Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of necroptosis in kidney health and disease

Abstract

Cell death, particularly that of tubule epithelial cells, contributes critically to the pathophysiology of kidney disease. A body of evidence accumulated over the past 15 years has ascribed a central pathophysiological role to a particular form of regulated necrosis, termed necroptosis, to acute tubular necrosis, nephron loss and maladaptive renal fibrogenesis. Unlike apoptosis, which is a non-immunogenic process, necroptosis results in the release of cellular contents and cytokines, which triggers an inflammatory response in neighbouring tissue. This necroinflammatory environment can lead to severe organ dysfunction and cause lasting tissue injury in the kidney. Despite evidence of a link between necroptosis and various kidney diseases, there are no available therapeutic options to target this process. Greater understanding of the molecular mechanisms, triggers and regulators of necroptosis in acute and chronic kidney diseases may identify shortcomings in current approaches to therapeutically target necroptosis regulators and lead to the development of innovative therapeutic approaches.

Key points

  • Necroptosis is a form of programmed cell death that leads to cell lysis and an inflammatory response in neighbouring tissues; dysregulation of the pathway is widely implicated in kidney diseases.

  • The core regulators of the necroptosis pathway are the kinases, RIPK1 and RIPK3, and the executioner pseudokinase, MLKL; each of these proteins is regulated by diverse interactions and modifications.

  • Most experimental studies of necroptosis in kidney diseases have been performed in rodent models of disease; further studies are therefore essential to define the contribution of this cell death mode to human kidney diseases.

  • RIPK1 inhibitors are currently being explored in clinical trials to treat neuronal and inflammatory diseases, but so far, the results have not been convincing; future trials are required to establish the viability of targeting necroptosis in kidney diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of necroptotic signalling.
Fig. 2: Regulation of necroptotic signalling.
Fig. 3: Necroptosis in acute kidney injury.
Fig. 4: Necroptosis in chronic kidney disease.

Similar content being viewed by others

References

  1. Müller, T. et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell. Mol. Life Sci. 74, 3631–3645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Choi, M. E., Price, D. R., Ryter, S. W. & Choi, A. M. K. Necroptosis: a crucial pathogenic mediator of human disease. J. Clin. Invest. Insight 4, e128834 (2019).

    Google Scholar 

  4. Kearney, C. J. & Martin, S. J. An inflammatory perspective on necroptosis. Mol. Cell 65, 965–973 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mompeán, M. et al. The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell 173, 1244–1253.e10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen, X. et al. Mosaic composition of RIP1-RIP3 signalling hub and its role in regulating cell death. Nat. Cell Biol. 24, 471–482 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Sethi, A. et al. Membrane permeabilization is mediated by distinct epitopes in mouse and human orthologs of the necroptosis effector, MLKL. Cell Death Differ. 29, 1804–1815 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Yuan, F. et al. Z-DNA binding protein 1 promotes heatstroke-induced cell death. Science 376, 609–615 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, W., Fan, W., Guo, J. & Wang, X. Osmotic stress activates RIPK3/MLKL-mediated necroptosis by increasing cytosolic pH through a plasma membrane Na+/H+ exchanger. Sci. Signal. 15, eabn5881 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, T. et al. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis. Cell 180, 1115–1129.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan, F. K., Luz, N. F. & Moriwaki, K. Programmed necrosis in the cross talk of cell death and inflammation. Annu. Rev. Immunol. 33, 79–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Meng, Y. et al. Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nat. Commun. 12, 6783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Samson, A. L. et al. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat. Commun. 11, 3151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duprez, L. et al. RIP Kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Meng, Y., Sandow, J. J., Czabotar, P. E. & Murphy, J. M. The regulation of necroptosis by post-translational modifications. Cell Death Differ. 28, 861–883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weinlich, R. & Green, D. R. The two faces of receptor interacting protein kinase-1. Mol. Cell 56, 469–480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, W. et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J. Biol. Chem. 288, 16247–16261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meng, Y. et al. Human RIPK3 C-lobe phosphorylation is essential for necroptotic signaling. Cell Death Dis. 13, 565 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Samson, A. L. et al. A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Cell Death Differ. 28, 2126–2144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol. Cell 66, 698–710 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dondelinger, Y. et al. MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat. Cell Biol. 19, 1237–1247 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Roedig, J. et al. USP22 controls necroptosis by regulating receptor-interacting protein kinase 3 ubiquitination. EMBO Rep. 22, e50163 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Garcia, L. R. et al. Ubiquitylation of MLKL at lysine 219 positively regulates necroptosis-induced tissue injury and pathogen clearance. Nat. Commun. 12, 3364 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoon, S., Kovalenko, A., Bogdanov, K. & Wallach, D. MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47, 51–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Z. et al. Oligomerization-driven MLKL ubiquitylation antagonizes necroptosis. EMBO J. 40, e103718 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoon, S., Bogdanov, K. & Wallach, D. Site-specific ubiquitination of MLKL targets it to endosomes and targets Listeria and Yersinia to the lysosomes. Cell Death Differ. 29, 306–322 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Geserick, P. et al. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis. 6, e1884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Preston, S. P. et al. Epigenetic silencing of RIPK3 in hepatocytes prevents MLKL-mediated necroptosis from contributing to liver pathologies. Gastroenterology 163, 1643–1657 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Sarhan, M. et al. Immunological consequences of kidney cell death. Cell Death Dis. 9, 114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mahdi, L. K. et al. Discovery of a family of mixed lineage kinase domain-like proteins in plants and their role in innate immune signaling. Cell Host Microbe 28, 813–824.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Nailwal, H. & Chan, F. K. Necroptosis in anti-viral inflammation. Cell Death Differ. 26, 4–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Kearney, C. J. et al. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death Differ. 22, 1313–1327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, Z. et al. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation. Immunity 54, 247–258.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petrie, E. J. et al. Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3. Cell Rep. 28, 3309–3319.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Pearson, J. S. et al. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat. Microbiol. 2, 16258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 120, c179–c184 (2012).

