Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gasdermins and pyroptosis in the kidney

Abstract

Pyroptosis is a form of regulated cell death that is mediated by the membrane-targeting, pore-forming gasdermin family of proteins. Pyroptosis was initially described as a caspase 1- and inflammasome-dependent cell death pathway typified by the loss of membrane integrity and the secretion of cytokines such as IL-1β. However, gasdermins are now recognized as the principal effectors of this form of regulated cell death; activated gasdermins insert into cell membranes, where they form pores that result in the secretion of cytokines, alarmins and damage-associated molecular patterns and cause cell membrane rupture. It is now evident that gasdermins can be activated by inflammasome- and caspase-independent mechanisms in multiple cell types and that crosstalk occurs between pyroptosis and other cell death pathways. Although they are important for host antimicrobial defence, a growing body of evidence supports the notion that pyroptosis and gasdermins have pathological roles in cancer and several non-microbial diseases involving the gut, liver and skin. The well-documented roles of inflammasome activity and apoptosis pathways in kidney diseases suggests that gasdermins and pyroptosis may also be involved to some extent. However, despite some evidence for involvement of pyroptosis in the context of acute kidney injury and chronic kidney disease, our understanding of gasdermin biology and pyroptosis in the kidney remains limited.

Key points

  • Pyroptosis is a pro-inflammatory form of regulated cell death that is mediated by the gasdermin family of proteins.

  • The gasdermin family includes gasdermins A–E and pejvakin; the different family members are differentially expressed in tissues and are proteolytically activated by caspases and granzymes.

  • Activated gasdermins insert into cell membranes, where they form pores that result in the secretion of cytokines, the release of cellular alarmins and damage-associated molecular patterns, and cell membrane rupture.

  • Pyroptosis and gasdermins participate in host antimicrobial defence and in the pathogenesis of non-microbial diseases such as cancer, gastrointestinal disease and kidney disease.

  • The role of pyroptosis and gasdermins in kidney disease is under-studied and incompletely understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Canonical and non-canonical GSDMD regulation in leukocytes.
Fig. 2: Inflammasome-independent gasdermin regulation.
Fig. 3: Proposed mechanisms of pyroptosis in kidney diseases.

Similar content being viewed by others

References

  1. Gery, I., Davies, P., Derr, J., Krett, N. & Barranger, J. A. Relationship between production and release of lymphocyte-activating factor (interleukin 1) by murine macrophages. 1. Effects of various agents. Cell Immunol. 64, 293–303 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Hogquist, K. A., Nett, M. A., Unanue, E. R. & Chaplin, D. D. Interleukin 1 is processed and released during apoptosis. Proc. Natl Acad. Sci. USA 88, 8485–8489 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cerretti, D. P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A. & Yuan, J. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Zychlinsky, A., Fitting, C., Cavaillon, J. M. & Sansonetti, P. J. Interleukin-1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J. Clin. Invest. 94, 1328–1332 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, Y. J., Smith, M. R., Thirumalai, K. & Zychlinsky, A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15, 3853–3860 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl Acad. Sci. USA 96, 2396–2401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Watson, P. R. et al. Salmonella enterica serovars Typhimurium and Dublin can lyse macrophages by a mechanism distinct from apoptosis. Infect. Immun. 68, 3744–3747 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cookson, B. T. & Brennan, M. A. Pro-inflammatory programmed cell death. Trends Microbiol. 9, 113–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Sagulenko, V. et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 20, 1149–1160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug. Discov. 20, 384–405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weir, A. & Vince, J. E. No longer married to inflammasome signaling: the diverse interacting pathways leading to pyroptotic cell death. Biochem. J. 479, 1083–1102 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Booty, L. M. & Bryant, C. E. Gasdermin D and beyond – gasdermin-mediated pyroptosis in bacterial infections. J. Mol. Biol. 434, 167409 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Hou, J., Hsu, J. M. & Hung, M. C. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity. Mol. Cell 81, 4579–4590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, S., Liang, Y., Yao, J., Li, D. F. & Wang, L. S. Role of pyroptosis in inflammatory bowel disease (IBD): from gasdermins to DAMPs. Front. Pharmacol. 13, 833588 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng, Y. et al. Pyroptosis in inflammation-related respiratory disease. J. Physiol. Biochem. 78, 721–737 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375, 221–225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamura, M. et al. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89, 618–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Saeki, N., Kuwahara, Y., Sasaki, H., Satoh, H. & Shiroishi, T. Gasdermin (Gsdm) localizing to mouse chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm. Genome 11, 718–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Runkel, F. et al. The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3. Genomics 84, 824–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka, S. et al. A new Gsdma3 mutation affecting anagen phase of first hair cycle. Biochem. Biophys. Res. Commun. 359, 902–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Saeki, N. et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes. Chromosomes Cancer 48, 261–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Hu, Y., Jin, S., Cheng, L., Liu, G. & Jiang, Q. Autoimmune disease variants regulate GSDMB gene expression in human immune cells and whole blood. Proc. Natl Acad. Sci. USA 114, E7860–E7862 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, X. et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. J. Allergy Clin. Immunol. 147, 894–909 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, Q. et al. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J. Mol. Cell Biol. 11, 496–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Das, S. et al. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc. Natl Acad. Sci. USA 113, 13132–13137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carl-McGrath, S., Schneider-Stock, R., Ebert, M. & Rocken, C. Differential expression and localisation of gasdermin-like (GSDML), a novel member of the cancer-associated GSDMDC protein family, in neoplastic and non-neoplastic gastric, hepatic, and colon tissues. Pathology 40, 13–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Watabe, K. et al. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn. J. Cancer Res. 92, 140–151 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamagishi, R. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci. Immunol. 7, eabl7209 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, J. et al. Epithelial gasdermin D shapes the host–microbial interface by driving mucus layer formation. Sci. Immunol. 7, eabk2092 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Delmaghani, S. et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat. Genet. 38, 770–778 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Tan, G., Huang, C., Chen, J., Chen, B. & Zhi, F. Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn’s disease by promoting intestinal inflammation. Cell Rep. 35, 109265 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Van Laer, L. et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat. Genet. 20, 194–197 (1998).

    Article  PubMed  Google Scholar 

  42. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Akino, K. et al. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 98, 88–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, M. S. et al. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene 27, 3624–3634 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, M. S. et al. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem. Biophys. Res. Commun. 370, 38–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miguchi, M. et al. Gasdermin C is upregulated by inactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PLoS One 11, e0166422 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang, Y. et al. Type 1 interferon aggravates lipopolysaccharide-induced sepsis through upregulating caspase-11 and gasdermin D. J. Physiol. Biochem. 77, 85–92 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368, eaaz7548 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Kayagaki, N. et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci. Signal. 12, eaax4917 (2019).

    Article  PubMed  Google Scholar 

  50. Saeki, N. et al. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-β-dependent apoptotic signalling. Oncogene 26, 6488–6498 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Delmaghani, S. et al. Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163, 894–906 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Van Laer, L. et al. DFNA5: hearing impairment exon instead of hearing impairment gene? J. Med. Genet. 41, 401–406 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang, H. et al. Further evidence for “gain-of-function” mechanism of DFNA5 related hearing loss. Sci. Rep. 8, 8424 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wu, H. et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23–32 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, Z. et al. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity 51, 43–49.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sborgi, L. et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35, 1766–1778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mulvihill, E. et al. Mechanism of membrane pore formation by human gasdermin-D. EMBO J. 37, e98321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, X. et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007–1020 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Heilig, R. et al. The gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 48, 584–592 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  Google Scholar 

  69. Platnich, J. M. et al. Shiga toxin/lipopolysaccharide activates caspase-4 and gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Rep. 25, 1525–1536.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Ruhl, S. & Broz, P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur. J. Immunol. 45, 2927–2936 (2015).

    Article  PubMed  Google Scholar 

  71. Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, P. H., Lin, H. Y., Kuo, C. C. & Yang, L. T. N-terminal functional domain of gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting. J. Biomed. Sci. 22, 44 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Demarco, B., Ramos, S. & Broz, P. Detection of gasdermin activation and lytic cell death during pyroptosis and apoptosis. Methods Mol. Biol. 2523, 209–237 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, Z. et al. Caspase-1 engages full-length gasdermin D through two distinct interfaces that mediate caspase recruitment and substrate cleavage. Immunity 53, 106–114.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, K. et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180, 941–955.e20 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Rathinam, V. A. & Fitzgerald, K. A. Inflammasome complexes: emerging mechanisms and effector functions. Cell 165, 792–800 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, S. et al. Identification and characterization of Ich-3, a member of the interleukin-1β converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J. Biol. Chem. 271, 20580–20587 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Van de Craen, M. et al. Characterization of seven murine caspase family members. FEBS Lett. 403, 61–69 (1997).

    Article  PubMed  Google Scholar 

  80. Ramirez, M. L. G. et al. Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1. J. Biol. Chem. 293, 7058–7067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bibo-Verdugo, B., Snipas, S. J., Kolt, S., Poreba, M. & Salvesen, G. S. Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11. J. Biol. Chem. 295, 11292–11302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Taabazuing, C. Y., Okondo, M. C. & Bachovchin, D. A. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem. Biol. 24, 507–514.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Demarco, B. et al. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci. Adv. 6, eabc3465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, E10888–E10897 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, K. W. et al. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J. 38, e101638 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Antonopoulos, C., El Sanadi, C., Kaiser, W. J., Mocarski, E. S. & Dubyak, G. R. Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1β via caspase-8 in dendritic cells. J. Immunol. 191, 4789–4803 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Bossaller, L. et al. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508–5512 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Gringhuis, S. I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol. 13, 246–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Pierini, R. et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 19, 1709–1721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Maelfait, J. et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8. J. Exp. Med. 205, 1967–1973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Silva, M. T. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 584, 4491–4499 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, B. & Abbott, D. W. Gasdermin E permits interleukin-1 beta release in distinct sublytic and pyroptotic phases. Cell Rep. 35, 108998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, Y. et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci. Immunol. 5, eaax7969 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Deng, W. et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 602, 496–502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. LaRock, D. L. et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 605, 527–531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).

    Article  PubMed  Google Scholar 

  102. Karmakar, M. et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11, 2212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Burgener, S. S. et al. Cathepsin G inhibition by Serpinb1 and Serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-driven inflammation. Cell Rep. 27, 3646–3656.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kambara, H. et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 22, 2924–2936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3, eaar6689 (2018).

    Article  PubMed  Google Scholar 

  106. Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Coles, H. S., Burne, J. F. & Raff, M. C. Large-scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor. Development 118, 777–784 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Defourny, J. et al. Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage. Proc. Natl Acad. Sci. USA 116, 8010–8017 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cheng, C. H., Lee, Y. S., Chang, C. J., Lin, J. C. & Lin, T. Y. Genetic polymorphisms in inflammasome-dependent innate immunity among pediatric patients with severe renal parenchymal infections. PLoS One 10, e0140128 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Purves, J. T. & Hughes, F. M. Jr Inflammasomes in the urinary tract: a disease-based review. Am. J. Physiol. Ren. Physiol. 311, F653–F662 (2016).

    Article  CAS  Google Scholar 

  113. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Komada, T. et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J. Am. Soc. Nephrol. 29, 1165–1181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J. Clin. Invest. 123, 236–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Vilaysane, A. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 21, 1732–1744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, Z. et al. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis. 9, 983 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lau, A. et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J. Clin. Invest. 128, 2894–2913 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Chung, H. et al. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death Differ. 23, 1331–1346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Miao, N. et al. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int. 96, 1105–1120 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, H. et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ. 27, 2568–2585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shen, X., Wang, H., Weng, C., Jiang, H. & Chen, J. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity. Cell Death Dis. 12, 186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xia, W. et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis. 12, 139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tonnus, W. et al. Gasdermin D-deficient mice are hypersensitive to acute kidney injury. Cell Death Dis. 13, 792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article  PubMed  Google Scholar 

  128. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Li, Y. et al. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy. Cell Death Differ. 28, 2333–2350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Beckerman, P. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23, 429–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu, J. et al. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J. Clin. Invest 131, e136329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Balzer, M. S. et al. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat. Commun. 13, 4018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stack, J. H. et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J. Immunol. 175, 2630–2634 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Kahlenberg, J. M. & Kaplan, M. J. The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr. Opin. Rheumatol. 26, 475–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Su, X. et al. NLRP3 inflammasome: a potential therapeutic target to minimize renal ischemia/reperfusion injury during transplantation. Transpl. Immunol. 75, 101718 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Wada, J. & Makino, H. Innate immunity in diabetes and diabetic nephropathy. Nat. Rev. Nephrol. 12, 13–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Hochheiser, I. V. et al. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature 604, 184–189 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Krishnan, S. M. et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc. Res. 115, 776–787 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Ludwig-Portugall, I. et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int. 90, 525–539 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Wu, M. et al. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism 118, 154748 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Zou, X.-f, Gu, J.-h, Duan, J.-h, Hu, Z.-d & Cui, Z.-l The NLRP3 inhibitor Mcc950 attenuates acute allograft damage in rat kidney transplants. Transpl. Immunol. 61, 101293 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Mangan, M. S. J. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug. Discov. 17, 588–606 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Newton, K., Dixit, V. M. & Kayagaki, N. Dying cells fan the flames of inflammation. Science 374, 1076–1080 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Juliana, C. et al. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem. 285, 9792–9802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kolati, S. R. et al. BAY 11-7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-κB pathway. Env. Toxicol. Pharmacol. 39, 690–699 (2015).

    Article  CAS  Google Scholar 

  149. Zhao, J. et al. Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-κB activation. Int. Immunopharmacol. 17, 116–122 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wannamaker, W. et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1β and IL-18. J. Pharmacol. Exp. Ther. 321, 509–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. McKenzie, B. A. et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc. Natl Acad. Sci. USA 115, E6065–E6074 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sogawa, Y. et al. Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci. Rep. 7, 8801 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wen, S. et al. VX-765 ameliorates renal injury and fibrosis in diabetes by regulating caspase-1-mediated pyroptosis and inflammation. J. Diabetes Investig. 13, 22–33 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00205465 (2007).

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01048255 (2014).

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01501383 (2020).

  158. Chauvier, D., Ankri, S., Charriaut-Marlangue, C., Casimir, R. & Jacotot, E. Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ. 14, 387–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Homsi, E., Janino, P. & de Faria, J. B. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 69, 1385–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Guo, R., Wang, Y., Minto, A. W., Quigg, R. J. & Cunningham, P. N. Acute renal failure in endotoxemia is dependent on caspase activation. J. Am. Soc. Nephrol. 15, 3093–3102 (2004).

    Article  PubMed  Google Scholar 

  161. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 3, eaat2738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Dinarello, C. A., Simon, A. & van der Meer, J. W. M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug. Discov. 11, 633–652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ling, Y. H. et al. Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension. Pharm. Res. 116, 77–86 (2017).

    Article  CAS  Google Scholar 

  165. Loustau, C. et al. Effectiveness and safety of anakinra in gout patients with stage 4–5 chronic kidney disease or kidney transplantation: a multicentre, retrospective study. Jt. Bone Spine 85, 755–760 (2018).

    Article  CAS  Google Scholar 

  166. Ridker, P. M. et al. Inhibition of interleukin-1β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J. Am. Coll. Cardiol. 71, 2405–2414 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Buckley, L. F., Viscusi, M. M., Van Tassell, B. W. & Abbate, A. Interleukin-1 blockade for the treatment of pericarditis. Eur. Heart J. Cardiovasc. Pharmacother. 4, 46–53 (2017).

    Article  PubMed Central  Google Scholar 

  168. Klein, A. L. et al. Phase 3 trial of interleukin-1 trap rilonacept in recurrent pericarditis. N. Engl. J. Med. 384, 31–41 (2020).

    Article  PubMed  Google Scholar 

  169. Chao, K. L., Kulakova, L. & Herzberg, O. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proc. Natl Acad. Sci. USA 114, E1128–E1137 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by the Canadian Institutes for Health Research. E.E.E. is funded by a Snyder Institute for Chronic Diseases Beverly-Phillips Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

E.E.E. and D.A.M researched data for the article, contributed substantially to discussion of the content and wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Daniel A. Muruve.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Andreas Linkermann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elias, E.E., Lyons, B. & Muruve, D.A. Gasdermins and pyroptosis in the kidney. Nat Rev Nephrol 19, 337–350 (2023). https://doi.org/10.1038/s41581-022-00662-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00662-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing