.

In summary, the available data suggest that mature TLSs are asso-
ciated with an antitumour immune response and improved survival 
in multiple cancer types. However, whether TLS development is a 
consequence of, or a prerequisite for, effective antitumour immunity 
is unknown.

Infection
The roles of TLSs in the context of infection have mostly been investi-
gated using pulmonary models. The lung is constantly exposed to path-
ogenic bacteria, viruses, allergens and harmful particles that are present 
in inhaled air133. In the lung, TLSs develop quickly in response to viral or 
bacterial infections and drive an effective immune response including 

antigen-specific T cells and B cells that provides protection against 
harmful pathogens134,135. Bacterial infection with Mycobacterium tuber-
culosis, Pseudomonas aeruginosa or Staphylococcus aureus induces TLS 
formation in the lung136,137. Intratracheal mucosal vaccination against 
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Fig. 3 | Presence of tertiary lymphoid structures in different tumour types. 
The proportion of tertiary lymphoid structure (TLS)-positive tumours was 
extracted from 57 published studies reporting histological assessment of TLSs 
in most common tumour types and was compared across organs by one-way 
ANOVA test. As TLSs mainly develop in the tumour periphery, studies that only 
performed TLS analysis in intratumoural areas were excluded. Treated cohorts 
were also excluded because neoadjuvant therapy impairs TLS development. In 
total, 72 cohorts were selected for analysis (see Supplementary Table 1 for details 
and references). Each independent cohort is represented by a separate symbol. 
Diverse patient characteristics were plotted as distinct cohorts where those data 
were provided. TLS development differs significantly between organs as well as 
within each organ, which may be due to differences between molecular tumour 
subtypes, as well as study-specific histological definitions of TLS (ranging 
from lymphocytic aggregates of any maturation stage to clusters with specific 
composition containing high endothelial venules, mature dendritic cells or 
organized B and T cell compartments). The proportion of TLS-positive tumours 
detected by H&E or immunostaining is similar, suggesting that both methods of 
histological assessment are reliable. BC, breast cancer; CRC, colorectal cancer; 
DCIS, ductal carcinoma in situ; GACA, gastric cancer; H&E, haematoxylin and 
eosin; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell 
carcinoma; HPV, human papilloma virus; HR, hormone receptor; IBC, invasive 
breast cancer (cohorts containing different molecular subtypes of breast 
cancer); MIBC, muscle invasive bladder cancer; NonMIBC, non-muscle invasive 
bladder cancer; NSCLC, non-small-cell lung cancer; OVCA, ovarian cancer; 
PDAC, pancreatic ductal adenocarcinoma; RCC, renal cell carcinoma; TMBhi, 
tumour mutational burden high (microsatellite instable CRC, or tumours with a 
mutational burden greater than the cohort median in MIBC and PDAC); TMBlo, 
tumour mutational burden low (microsatellite stable CRC or tumours with a 
mutation load equal to or below the cohort median in MIBC and PDAC); TNBC, 
triple-negative breast cancer.
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M. tuberculosis also results in TLS formation and impairment of this 
process ameliorated vaccine-induced immunity against the bacteria, 
demonstrating that TLS formation is important for the induction of 
protective immune responses138,139. Mucosal vaccine-induced immunity 
against M. tuberculosis is dependent on IL-17-producing Th17 cells, 
which are crucial for TLS development in the lung138.

Infection with influenza virus52 or severe acute respiratory syn-
drome corona virus (SARS-CoV)140 is also often accompanied by TLS 
development in the lung. In response to infection with influenza virus, 
mice that lacked SLOs developed TLSs, which mediated clearance of 
the infection and improved survival compared with mice with SLOs17. In 
mice with influenza virus infection, depletion of CD11chi dendritic cells 
after clearance of the virus from the lung resulted in disintegration of 
TLSs and a reduction in antibodies to the virus141. These results indicate 
protective roles of TLSs against viral infection.

The memory T cell population is heterogeneous and includes TRM 
cells with high expression of C-type lectin CD69 and/or the integrin 
CD103 (ref. 142). TRM reside in non-lymphoid tissues and govern local 
immunity in mucosal tissue in locations such as the lung, skin and 
gut142,143. Influenza virus infection induces heterogeneous CD4+ TRM 
cells, including T resident helper (TRH) cells that reside within TLSs and 
promote local antibody production that protects against influenza rein-
fection144. Mucosal vaccination with heat-killed Klebsiella pneumonia 
induces CD4+ TRM cells, which have an important role in the bacterial 
clearance of K. pneumonia infection63. SARS-CoV-2 infection and mRNA 
COVID-19 vaccination also generate TRM cells145,146 and the number of 
SARS-CoV-2-specific TRM cells in the airway correlates with survival in  
patients with severe COVID-19 (ref. 147), suggesting that TRM cells and  
TLSs are also involved in protective immunity against SARS-CoV-2. 
Thus, TLSs with TRM cells in the lung are a key target for the develop-
ment of novel mucosal vaccines against pathogens that cause severe 
acute respiratory diseases.

Patients with severe complicated pyelonephritis who are resistant 
to antibiotics and require surgical resections exhibit many TLSs in the 
renal cortex and pelvis21,51, suggesting that renal TLSs also generate anti-
pathogen adaptive immune responses. How the cellular and molecular 
components, functions and trigger of TLSs differ between kidneys and 
other mucosal tissues is unknown and requires further investigation.

Chronic inflammatory diseases and ageing
TLSs are induced in chronic inflammatory diseases of the lung, kidney 
and other organs. Ageing is also associated with chronic inflammation, 
which contributes to age-associated morbidity and mortality. Targeting 
this age-dependent non-specific inflammation, termed inflammaging, is 
an important strategy for preventing age-related diseases and extending 
the healthy lifespan1. Ageing is also gaining attention as a cause of TLS 
formation in various organs. Emerging evidence suggests that TLSs and 
their molecular machinery are involved in impaired tissue regeneration 
capacity in older people and in age-related diseases7,8,13,148,149.

Lung. Allergens, inhaled particles, DAMPs and self-antigens can trig-
ger TLS formation in the lung. In contrast to their protective role in  
lung infections, TLSs have pathogenic roles in chronic inflammatory lung  
diseases such as asthma and chronic obstructive pulmonary disease 
(COPD), which is an age-related disease induced by chronic exposure to 
cigarette smoke61,150,151. In patients with COPD, TLS number is positively 
associated with disease severity152,153. Type 3 innate lymphoid cells 
(ILC3s) that express neuropilin-1 have LTi activity and are involved in 
the initiation of TLS development via the production of IL-17A and IL-22 

in patients with COPD154. Lymphotoxin β-receptor (LTβR) signalling 
promotes TLS development and LTβR ligand expression is enhanced 
in immune cells from these patients151. In mice that were chronically 
exposed to cigarette smoke, inhibition of LTβR signalling disrupted 
smoking-related TLSs in the lung and induced regeneration of lung 
tissue151, indicating that TLSs contribute to shaping the pathogenesis 
of lung diseases during chronic inflammation.

A subpopulation of memory Th2 cells, memory pathogenic Th2 
(Tpath2) cells, that produce large amounts of inflammatory cytokines, 
such as IL-5, IL-13 and amphiregulin, are involved in the pathogenesis 
of various inflammatory diseases155,156. Memory Tpath2 cells show the 
characteristics of TRM cells and are maintained within lung TLSs61,157. 
Unique lymphatic endothelial cells (LECs) that express Thy1 are crucial 
for memory Tpath2 cell survival in TLSs in the inflamed lung, possibly 
by providing the key survival cytokine IL-7 (ref. 61). Thy1+ LECs also 
produce IL-33 and the T cell-attracting chemokines CCL21 and CCL19. 
IL-33 induces enhanced production of IL-5, IL-13 and amphiregulin by 
memory Tpath2 cells. Thus, Thy1+ LECs generate an inflammatory niche 
and regulate the quantity and quality of TLS-residing memory Tpath2 
cells during chronic inflammation155. These data suggest that memory 
Tpath2 cells and Thy1+ LECs, which are TLS pathogenic components in 
the inflamed lung, could be potent therapeutic targets for intractable 
inflammatory diseases.

Differences in the cellular components of lung TLSs may con-
tribute to their opposite roles in infection and chronic inflammation. 
However, further studies are needed to determine the critical factors 
that dictate the composition of lung TLS under different inflammatory 
conditions.

Kidney. TLSs can be induced in CKDs, including IgA nephropathy158–160, 
lupus nephritis65, IgG4-related kidney diseases161, interstitial nephri-
tis162,163, membranous nephropathy164 and antineutrophil cytoplasmic 
antibody (ANCA)-associated vasculitis165,166 as well as in kidney 
allografts37,39,44,167–170. Clinical studies have demonstrated that TLS 
formation is associated with poor kidney outcomes in these diseases 
(Supplementary Table 2).

Studies in patients with IgA nephropathy have reported that TLSs 
were detected in 30–40% of participants and were associated with 
higher levels of serum creatinine, proteinuria and blood pressure, 
greater severity of glomerulonephritis and future disease progres-
sion158–160. A study in patients with membranous nephropathy reported 
that TLSs were detected in 34.2% of participants and were associated 
with higher levels of serum creatinine, proteinuria and blood pressure, 
lower serum albumin concentrations and lower remission rates164. 
Notably, a higher proportion of patients with membranous nephropa-
thy who had renal TLSs had anti-PLA2R autoantibodies than those 
without TLSs (72.5% versus 47.4%)164. However, most of these studies 
were observational and the cellular and molecular characteristics of 
TLSs as well as the mechanisms that underlie the observed associations 
remain unclear.

In elderly people, AKI often leads to kidney failure149,171 but the 
mechanism is unclear. In mice, we found that aged (1-year-old) but 
not young kidneys (2-month-old) develop TLSs after injury and that 
TLS development was associated with impaired regenerative capac-
ity in the aged, injured kidney7,21. To define the cellular and molecular 
basis for TLSs in the kidney, we established an inducible kidney TLS 
model using 1-year-old mice. Using this model, which enables various 
maturational stages of TLSs to be induced by changing the severity 
of injury, we performed a detailed analysis of the roles of stromal and 
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haematopoietic cells in age-dependent TLS development7,13,21. We 
found that in aged, injured kidneys, fibroblasts have crucial roles in 
TLS formation and maturation54. In young, injured kidneys, resident 
fibroblasts transdifferentiate into scar-producing myofibroblasts at 
the cost of physiological erythropoietin production, leading to fibro-
sis and renal anaemia, which are common pathological conditions in 
CKD172–174. In aged, injured kidneys, fibroblasts also transdifferentiate 
into TLS-related heterogeneous fibroblasts with distinct phenotypes7 
(Fig. 2b). In the early phase of TLS formation, fibroblasts surround-
ing TLSs produce retinoic acid, which promotes transdifferentiation  
of fibroblasts inside TLSs into neural crest marker p75NTR-expressing 
fibroblasts, some of which produce CXCL13 and CCL19. Subsequently, 
some of the fibroblasts inside TLSs lose p75NTR expression and mature 
into CXCL13-producing FDCs. Most of these TLS-associated fibroblasts 
are derived from a single lineage of resident fibroblasts7. These obser-
vations indicate that paracrine interactions between heterogeneous 
fibroblasts orchestrate TLS formation in the kidney.

Intimate cellular interactions also occur in the TLS haematopoi-
etic compartment. We showed the accumulation of two unique age-
dependent lymphocytes, senescence-associated T (SAT) cells and 
age-associated B cells (ABCs) in aged, injured kidneys13. SAT cells are 
unique CD4 T cells that exhibit defective proliferation and production 
of T cell cytokines in response to T cell receptor stimulation, but secrete 
abundant atypical humoral factors such as osteopontin175,176. ABCs are 
defined as Tbx21+CD11b+/CD11c+ B cells and act as antigen-presenting 
cells177,178 (Fig. 2c). In aged, injured kidneys, SAT cells and ABCs reside 
within TLSs in close contact with each other. SAT cells produce ABC-
inducing factors, such as IL-21 and IFNγ179 and expand together with 
ABCs after injury13. In addition to IFNγ and IL-21, unbiased receptor 
ligand analysis identified CD153–CD30 (Tnfsf8–Tnfrsf8) signalling 
between SAT cells and ABCs. In mice, genetic deficiency of CD153 or 
CD30 impaired functional SAT induction, resulting in a reduction 
in ABC numbers and attenuation of TLS formation with improved 
kidney function and a reduction in fibrosis and inflammation13. These 
results indicate that CD153–CD30 signalling is required for functional 
SAT cell induction and TLS formation and that TLS formation is mala-
daptive in aged, injured kidneys (Fig. 2d). SAT cells and ABCs are also 
induced in mouse lupus nephritis models and show similar molecular 
interactions to those that occur in aged, injured kidneys180.

Cellular and molecular components of age-dependent TLS forma-
tion are similar in mice and humans, suggesting that this phenomenon 
is conserved across species7,13,21. Elderly (2-year-old) mice without 
kidney injury and healthy aged people without CKD spontaneously 
develop TLSs in the kidney7,21,181. Further studies are needed to identify 
the mechanisms that lead to this spontaneous TLS formation and the 
involvement of SAT cells and ABCs in this process.

Other organs. Spontaneous age-dependent TLS formation has also 
been observed in organs such as the liver and bladder22,23,181. SAT cells 
and ABC development are observed in age-dependent TLSs in the 
bladder and spleen22,180,182 and in kidneys and visceral adipose tissues 
in conditions that accelerate immune ageing, such as autoimmune 
diseases180,183,184 and obesity185,186 in mouse models. Studies that investi-
gated the effects of loss of function of SAT cells and ABCs demonstrated 
their pathogenic potentials in these contexts13,180,183,184,186, which is 
consistent with the findings in aged, injured kidneys that are described 
above.

A subset of peripheral T helper cells with B cell helper functions 
that express PD1, CD4 and CD153 (ref. 187) and ABCs that express CD30 

was identified in joint tissue from patients with rheumatoid arthri-
tis, suggesting a role of CD153–CD30 signalling in T cell–B cell inter-
actions in human TLSs13. The presence of an age-dependent human 
CD153+PD1+CD4+ T cell population with B cell helper functions should 
be investigated in future studies.

Another potential cellular driver of age-dependent TLS formation 
is vascular endothelial cells. Loss of Notch signalling in endothelial cells 
results in TLS formation in the kidneys57. Notch signalling components 
and Notch-dependent vascular networks in bone decrease with age188, 
but whether a similar age-dependent decrease in Notch signalling 
occurs in endothelial cells and contributes to age-dependent TLS 
formation remains to be investigated. Age-dependent phenotypic 
changes in other cell populations such as fibroblasts and pericytes 
could also potentially contribute to TLS formation, but this hypothesis 
requires further investigation. TLSs that are induced in aged organs 
and in autoimmune diseases might be maladaptive and are a potential 
novel therapeutic target7,8,13,148.

Conclusions and future research
In the past two decades, knowledge of TLSs has substantially expanded. 
Molecular and phenotypic heterogeneity within TLSs is increasingly 
recognized in mice and humans and is associated with the disease 
course in autoimmune diseases, cancer, infection and chronic inflam-
matory diseases. Ageing has also emerged as a cause of TLS formation 
and the molecular details and therapeutic potential are beginning to 
be unravelled.

The unique contribution of TLSs to local immunity in chronic 
inflammatory conditions might result from their optimal adaptation 
to the local tissue microenvironment. However, the mechanisms by 
which TLSs adapt to tissue and generate tailored immune responses 
in situ are largely unknown and many unanswered questions remain 
(Box 2). For example, the initial event that leads to TLS induction and 
the factors that influence susceptibility to TLS development in different 
organs and diseases remain to be determined.

In addition to multistep interactions between immune cells and 
non-immune cells, factors that shape the tissue microenvironment 
may influence immune responses generated within TLSs. For example, 
several studies have shown that the ionic microenvironment directly 

Box 2

Unresolved questions
 • What stimuli drive the initiation, maturation and maintenance of 
tertiary lymphoid structures (TLSs)?

 • What factors determine the composition of TLSs?
 • Are TLS-inducing stimuli shared between different tissues?
 • Does the abundance of TLS-inducing stimuli in an organ explain 
its propensity for TLS development?

 • What factors or mechanisms explain the heterogeneity of TLSs 
within an organ?

 • Are TLSs a cause or a consequence of an ongoing integrated 
immune response?

 • Can TLSs be therapeutically targeted without affecting systemic 
immunity?
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affects a variety of immune cells. In the tumour microenvironment, 
extracellular potassium released by necrotic cells suppresses T cell 
effector functions189. Furthermore, increased sodium in inflammatory 
tissues promotes IL-17-producing CD4+ T cell development and inhibits 
regulatory T cell differentiation, exacerbating inflammation190,191. The 
effects of the injured tissue microenvironment on immune responses 
in TLSs should be further investigated.

Even in the same disease, the clinical influence of TLSs varies 
depending on the disease phase and the cellular composition of the 
TLSs. Furthermore, how TLSs influence responses to therapy and 
how therapy changes the function of TLSs are poorly understood. 
The opposing clinical correlations of TLSs in different diseases indi-
cate that the optimal approach for targeting these structures must be 
defined in a context-dependent manner. It is therefore important to 
determine the conditions that promote the development or induce 
the resolution of TLSs.

Chronic inflammation is a common feature of all forms of CKD 
and AKI149,192–194 and TLSs could potentially drive CKD progression 
by maintaining and accelerating inflammation irrespective of the 
aetiology. Therapeutic interventions that target TLS formation could 
potentially be beneficial in CKD and other chronic inflammatory and 
autoimmune diseases. As CKD can progress without overt symptoms, 
the development of non-invasive biomarkers for TLS detection will also 
be necessary. Furthermore, the identification of essential pathways for 
TLS formation will enable selective targeting to induce TLS develop-
ment or resolution as required to obtain clinical benefits in different 
diseases. Accumulation of basic and clinical evidence, particularly in 
human TLSs, using standardized quantification approaches is neces-
sary to guide the future development of novel therapeutic approaches 
to TLS-related chronic diseases.

Published online: 12 April 2023
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