    Article  PubMed  Google Scholar 

  47. Pefanis, A., Ierino, F. L., Murphy, J. M. & Cowan, P. J. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int. 96, 291–301 (2019).

    Article  PubMed  Google Scholar 

  48. Wu, M. Y. et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell. Physiol. Biochem. 46, 1650–1667 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Linkermann, A., Stockwell, B. R., Krautwald, S. & Anders, H. J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat. Rev. Immunol. 14, 759–767 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Linkermann, A. et al. Rip1 (Receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 81, 751–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. von Samson-Himmelstjerna, F. A. et al. Progress and setbacks in translating a decade of ferroptosis research into clinical practice. Cells 11, 2134 (2022).

    Article  Google Scholar 

  52. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565–1576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martin-Sanchez, D. et al. Bone marrow-derived RIPK3 mediates kidney inflammation in acute kidney injury. J. Am. Soc. Nephrol. 33, 357–373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moerke, C., Bleibaum, F., Kunzendorf, U. & Krautwald, S. Combined knockout of RIPK3 and MLKL reveals unexpected outcome in tissue injury and inflammation. Front. Cell Dev. Biol. 7, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Naito, M. G. et al. Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc. Natl Acad. Sci. USA 117, 4959–4970 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Balzer, M. S. et al. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat. Commun. 13, 4018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moerke, C. et al. The anticonvulsive Phenhydan® suppresses extrinsic cell death. Cell Death Differ. 26, 1631–1645 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Riebeling, T. et al. Primidone blocks RIPK1-driven cell death and inflammation. Cell Death Differ. 28, 1610–1626 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. von Mässenhausen, A. et al. Phenytoin inhibits necroptosis. Cell Death Dis. 9, 359 (2018).

    Article  Google Scholar 

  63. Poston, J. T. & Koyner, J. L. Sepsis associated acute kidney injury. BMJ 364, k4891 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Birkelo, B. C., Pannu, N. & Siew, E. D. Overview of diagnostic criteria and epidemiology of acute kidney injury and acute kidney disease in the critically ill patient. Clin. J. Am. Soc. Nephrol. 17, 717–735 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Peerapornratana, S., Manrique-Caballero, C. L., Gómez, H. & Kellum, J. A. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 96, 1083–1099 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zelic, M. et al. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J. Clin. Invest. 128, 2064–2075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Laurien, L. et al. Autophosphorylation at serine 166 regulates RIP kinase 1-mediated cell death and inflammation. Nat. Commun. 11, 1747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma, A. et al. Receptor-interacting protein kinase 3 deficiency inhibits immune cell infiltration and attenuates organ injury in sepsis. Crit. Care 18, R142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chen, H. et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ. 27, 2568–2585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sureshbabu, A. et al. RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction. J. Clin. Invest. Insight 3, e98411 (2018).

    Google Scholar 

  71. Qiu, P. et al. Antitumor necrosis factor therapy is associated with improved survival in clinical sepsis trials: a meta-analysis. Crit. Care Med. 41, 2419–2429 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Dejager, L., Pinheiro, I., Dejonckheere, E. & Libert, C. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 19, 198–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Shashaty, M. G. et al. Plasma levels of receptor interacting protein kinase-3 (RIP3), an essential mediator of necroptosis, are associated with acute kidney injury in critically ill trauma patients. Shock 46, 139–143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shashaty, M. G. S. et al. Plasma receptor interacting protein kinase-3 levels are associated with acute respiratory distress syndrome in sepsis and trauma: a cohort study. Crit. Care 23, 235 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yu, X. et al. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome. J. Mol. Med. 98, 569–583 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Mulay, S. R. & Anders, H. J. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat. Rev. Nephrol. 13, 226–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Mulay, S. R. et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat. Commun. 7, 10274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Desai, J. et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling. Eur. J. Immunol. 46, 223–229 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Desai, J. et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Sci. Rep. 7, 15003 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu, W. et al. RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proc. Natl Acad. Sci. USA 115, E1475–E1484 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mulay, S. R. et al. Mitochondria permeability transition versus necroptosis in oxalate-induced AKI. J. Am. Soc. Nephrol. 30, 1857–1869 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prajapati, S. et al. 6,7-Dihydroxycoumarin ameliorates crystal-induced necroptosis during crystal nephropathies by inhibiting MLKL phosphorylation. Life Sci. 271, 119193 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Shi, C. et al. Crystal clots as therapeutic target in cholesterol crystal embolism. Circ. Res. 126, e37–e52 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Kronzon, I. & Saric, M. Cholesterol embolization syndrome. Circulation 122, 631–641 (2010).

    Article  PubMed  Google Scholar 

  85. Mulay, S. R. & Anders, H. J. Crystallopathies. N. Engl. J. Med. 374, 2465–2476 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Klück, V. et al. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2, e270–e280 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Perazella, M. A. & Izzedine, H. New drug toxicities in the onco-nephrology world. Kidney Int. 87, 909–917 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Huang, H. et al. Gentamicin-induced acute kidney injury in an animal model involves programmed necrosis of the collecting duct. J. Am. Soc. Nephrol. 31, 2097–2115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, Y. et al. A role for tubular necroptosis in cisplatin-induced AKI. J. Am. Soc. Nephrol. 26, 2647–2658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Serio, A. W., Keepers, T., Andrews, L. & Krause, K. M. Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal https://doi.org/10.1128/ecosalplus.ESP-0002-2018 (2018).

    Article  Google Scholar 

  91. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Manohar, S. & Leung, N. Cisplatin nephrotoxicity: a review of the literature. J. Nephrol. 31, 15–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Brady, H. R. et al. Mitochondrial injury: an early event in cisplatin toxicity to renal proximal tubules. Am. J. Physiol. 258, F1181–F1187 (1990).

    CAS  PubMed  Google Scholar 

  94. Lieberthal, W., Triaca, V. & Levine, J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am. J. Physiol. 270, F700–F708 (1996).

    CAS  PubMed  Google Scholar 

  95. Wang, J. N. et al. RIPK1 inhibitor Cpd-71 attenuates renal dysfunction in cisplatin-treated mice via attenuating necroptosis, inflammation and oxidative stress. Clin. Sci. 133, 1609–1627 (2019).

    Article  CAS  Google Scholar 

  96. Rui, C. et al. The multitargeted kinase inhibitor KW-2449 ameliorates cisplatin-induced nephrotoxicity by targeting RIPK1-mediated necroptosis. Biochem. Pharmacol. 188, 114542 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Fennell, D. A. et al. Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat. Rev. 44, 42–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Landau, S. I. et al. Regulated necrosis and failed repair in cisplatin-induced chronic kidney disease. Kidney Int. 95, 797–814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  100. Coresh, J. Update on the burden of CKD. J. Am. Soc. Nephrol. 28, 1020–1022 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen, Q. et al. 24-LB: RIPK1 activation induces necroptosis, proinflammation, and profibrosis in kidney of STZ/HFD-induced diabetic mice. Diabetes 69, 24-LB (2020).

    Article  Google Scholar 

  102. Shi, Y. et al. RIPK3 blockade attenuates tubulointerstitial fibrosis in a mouse model of diabetic nephropathy. Sci. Rep. 10, 10458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu, Y. et al. High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway. Exp. Cell Res. 382, 111463 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Ma, T. et al. Excessive activation of Notch signaling in macrophages promote kidney inflammation, fibrosis, and necroptosis. Front. Immunol. 13, 835879 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hildebrand, J. M. et al. A family harboring an MLKL loss of function variant implicates impaired necroptosis in diabetes. Cell Death Dis. 12, 345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hapca, S. et al. The relationship between AKI and CKD in patients with type 2 diabetes: an observational cohort study. J. Am. Soc. Nephrol. 32, 138–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. McCaig, W. D. et al. Hyperglycemia potentiates a shift from apoptosis to RIP1-dependent necroptosis. Cell Death Discov. 4, 55 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. LaRocca, T. J. et al. Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J. Biol. Chem. 291, 13753–13761 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Deragon, M. A. et al. Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discov. 6, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Oezkur, M. et al. Chronic hyperglycemia is associated with acute kidney injury in patients undergoing CABG surgery — a cohort study. BMC Cardiovasc. Disord. 15, 41 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mendez, C. E., Der Mesropian, P. J., Mathew, R. O. & Slawski, B. Hyperglycemia and acute kidney injury during the perioperative period. Curr. Diab. Rep. 16, 10 (2016).

    Article  PubMed  Google Scholar 

  112. Gorelik, Y. et al. Hyperglycemia on admission predicts acute kidney failure and renal functional recovery among inpatients. J. Clin. Med. 11, 54 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Safian, R. D. & Textor, S. C. Renal-artery stenosis. N. Engl. J. Med. 344, 431–442 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Gansevoort, R. T. et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382, 339–352 (2013).

    Article  PubMed  Google Scholar 

  115. Karunakaran, D. et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci. Adv. 2, e1600224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rasheed, A. et al. Loss of MLKL (mixed lineage kinase domain-like protein) decreases necrotic core but increases macrophage lipid accumulation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 40, 1155–1167 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Karunakaran, D. et al. RIPK1 expression associates with inflammation in early atherosclerosis in humans and can be therapeutically silenced to reduce NF-κB activation and atherogenesis in mice. Circulation 143, 163–177 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Puylaert, P. et al. The impact of RIPK1 kinase inhibition on atherogenesis: a genetic and a pharmacological approach. Biomedicines 10, 1016 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Colijn, S. et al. Cell-specific and athero-protective roles for RIPK3 in a murine model of atherosclerosis. Dis. Model. Mech. 13, dmm041962 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Anders, H. J. et al. Lupus nephritis. Nat. Rev. Dis. Prim. 6, 7 (2020).

    Article  PubMed  Google Scholar 

  121. Fan, H. et al. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus. Cell Death Dis. 5, e1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sarhan, J. et al. Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Differ. 26, 332–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Guo, C. et al. Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J. Autoimmun. 103, 102286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kitching, A. R. et al. ANCA-associated vasculitis. Nat. Rev. Dis. Prim. 6, 71 (2020).

    Article  PubMed  Google Scholar 

  125. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Muraro, S. P. et al. Respiratory syncytial virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci. Rep. 8, 14166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3, eaar6689 (2018).

    Article  PubMed  Google Scholar 

  128. Silva, C. M. S. et al. Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation. Blood 138, 2702–2713 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Su, M. et al. Gasdermin D-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis. Nat. Cardiovasc. Res. 1, 732–747 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Schreiber, A. et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc. Natl Acad. Sci. USA 114, E9618–E9625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Torra, R., Furlano, M., Ortiz, A. & Ars, E. Genetic kidney diseases as an underrecognized cause of chronic kidney disease: the key role of international registry reports. Clin. Kidney J. 14, 1879–1885 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chapman, A. B. et al. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 88, 17–27 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).

    Article  PubMed  Google Scholar 

  134. Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang, B. et al. Interleukin-1 receptor activation aggravates autosomal dominant polycystic kidney disease by modulating regulated necrosis. Am. J. Physiol. Renal Physiol. 317, F221–F228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, X. et al. A tumor necrosis factor-α-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat. Med. 14, 863–868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dodson, J. L. et al. Urological disorders in chronic kidney disease in children cohort: clinical characteristics and estimation of glomerular filtration rate. J. Urol. 186, 1460–1466 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 10, 493–503 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Imamura, M. et al. RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase. J. Clin. Invest. Insight 3, e94979 (2018).

    Google Scholar 

  140. Xiao, X. et al. Inhibition of necroptosis attenuates kidney inflammation and interstitial fibrosis induced by unilateral ureteral obstruction. Am. J. Nephrol. 46, 131–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Popper, B. et al. Neonatal obstructive nephropathy induces necroptosis and necroinflammation. Sci. Rep. 9, 18600 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tonelli, M. et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am. J. Transpl. 11, 2093–2109 (2011).

    Article  CAS  Google Scholar 

  143. Hariharan, S., Israni, A. K. & Danovitch, G. Long-term survival after kidney transplantation. N. Engl. J. Med. 385, 729–743 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Wu, W. K., Famure, O., Li, Y. & Kim, S. J. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. Kidney Int. 88, 851–858 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Lau, A. et al. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am. J. Transpl. 13, 2805–2818 (2013).

    Article  CAS  Google Scholar 

  146. Pavlosky, A. et al. RIPK3-mediated necroptosis regulates cardiac allograft rejection. Am. J. Transpl. 14, 1778–1790 (2014).

    Article  CAS  Google Scholar 

  147. Zhao, J. et al. Toll-like receptor 3 is an endogenous sensor of cell death and a potential target for induction of long-term cardiac transplant survival. Am. J. Transplant. 21, 3268–3279 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Kwok, C. et al. Necroptosis is involved in CD4+ T cell-mediated microvascular endothelial cell death and chronic cardiac allograft rejection. Transplantation 101, 2026–2037 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Aljabri, A. et al. HLA class II antibodies induce necrotic cell death in human endothelial cells via a lysosomal membrane permeabilization-mediated pathway. Cell Death Dis. 10, 235 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gill, J. et al. Pulsatile perfusion reduces the risk of delayed graft function in deceased donor kidney transplants, irrespective of donor type and cold ischemic time. Transplantation 97, 668–674 (2014).

    Article  PubMed  Google Scholar 

  151. Helanterä, I., Ibrahim, H. N., Lempinen, M. & Finne, P. Donor age, cold ischemia time, and delayed graft function. Clin. J. Am. Soc. Nephrol. 15, 813–821 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Agrawal, A., Ison, M. G. & Danziger-Isakov, L. Long-term infectious complications of kidney transplantation. Clin. J. Am. Soc. Nephrol. 17, 286–295 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Santos, C. A., Brennan, D. C., Fraser, V. J. & Olsen, M. A. Delayed-onset cytomegalovirus disease coded during hospital readmission after kidney transplantation. Transplantation 98, 187–194 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Blazquez-Navarro, A. et al. BKV, CMV, and EBV interactions and their effect on graft function one year post-renal transplantation: results from a large multi-centre study. EBioMedicine 34, 113–121 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Guo, H., Kaiser, W. J. & Mocarski, E. S. Manipulation of apoptosis and necroptosis signaling by herpesviruses. Med. Microbiol. Immunol. 204, 439–448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Altman, A. M. et al. Human cytomegalovirus-induced autophagy prevents necroptosis of infected monocytes. J. Virol. 94, e01022-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Muscolino, E. et al. Species-specific inhibition of necroptosis by HCMV UL36. Viruses 13, 2134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. De Bosscher, K., Vanden Berghe, W. & Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr. Rev. 24, 488–522 (2003).

    Article  PubMed  Google Scholar 

  159. Gerber, A. N., Newton, R. & Sasse, S. K. Repression of transcription by the glucocorticoid receptor: a parsimonious model for the genomics era. J. Biol. Chem. 296, 100687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Loupy, A. et al. The Banff 2019 Kidney Meeting Report (I): updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transplant. 20, 2318–2331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Heutinck, K. M. et al. Viral double-stranded RNA sensors induce antiviral, pro-inflammatory, and pro-apoptotic responses in human renal tubular epithelial cells. Kidney Int. 82, 664–675 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Kaiser, W. J. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268–31279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Duan, X. et al. Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation. Cell Death Dis. 11, 134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. He, F. et al. Necrosulfonamide improves post-resuscitation myocardial dysfunction via inhibiting pyroptosis and necroptosis in a rat model of cardiac arrest. Eur. J. Pharmacol. 926, 175037 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Tummers, B. & Green, D. R. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol. Rev. 102, 411–454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Schreibing, F. & Kramann, R. Mapping the human kidney using single-cell genomics. Nat. Rev. Nephrol. 18, 347–360 (2022).

    Article  PubMed  Google Scholar 

  167. Tanzer, M. C. et al. Quantitative and dynamic catalogs of proteins released during apoptotic and necroptotic cell death. Cell Rep. 30, 1260–1270.e1265 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Tanzer, M. C. et al. Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling. Nat. Commun. 12, 6053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Taylor, M. J., Lukowski, J. K. & Anderton, C. R. Spatially resolved mass spectrometry at the single cell: recent innovations in proteomics and metabolomics. J. Am. Soc. Mass. Spectrom. 32, 872–894 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tanzer, M. C. A proteomic perspective on TNF-mediated signalling and cell death. Biochem. Soc. Trans. 50, 13–20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhu, K. et al. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression. Cell Death Dis. 9, 500 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Montalban-Bravo, G. et al. Transcriptomic analysis implicates necroptosis in disease progression and prognosis in myelodysplastic syndromes. Leukemia 34, 872–881 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Salem, F. et al. The spatially resolved transcriptional profile of acute T cell-mediated rejection in a kidney allograft. Kidney Int. 101, 131–136 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Gerhardt, L. M. S. & McMahon, A. P. Multi-omic approaches to acute kidney injury and repair. Curr. Opin. Biomed. Eng. 20, 100344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Weisel, K. et al. Randomized clinical study of safety, pharmacokinetics, and pharmacodynamics of RIPK1 inhibitor GSK2982772 in healthy volunteers. Pharmacol. Res. Perspect. 5, e00365 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Weisel, K. et al. Response to inhibition of receptor-interacting protein kinase 1 (RIPK1) in active plaque psoriasis: a randomized placebo-controlled study. Clin. Pharmacol. Ther. 108, 808–816 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Weisel, K. et al. A randomised, placebo-controlled study of RIPK1 inhibitor GSK2982772 in patients with active ulcerative colitis. BMJ Open Gastroenterol. 8, e000680 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Weisel, K. et al. A randomized, placebo-controlled experimental medicine study of RIPK1 inhibitor GSK2982772 in patients with moderate to severe rheumatoid arthritis. Arthritis Res. Ther. 23, 85 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT05237284 (2022).

  180. Vissers, M. et al. Safety, pharmacokinetics and target engagement of novel RIPK1 inhibitor SAR443060 (DNL747) for neurodegenerative disorders: randomized, placebo-controlled, double-blind phase I/Ib studies in healthy subjects and patients. Clin. Transl. Sci. 15, 2010–2023 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Vandenabeele, P., Grootjans, S., Callewaert, N. & Takahashi, N. Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death Differ. 20, 185–187 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work is funded by a grant from Dr. Werner Jackstädt-Stiftung (to S.K.). S.K. is also supported by the infrastructure of the DFG Cluster of Excellence 2167 Precision Medicine in Chronic Inflammation. J.M.M. gratefully acknowledges support from the National Health and Medical Research Council of Australia (1172929, 9000719) and the Victorian State Government Operational Infrastructure Support Scheme.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this article, wrote the text and made substantial contributions to discussions on the content. All authors edited the manuscript before submission.

Corresponding author

Correspondence to Stefan Krautwald.

Ethics declarations

Competing interests

J.M.M. has contributed to the development of necroptosis inhibitors in collaboration with Anaxis Pty Ltd. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks X.-M. Meng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolbrink, B., von Samson-Himmelstjerna, F.A., Murphy, J.M. et al. Role of necroptosis in kidney health and disease. Nat Rev Nephrol 19, 300–314 (2023). https://doi.org/10.1038/s41581-022-00658-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00658-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing