Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut microbiome and hypertension

Abstract

A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiome-associated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin–angiotensin–aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.

Key points

  • Clinical and experimental evidence show that changes in the gut microbiome are associated with and might lead to changes in blood pressure.

  • Metabolites produced by the gut microbiota are key mediators of the host–microbiota relationship that can drive changes to blood pressure; these metabolites can have immune-dependent and -independent effects.

  • Gut microbial-derived metabolites can be beneficial (for example, short-chain fatty acids, indole-3-lactic acid, arachidonic acid) or detrimental (for example, trimethylamine N-oxide) to blood pressure regulation.

  • Experimental hypertension is associated with disruption of the gut epithelial barrier and intestinal mechanotransduction; these might contribute to hypertension.

  • Gut microbiome modulation might represent a therapeutic approach to lowering blood pressure, for example, through the oral delivery of gut microbial metabolites such as short-chain fatty acids.

  • Addressing important challenges to gut microbiome research in the hypertension field, such as confounding factors, causality and global action to improve the diversity of samples, will accelerate discovery and translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of food on BP regulation via the gut microbiome and their metabolites.
Fig. 2: Bacterial load, oxygen, SCFAs and pH throughout the intestine.
Fig. 3: Gut epithelial barrier in hypertension.

Similar content being viewed by others

References

  1. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Google Scholar 

  2. Beaney, T. et al. May measurement month 2019: the global blood pressure screening campaign of the International Society of Hypertension. Hypertension 76, 333–341 (2020).

    CAS  PubMed  Google Scholar 

  3. GBD 2019 Risk Factors Collaborators. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).

    Google Scholar 

  4. Oparil, S. et al. Hypertension. Nat. Rev. Dis. Prim. 4, 18014 (2018).

    PubMed  Google Scholar 

  5. Page, I. H. Pathogenesis of arterial hypertension. J. Am. Med. Assoc. 140, 451–458 (1949).

    CAS  PubMed  Google Scholar 

  6. Kolifarhood, G. et al. Heritability of blood pressure traits in diverse populations: a systematic review and meta-analysis. J. Hum. Hypertens. 33, 775–785 (2019).

    PubMed  Google Scholar 

  7. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Marques, F. Z. Missing heritability of hypertension and our microbiome. Circulation 138, 1381–1383 (2018).

    PubMed  Google Scholar 

  9. Marques, F. Z., Mackay, C. R. & Kaye, D. M. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat. Rev. Cardiol. 15, 20–32 (2018).

    PubMed  Google Scholar 

  10. Harrison, D. G., Coffman, T. M. & Wilcox, C. S. Pathophysiology of hypertension: the mosaic theory and beyond. Circ. Res. 128, 847–863 (2021). This comprehensive review introduced a revised version of the mosaic theory of hypertension that acknowledges the role of the gut microbiome in the pathophysiology of hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rogler, G. & Rosano, G. The heart and the gut. Eur. Heart J. 35, 426–430 (2014).

    PubMed  Google Scholar 

  12. Beale, A. L. et al. The gut microbiome of heart failure with preserved ejection fraction. J. Am. Heart Assoc. 10, e020654 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, B. et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes. Metab. 15, 737–749 (2013).

    CAS  PubMed  Google Scholar 

  14. Richards, E. M., Li, J., Stevens, B. R., Pepine, C. J. & Raizada, M. K. Gut microbiome and neuroinflammation in hypertension. Circ. Res. 130, 401–417 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pugh, D., Gallacher, P. J. & Dhaun, N. Management of hypertension in chronic kidney disease. Drugs 79, 365–379 (2019).

    PubMed  PubMed Central  Google Scholar 

  16. Yang, T., Richards, E. M., Pepine, C. J. & Raizada, M. K. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 14, 442–456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramakrishna, B. S. Role of the gut microbiota in human nutrition and metabolism. J. Gastroenterol. Hepatol. 28 (Suppl. 4), 9–17 (2013).

    CAS  PubMed  Google Scholar 

  19. Ducarmon, Q. R. et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00007-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sanidad, K. Z. & Zeng, M. Y. Neonatal gut microbiome and immunity. Curr. Opin. Microbiol. 56, 30–37 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    PubMed  PubMed Central  Google Scholar 

  23. Sanna, S., Kurilshikov, A., van der Graaf, A., Fu, J. & Zhernakova, A. Challenges and future directions for studying effects of host genetics on the gut microbiome. Nat. Genet. 54, 100–106 (2022). This Perspective discusses challenges and future directions for genetic analysis of the microbiome.

    CAS  PubMed  Google Scholar 

  24. Koponen, K. K. et al. Associations of healthy food choices with gut microbiota profiles. Am. J. Clin. Nutr. 114, 605–616 (2021).

    PubMed  PubMed Central  Google Scholar 

  25. Leeming, E. R., Johnson, A. J., Spector, T. D. & Le Roy, C. I. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients https://doi.org/10.3390/nu11122862 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). This study provided the first evidence that shifting dietary nutrients can rapidly, broadly and consistently alter gut microbiome composition in humans.

    CAS  PubMed  Google Scholar 

  27. Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).

    CAS  PubMed  Google Scholar 

  28. Xu, C. & Marques, F. Z. How dietary fibre, acting via the gut microbiome, lowers blood pressure. Curr. Hypertens. Rep. 24, 509–521 (2022).

    PubMed  PubMed Central  Google Scholar 

  29. De Filippis, F. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65, 1812–1821 (2016).

    PubMed  Google Scholar 

  30. Gill, P. A., van Zelm, M. C., Muir, J. G. & Gibson, P. R. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment. Pharmacol. Ther. 48, 15–34 (2018).

    CAS  PubMed  Google Scholar 

  31. Korpela, K. Diet, microbiota, and metabolic health: trade-off between saccharolytic and proteolytic fermentation. Annu. Rev. Food Sci. Technol. 9, 65–84 (2018).

    CAS  PubMed  Google Scholar 

  32. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. So, D., Gibson, P. R., Muir, J. G. & Yao, C. K. Dietary fibres and IBS: translating functional characteristics to clinical value in the era of personalised medicine. Gut 70, 2383–2394 (2021).

    CAS  PubMed  Google Scholar 

  34. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016).

    CAS  PubMed  Google Scholar 

  36. Grieneisen, L. et al. Gut microbiome heritability is nearly universal but environmentally contingent. Science 373, 181–186 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS  PubMed  Google Scholar 

  38. Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690–699 (2017).

    CAS  PubMed  Google Scholar 

  39. Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 54, 134–142 (2022). This large-scale study demonstrated the combined effect of host genetics and diet on the human gut microbiota.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lopera-Maya, E. A. et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat. Genet. 54, 143–151 (2022).

    CAS  PubMed  Google Scholar 

  41. Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Signal. Transduct. Target. Ther. 6, 402 (2021).

    PubMed  PubMed Central  Google Scholar 

  42. Groot, H. E. et al. Genetically determined ABO blood group and its associations with health and disease. Arterioscler. Thromb. Vasc. Biol. 40, 830–838 (2020).

    CAS  PubMed  Google Scholar 

  43. Vijay, A. & Valdes, A. M. Role of the gut microbiome in chronic diseases: a narrative review. Eur. J. Clin. Nutr. 76, 489–501 (2022).

    CAS  PubMed  Google Scholar 

  44. Nakai, M. et al. Essential hypertension is associated with changes in gut microbial metabolic pathways: a multisite analysis of ambulatory blood pressure. Hypertension 78, 804–815 (2021).

    CAS  PubMed  Google Scholar 

  45. Kim, S. et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin. Sci. 132, 701–718 (2018).

    CAS  Google Scholar 

  46. Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017). The first faecal microbiome transplantation study to show the causal role of the gut microbiome in blood pressure regulation.

    PubMed  PubMed Central  Google Scholar 

  47. Yang, T. et al. Gut dysbiosis is linked to hypertension. Hypertension 65, 1331–1340 (2015). The first study to describe gut dysbiosis in experimental and human hypertension.

    CAS  PubMed  Google Scholar 

  48. Palmu, J. et al. Association between the gut microbiota and blood pressure in a population cohort of 6953 individuals. J. Am. Heart Assoc. 9, e016641 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Huart, J. et al. Gut microbiota and fecal levels of short-chain fatty acids differ upon 24-hour blood pressure levels in men. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.118.12588 (2019).

    Article  PubMed  Google Scholar 

  50. Muralitharan, R. R. et al. Microbial peer pressure: the role of the gut microbiota in hypertension and its complications. Hypertension 76, 1674–1687 (2020).

    CAS  PubMed  Google Scholar 

  51. Qv, L. et al. Methods for establishment and maintenance of germ-free rat models. Front. Microbiol. 11, 1148 (2020).

    PubMed  PubMed Central  Google Scholar 

  52. Chen, X. et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut 69, 513–522 (2020).

    CAS  PubMed  Google Scholar 

  53. Yang, T. et al. Sustained captopril-induced reduction in blood pressure is associated with alterations in gut-brain axis in the spontaneously hypertensive rat. J. Am. Heart Assoc. 8, e010721 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Robles-Vera, I. et al. Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. Br. J. Pharmacol. 177, 2006–2023 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, T. et al. Identification of a gut commensal that compromises the blood pressure-lowering effect of ester angiotensin-converting enzyme inhibitors. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.121.18711 (2022). This study showed that the gut microbiome can affect the efficacy of anti-hypertensive medications.

    Article  PubMed  Google Scholar 

  56. Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    CAS  PubMed  Google Scholar 

  57. Marques, F. Z. et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135, 964–977 (2017). This study provided the first evidence that prebiotic fibre has a blood pressure-lowering effect by modulating the gut microbiota and the short-chain fatty acid acetate.

    CAS  PubMed  Google Scholar 

  58. Tang, T. W. H. et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation 139, 647–659 (2019).

    CAS  PubMed  Google Scholar 

  59. Stavropoulou, E. et al. Focus on the gut-kidney axis in health and disease. Front. Med. 7, 620102 (2020).

    Google Scholar 

  60. Morais, L. H., Schreiber, H. L. T. & Mazmanian, S. K. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2021).

    CAS  PubMed  Google Scholar 

  61. Peh, A., O’Donnell, J. A., Broughton, B. R. S. & Marques, F. Z. Gut microbiota and their metabolites in stroke: a double-edged sword. Stroke 53, 1788–1801 (2022).

    CAS  PubMed  Google Scholar 

  62. Gebrayel, P. et al. Microbiota medicine: towards clinical revolution. J. Transl. Med. 20, 111 (2022).

    PubMed  PubMed Central  Google Scholar 

  63. Drummond, G. R., Vinh, A., Guzik, T. J. & Sobey, C. G. Immune mechanisms of hypertension. Nat. Rev. Immunol. 19, 517–532 (2019).

    CAS  PubMed  Google Scholar 

  64. Karbach, S. H. et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.116.003698 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Avery, E. G. et al. Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvac121 (2022).

    Article  PubMed  Google Scholar 

  66. Joe, B. et al. Microbiota introduced to germ-free rats restores vascular contractility and blood pressure. Hypertension 76, 1847–1855 (2020).

    CAS  PubMed  Google Scholar 

  67. Mortensen, F. V., Nielsen, H., Mulvany, M. J. & Hessov, I. Short chain fatty acids dilate isolated human colonic resistance arteries. Gut 31, 1391–1394 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaye, D. M. et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation 141, 1393–1403 (2020). This study linked the lack of prebiotic dietary fibre to the development of hypertension and demonstrated the cardioprotective role of short-chain fatty acid receptors.

    CAS  PubMed  Google Scholar 

  69. Jama, H. A. et al. Prebiotic intervention with HAMSAB in untreated essential hypertensive patients assessed in a phase II randomized trial. Nat. Cardiovasc. Res. https://doi.org/10.1038/s44161-022-00197-4 (2023).

    Article  Google Scholar 

  70. Wang, L. et al. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J. Hypertens. 35, 1899–1908 (2017).

    CAS  PubMed  Google Scholar 

  71. Onyszkiewicz, M. et al. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflugers Arch. 471, 1441–1453 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bartolomaeus, H. et al. The short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139, 1407–1421 (2019). This study highlighted the role of T regulatory cell homeostasis, driven by propionate, in the reduction of inflammation and fibrosis.

    CAS  PubMed  Google Scholar 

  73. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  75. Barhoumi, T. et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 57, 469–476 (2011).

    CAS  PubMed  Google Scholar 

  76. Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    CAS  PubMed  Google Scholar 

  77. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Natarajan, N. et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G-protein coupled receptor 41. Physiol. Genomics 48, 826–834 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rhys-Jones, D. et al. Microbial interventions to control and reduce blood pressure in Australia (MICRoBIA): rationale and design of a double-blinded randomised cross-over placebo controlled trial. Trials 22, 496 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu, J. et al. Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice. Exp. Mol. Med. 49, e370 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Mell, B. et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol. Genomics 47, 187–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ferguson, J. F. et al. High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight https://doi.org/10.1172/jci.insight.126241 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kirabo, A. et al. DC isoketal-modified proteins activate T cells and promote hypertension. J. Clin. Invest. 124, 4642–4656 (2014). This study showed that salt drives T cell activation via isoketal-modified proteins on dendritic cells to increase blood pressure.

    PubMed  PubMed Central  Google Scholar 

  84. Chen, L. et al. Modest sodium reduction increases circulating short-chain fatty acids in untreated hypertensives: a randomized, double-blind, placebo-controlled trial. Hypertension 76, 73–79 (2020).

    CAS  PubMed  Google Scholar 

  85. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Toral, M. et al. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clin. Sci. 127, 33–45 (2014).

    Google Scholar 

  87. Yan, X. et al. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.119.316394 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Witkowski, M., Weeks, T. L. & Hazen, S. L. Gut microbiota and cardiovascular disease. Circ. Res. 127, 553–570 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiang, S. et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension. Redox Biol. 46, 102115 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Brunt, V. E. et al. Gut microbiome-derived metabolite trimethylamine N-oxide induces aortic stiffening and increases systolic blood pressure with aging in mice and humans. Hypertension 78, 499–511 (2021).

    CAS  PubMed  Google Scholar 

  93. Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife https://doi.org/10.7554/eLife.37182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mistry, R. H., Verkade, H. J. & Tietge, U. J. Reverse cholesterol transport is increased in germ-free mice-brief report. Arterioscler. Thromb. Vasc. Biol. 37, 419–422 (2017).

    CAS  PubMed  Google Scholar 

  96. Jones, B. V., Begley, M., Hill, C., Gahan, C. G. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhu, Q. et al. Moderation of gut microbiota and bile acid metabolism by chlorogenic acid improves high-fructose-induced salt-sensitive hypertension in mice. Food Funct. 13, 6987–6999 (2022).

    CAS  PubMed  Google Scholar 

  98. Ji, C. G. et al. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice. Transl. Res. 182, 88–102 (2017).

    CAS  PubMed  Google Scholar 

  99. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    CAS  PubMed  Google Scholar 

  100. Shi, H. et al. Restructuring the gut microbiota by intermittent fasting lowers blood pressure. Circ. Res. 128, 1240–1254 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, C., Li, J., Weng, X., Lan, X. & Chi, X. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats. J. Am. Soc. Hypertens. 9, 507–516 e507 (2015).

    PubMed  Google Scholar 

  102. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Santisteban, M. M. et al. Hypertension-linked pathophysiological alterations in the gut. Circ. Res. 120, 312–323 (2017). This work provided the first evidence of gut epithelial disruption in experimental hypertension.

    CAS  PubMed  Google Scholar 

  104. Toral, M. et al. Critical role of the interaction gut microbiota - sympathetic nervous system in the regulation of blood pressure. Front. Physiol. 10, 231 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Helander, H. F. & Fandriks, L. Surface area of the digestive tract — revisited. Scand. J. Gastroenterol. 49, 681–689 (2014).

    PubMed  Google Scholar 

  106. Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017). This comprehensive Review discussed the role of intestinal epithelial barrier function in the pathogenesis of intestinal and systemic diseases.

    CAS  PubMed  Google Scholar 

  107. Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell Mol. Gastroenterol. Hepatol. 11, 1463–1482 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghosh, S. S., Wang, J., Yannie, P. J. & Ghosh, S. Intestinal barrier dysfunction, LPS translocation, and disease development. J. Endocr. Soc. 4, bvz039 (2020).

    PubMed  PubMed Central  Google Scholar 

  109. Hansson, G. C. Mucins and the microbiome. Annu. Rev. Biochem. 89, 769–793 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Niessen, C. M. Tight junctions/adherens junctions: basic structure and function. J. Invest. Dermatol. 127, 2525–2532 (2007).

    CAS  PubMed  Google Scholar 

  111. Furuse, M. et al. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123, 1777–1788 (1993).

    CAS  PubMed  Google Scholar 

  112. Van Itallie, C. M. & Anderson, J. M. Claudins and epithelial paracellular transport. Annu. Rev. Physiol. 68, 403–429 (2006).

    PubMed  Google Scholar 

  113. Hartmann, C., Schwietzer, Y. A., Otani, T., Furuse, M. & Ebnet, K. Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. Biochim. Biophys. Acta Biomembr. 1862, 183299 (2020).

    CAS  PubMed  Google Scholar 

  114. Odenwald, M. A. et al. The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J. Biol. Chem. 293, 17317–17335 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hartsock, A. & Nelson, W. J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660–669 (2008).

    CAS  PubMed  Google Scholar 

  116. Zuo, L., Kuo, W. T. & Turner, J. R. Tight junctions as targets and effectors of mucosal immune homeostasis. Cell Mol. Gastroenterol. Hepatol. 10, 327–340 (2020).

    PubMed  PubMed Central  Google Scholar 

  117. Pabst, O. & Slack, E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol. 13, 12–21 (2020).

    CAS  PubMed  Google Scholar 

  118. Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Schneider, C., O’Leary, C. E. & Locksley, R. M. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19, 584–593 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    PubMed  PubMed Central  Google Scholar 

  121. Bischoff, S. C. et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Chelakkot, C., Ghim, J. & Ryu, S. H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 50, 1–9 (2018).

    CAS  PubMed  Google Scholar 

  123. Sharma, R. K. et al. Microglial cells impact gut microbiota and gut pathology in angiotensin II-induced hypertension. Circ. Res. 124, 727–736 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ntlahla, E. E., Mfengu, M. M., Engwa, G. A., Nkeh-Chungag, B. N. & Sewani-Rusike, C. R. Gut permeability is associated with hypertension and measures of obesity but not with endothelial dysfunction in South African youth. Afr. Health Sci. 21, 1172–1184 (2021).

    PubMed  PubMed Central  Google Scholar 

  125. Li, C. et al. Risk factors for intestinal barrier impairment in patients with essential hypertension. Front. Med. 7, 543698 (2020).

    Google Scholar 

  126. Pearce, K., Estanislao, D., Fareed, S. & Tremellen, K. Metabolic endotoxemia, feeding studies and the use of the limulus amebocyte (LAL) assay; is it fit for purpose? Diagnostics https://doi.org/10.3390/diagnostics10060428 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mercado-Perez, A. & Beyder, A. Gut feelings: mechanosensing in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 19, 283–296 (2022). This Review described the role of gastrointestinal mechanosensation in gut function.

    PubMed  PubMed Central  Google Scholar 

  128. Farrugia, G. et al. A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterology 117, 900–905 (1999).

    CAS  PubMed  Google Scholar 

  129. Romero, S., Le Clainche, C. & Gautreau, A. M. Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem. J. 477, 1–21 (2020).

    CAS  PubMed  Google Scholar 

  130. Schwayer, C. et al. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell 179, 937–952 e918 (2019).

    CAS  PubMed  Google Scholar 

  131. Joshi, V., Strege, P. R., Farrugia, G. & Beyder, A. Mechanotransduction in gastrointestinal smooth muscle cells: role of mechanosensitive ion channels. Am. J. Physiol. Gastrointest. Liver Physiol. 320, G897–G906 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ye, G. J., Nesmith, A. P. & Parker, K. K. The role of mechanotransduction on vascular smooth muscle myocytes’ [corrected] cytoskeleton and contractile function. Anat. Rec. 297, 1758–1769 (2014).

    CAS  Google Scholar 

  134. Zeng, W. Z. et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362, 464–467 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Won, K. J., Sanders, K. M. & Ward, S. M. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc. Natl Acad. Sci. USA 102, 14913–14918 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Page, A. J. & Li, H. Meal-sensing signaling pathways in functional dyspepsia. Front. Syst. Neurosci. 12, 10 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Neshatian, L. et al. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G506–G512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Strege, P. R. et al. Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased NaV1.5 current and mechanosensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G494–G503 (2018).

    CAS  PubMed  Google Scholar 

  141. Tustumi, F., Morrell, A. L. G., Szor, D. J. & Dias, A. R. Achalasia: a mechanical and sensitivity disorder. United European Gastroenterol. J. 8, 1126–1127 (2020).

    PubMed  PubMed Central  Google Scholar 

  142. Tomsen, N. et al. Acute and subacute effects of oropharyngeal sensory stimulation with TRPV1 agonists in older patients with oropharyngeal dysphagia: a biomechanical and neurophysiological randomized pilot study. Ther. Adv. Gastroenterol. 12, 1756284819842043 (2019).

    CAS  Google Scholar 

  143. Stewart, D. C. et al. Hypertension-linked mechanical changes of rat gut. Acta Biomater. 45, 296–302 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    CAS  PubMed  Google Scholar 

  145. Wolter, M. et al. Leveraging diet to engineer the gut microbiome. Nat. Rev. Gastroenterol. Hepatol. 18, 885–902 (2021).

    CAS  PubMed  Google Scholar 

  146. Wortelboer, K., Nieuwdorp, M. & Herrema, H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine 44, 716–729 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. Fan, L. et al. Effect of fecal microbiota transplantation on primary hypertension and the underlying mechanism of gut microbiome restoration: protocol of a randomized, blinded, placebo-controlled study. Trials 23, 178 (2022).

    PubMed  PubMed Central  Google Scholar 

  148. Ke, S., Weiss, S. T. & Liu, Y. Y. Rejuvenating the human gut microbiome. Trends Mol. Med. https://doi.org/10.1016/j.molmed.2022.05.005 (2022).

    Article  PubMed  Google Scholar 

  149. Zhang, T. et al. Washed microbiota transplantation vs. manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening. Protein Cell 11, 251–266 (2020).

    PubMed  PubMed Central  Google Scholar 

  150. Zhong, H. J. et al. Washed microbiota transplantation lowers blood pressure in patients with hypertension. Front. Cell Infect. Microbiol. 11, 679624 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bishehsari, F., Voigt, R. M. & Keshavarzian, A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat. Rev. Endocrinol. 16, 731–739 (2020).

    PubMed  PubMed Central  Google Scholar 

  152. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Marques, F. Z. et al. Guidelines for transparency on gut microbiome studies in essential and experimental hypertension. Hypertension 74, 1279–1293 (2019). A complete guideline for conducting gut microbiome studies in experimental and clinical hypertension.

    CAS  PubMed  Google Scholar 

  154. Dinakis, E. et al. Association between the gut microbiome and their metabolites with human blood pressure variability. Hypertension 79, 1690–1701 (2022).

    CAS  PubMed  Google Scholar 

  155. Zhang, X., Li, L., Butcher, J., Stintzi, A. & Figeys, D. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome 7, 154 (2019).

    PubMed  PubMed Central  Google Scholar 

  156. Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jackson, M. A. et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 9, 2655 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Nearing, J. T., Comeau, A. M. & Langille, M. G. I. Identifying biases and their potential solutions in human microbiome studies. Microbiome 9, 113 (2021).

    PubMed  PubMed Central  Google Scholar 

  159. Bell, G., Hey, T. & Szalay, A. Computer science. Beyond the data deluge. Science 323, 1297–1298 (2009).

    CAS  PubMed  Google Scholar 

  160. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    CAS  PubMed  Google Scholar 

  161. Durazzi, F. et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci. Rep. 11, 3030 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Brussow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol. 13, 423–434 (2020).

    PubMed  Google Scholar 

  163. Wei, S., Bahl, M. I., Baunwall, S. M. D., Hvas, C. L. & Licht, T. R. Determining gut microbial dysbiosis: a review of applied indexes for assessment of intestinal microbiota imbalances. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00395-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Hughes, D. A. et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat. Microbiol. 5, 1079–1087 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Wade, K. H. & Hall, L. J. Improving causality in microbiome research: can human genetic epidemiology help? Wellcome Open Res. 4, 199 (2019).

    PubMed  Google Scholar 

  167. Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Abdill, R. J., Adamowicz, E. M. & Blekhman, R. Public human microbiome data are dominated by highly developed countries. PLoS Biol. 20, e3001536 (2022). This study investigated the global pattern of microbiome-associated diseases and demonstrated an imbalanced global representation of participants in microbiome studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Walejko, J. M. et al. Gut microbiota and serum metabolite differences in African Americans and White Americans with high blood pressure. Int. J. Cardiol. 271, 336–339 (2018).

    PubMed  PubMed Central  Google Scholar 

  170. Sun, S. et al. Gut microbiota composition and blood pressure. Hypertension 73, 998–1006 (2019).

    CAS  PubMed  Google Scholar 

  171. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Gupta, V. K., Paul, S. & Dutta, C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 8, 1162 (2017).

    PubMed  PubMed Central  Google Scholar 

  173. Mei, X. et al. Beyond the gastrointestinal tract: oral and sex-specific skin microbiota are associated with hypertension in rats with genetic disparities. Physiol. Genomics 54, 242–250 (2022).

    CAS  PubMed  Google Scholar 

  174. Beale, A. L., Kaye, D. M. & Marques, F. Z. The role of the gut microbiome in sex differences in arterial pressure. Biol. Sex. Differ. 10, 22 (2019).

    PubMed  PubMed Central  Google Scholar 

  175. Konop, M. et al. Enalapril decreases rat plasma concentration of TMAO, a gut bacteria-derived cardiovascular marker. Biomarkers 23, 380–385 (2018).

    CAS  PubMed  Google Scholar 

  176. Yoo, H. H., Kim, I. S., Yoo, D. H. & Kim, D. H. Effects of orally administered antibiotics on the bioavailability of amlodipine: gut microbiota-mediated drug interaction. J. Hypertens. 34, 156–162 (2016).

    CAS  PubMed  Google Scholar 

  177. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Brocker, C. N. et al. Metabolomic profiling of metoprolol hypertension treatment reveals altered gut microbiota-derived urinary metabolites. Hum. Genomics 14, 10 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Trott, D. W. et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64, 1108–1115 (2014).

    CAS  PubMed  Google Scholar 

  180. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    CAS  PubMed  Google Scholar 

  181. Norlander, A. E. et al. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension 68, 167–174 (2016).

    CAS  PubMed  Google Scholar 

  182. Vinh, A. et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 122, 2529–2537 (2010).

    PubMed  PubMed Central  Google Scholar 

  183. Barbaro, N. R. et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 21, 1009–1020 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Van Beusecum, J. P. et al. High salt activates CD11c+ antigen-presenting cells via SGK (Serum Glucocorticoid Kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension 74, 555–563 (2019).

    PubMed  Google Scholar 

  185. Ko, E. A. et al. Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 292, H1789–H1795 (2007).

    CAS  PubMed  Google Scholar 

  186. Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed  Google Scholar 

  188. Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    CAS  PubMed  Google Scholar 

  189. Tazoe, H. et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30, 149–156 (2009).

    CAS  PubMed  Google Scholar 

  190. Karaki, S. et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135–142 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.A.O. is supported by a National Health and Medical Research Council Early Career Fellowship (1124288). F.Z.M. is supported by a Senior Medical Research Fellowship from the Sylvia and Charles Viertel Charitable Foundation Fellowship and a National Heart Foundation Future Leader Fellowship (105663). G.M. is partially supported by NHMRC grant GNT2013468.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Francine Z. Marques.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks J. Cai, I. Robles-Vera and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Genome Taxonomy Database: https://gtdb.ecogenomic.org/

Glossary

Colonization resistance

The ability of the commensal microbiota to limit the expansion of pathogens and exogenous microorganisms.

Coprophagy

The ingestion of faeces; in this context by rodents.

Interstitial cells of Cajal

Mesenchymal cells located in the intestine that mediate contractility.

Microfold (M) cells

Specialized intestinal cells, located in the Peyer’s patches and other mucosa-associated lymphoid tissues, which sample pathogens or antigens from the intestinal lumen to the sub-epithelium.

Tuft cells

Chemosensory cells located in the gut epithelial layer.

Zero-inflation

Microbiome data typically contain several taxa (metagenome-assembled genomes or operational taxonomic units) that are only present in some samples, resulting in many taxa with zero counts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Donnell, J.A., Zheng, T., Meric, G. et al. The gut microbiome and hypertension. Nat Rev Nephrol 19, 153–167 (2023). https://doi.org/10.1038/s41581-022-00654-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00654-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology