Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Oxalate homeostasis

Abstract

Oxalate homeostasis is maintained through a delicate balance between endogenous sources, exogenous supply and excretion from the body. Novel studies have shed light on the essential roles of metabolic pathways, the microbiome, epithelial oxalate transporters, and adequate oxalate excretion to maintain oxalate homeostasis. In patients with primary or secondary hyperoxaluria, nephrolithiasis, acute or chronic oxalate nephropathy, or chronic kidney disease irrespective of aetiology, one or more of these elements are disrupted. The consequent impairment in oxalate homeostasis can trigger localized and systemic inflammation, progressive kidney disease and cardiovascular complications, including sudden cardiac death. Although kidney replacement therapy is the standard method for controlling elevated plasma oxalate concentrations in patients with kidney failure requiring dialysis, more research is needed to define effective elimination strategies at earlier stages of kidney disease. Beyond well-known interventions (such as dietary modifications), novel therapeutics (such as small interfering RNA gene silencers, recombinant oxalate-degrading enzymes and oxalate-degrading bacterial strains) hold promise to improve the outlook of patients with oxalate-related diseases. In addition, experimental evidence suggests that anti-inflammatory medications might represent another approach to mitigating or resolving oxalate-induced conditions.

Key points

  • Oxalate homeostasis is maintained through a combination of endogenous biosynthesis, exogenous supply, and renal and faecal excretion. Disruptions to these mechanisms caused by genetic mutations (primary hyperoxaluria) or increased oxalate absorption (secondary hyperoxaluria) result in oxalate nephropathy.

  • Solute carrier family 26 member 6 anion transporter has an important role in the maintenance of oxalate homeostasis by facilitating transcellular oxalate secretion in the intestine (in contrast to paracellular absorption).

  • Among several oxalate-degrading bacteria in the human gut microbiota, Oxalobacter formigenes represents a major reservoir of oxalate-metabolizing genes.

  • Oxalate inhibits kidney epithelial cell proliferation, promotes fibrotic transformation, calcification and atherosclerosis, and induces cell death. These pathological pathways are probably mediated, at least in part, through NLRP3 inflammasome stimulation and mitochondrial disruption.

  • Urinary oxalate excretion is independently associated with the progression of chronic kidney disease and kidney failure. Elevated blood oxalate is also associated with increased risk of cardiovascular events, in particular sudden cardiac death.

  • Oxalate-balancing treatment options include O. formigenes analogues and oxalate decarboxylase supplements, small interfering RNA therapeutics that target oxalate-producing hepatic enzymes, and experimental CRISPR–Cas9 approaches and anti-inflammatory strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxalate homeostasis.
Fig. 2: Model of endogenous oxalate synthesis pathways.
Fig. 3: Oxalate transport in the small intestine.
Fig. 4: Microbial modulation of oxalate homeostasis.

Similar content being viewed by others

References

  1. Duranton, F. et al. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 23, 1258–1270 (2012).

    Article  CAS  Google Scholar 

  2. Gulhan, B. et al. The relationship between serum oxalic acid, central hemodynamic parameters and colonization by Oxalobacter formigenes in hemodialysis patients. Cardiorenal Med. 5, 164–174 (2015).

    Article  CAS  Google Scholar 

  3. Pfau, A. et al. High oxalate concentrations correlate with increased risk for sudden cardiac death in dialysis patients. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2020121793 (2021).

    Article  Google Scholar 

  4. Cochat, P. & Rumsby, G. Primary hyperoxaluria. N. Engl. J. Med. 369, 649–658 (2013).

    Article  CAS  Google Scholar 

  5. Knauf, F. et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 84, 895–901 (2013).

    Article  CAS  Google Scholar 

  6. Waikar, S. S. et al. Association of urinary oxalate excretion with the risk of chronic kidney disease progression. JAMA Intern. Med. 179, 542–551 (2019).

    Article  Google Scholar 

  7. Schunk, S. J. et al. Interleukin-1α is a central regulator of leukocyte-endothelial adhesion in myocardial infarction and in chronic kidney disease. Circulation 144, 893–908 (2021).

    Article  CAS  Google Scholar 

  8. Sun, K. et al. Hyperoxalemia leads to oxidative stress in endothelial cells and mice with chronic kidney disease. Kidney Blood Press. Res. 46, 377–386 (2021).

    Article  CAS  Google Scholar 

  9. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J. Clin. Invest. 123, 236–246 (2013).

    Article  CAS  Google Scholar 

  10. Liu, Y. et al. Dysregulated oxalate metabolism is a driver and therapeutic target in atherosclerosis. Cell Rep. 36, 109420 (2021).

    Article  CAS  Google Scholar 

  11. Neumeier, L. I. et al. Enteric oxalate secretion mediated by Slc26a6 defends against hyperoxalemia in murine models of chronic kidney disease. J. Am. Soc. Nephrol. 31, 1987–1995 (2020).

    Article  CAS  Google Scholar 

  12. Liu, M. et al. Microbial genetic and transcriptional contributions to oxalate degradation by the gut microbiota in health and disease. eLife https://doi.org/10.7554/eLife.63642 (2021).

    Article  Google Scholar 

  13. Williams, H. E. Oxalic acid and the hyperoxaluric syndromes. Kidney Int. 13, 410–417 (1978).

    Article  CAS  Google Scholar 

  14. Ermer, T., Eckardt, K. U., Aronson, P. S. & Knauf, F. Oxalate, inflammasome, and progression of kidney disease. Curr. Opin. Nephrol. Hypertens. 25, 363–371 (2016).

    Article  CAS  Google Scholar 

  15. Ladwig, P. M., Liedtke, R. R., Larson, T. S. & Lieske, J. C. Sensitive spectrophotometric assay for plasma oxalate. Clin. Chem. 51, 2377–2380 (2005).

    Article  CAS  Google Scholar 

  16. Porowski, T. et al. Reference values of plasma oxalate in children and adolescents. Pediatr. Nephrol. 23, 1787–1794 (2008).

    Article  Google Scholar 

  17. Elgstoen, K. B. P. Liquid chromatography–tandem mass spectrometry method for routine measurement of oxalic acid in human plasma. J. Chromatogr. B 873, 31–36 (2008).

    Article  CAS  Google Scholar 

  18. Holmes, R. P., Goodman, H. O. & Assimos, D. G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 59, 270–276 (2001).

    Article  CAS  Google Scholar 

  19. Fargue, S. et al. Hydroxyproline metabolism and oxalate synthesis in primary hyperoxaluria. J. Am. Soc. Nephrol. 29, 1615–1623 (2018).

    Article  CAS  Google Scholar 

  20. Garrelfs, S. et al. Endogenous oxalate production in primary hyperoxaluria type 1 patients. J. Am. Soc. Nephrol. 22, 3175–3186 (2021).

    Article  Google Scholar 

  21. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/study/NCT04437225 (2020).

  22. Knight, J., Hinsdale, M. & Holmes, R. Glycolate and 2-phosphoglycolate content of tissues measured by ion chromatography coupled to mass spectrometry. Anal. Biochem. 421, 121–124 (2012).

    Article  CAS  Google Scholar 

  23. Lange, J. N., Wood, K. D., Knight, J., Assimos, D. G. & Holmes, R. P. Glyoxal formation and its role in endogenous oxalate synthesis. Adv. Urol. 2012, 819202 (2012).

    Article  Google Scholar 

  24. Knight, J., Wood, K. D., Lange, J. N., Assimos, D. G. & Holmes, R. P. Oxalate formation from glyoxal in erythrocytes. Urology https://doi.org/10.1016/j.urology.2015.10.014 (2015).

    Article  Google Scholar 

  25. Knight, J., Assimos, D. G., Easter, L. & Holmes, R. P. Metabolism of fructose to oxalate and glycolate. Horm. Metab. Res. 42, 868–873 (2010).

    Article  CAS  Google Scholar 

  26. Li, X. et al. Generation of a GLO-2 deficient mouse reveals its effects on liver carbonyl and glutathione levels. Biochem. Biophys. Rep. 28, 101138 (2021).

    CAS  Google Scholar 

  27. Efe, O., Verma, A. & Waikar, S. S. Urinary oxalate as a potential mediator of kidney disease in diabetes mellitus and obesity. Curr. Opin. Nephrol. Hypertens. 28, 316–320 (2019).

    Article  CAS  Google Scholar 

  28. Knight, J., Assimos, D. G., Callahan, M. F. & Holmes, R. P. Metabolism of primed, constant infusions of [1,2-13C2] glycine and [1-13C1] phenylalanine to urinary oxalate. Metabolism 60, 950–956 (2011).

    Article  CAS  Google Scholar 

  29. Glew, R. H. et al. Nephropathy in dietary hyperoxaluria: a potentially preventable acute or chronic kidney disease. World J. Nephrol. 3, 122–142 (2014).

    Article  Google Scholar 

  30. Liu, Y. et al. Plasma oxalate levels in prevalent hemodialysis patients and potential implications for ascorbic acid supplementation. Clin. Biochem. 49, 1133–1139 (2016).

    Article  CAS  Google Scholar 

  31. McQuade, D. J., Dargan, P. I. & Wood, D. M. Challenges in the diagnosis of ethylene glycol poisoning. Ann. Clin. Biochem. 51, 167–178 (2013).

    Article  Google Scholar 

  32. Chai, W., Liebman, M., Kynast-Gales, S. & Massey, L. Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers. Am. J. Kidney Dis. 44, 1060–1069 (2004).

    Article  CAS  Google Scholar 

  33. Sikora, P. et al. [13C2]oxalate absorption in children with idiopathic calcium oxalate urolithiasis or primary hyperoxaluria. Kidney Int. 73, 1181–1186 (2008).

    Article  CAS  Google Scholar 

  34. Marengo, S. R. & Romani, A. M. P. Oxalate in renal stone disease: the terminal metabolite that just won’t go away. Nat. Clin. Pract. Nephrol. 4, 368–377 (2008).

    Article  CAS  Google Scholar 

  35. Avila-Nava, A. et al. Oxalate content and antioxidant activity of different ethnic foods. J. Ren. Nutr. 31, 73–79 (2021).

    Article  CAS  Google Scholar 

  36. Asplin, J. The management of patients with enteric hyperoxaluria. Urolithiasis https://doi.org/10.1007/s00240-015-0846-5 (2015).

    Article  Google Scholar 

  37. Whittamore, J. M. & Hatch, M. Oxalate flux across the intestine: contributions from membrane transporters. Compr. Physiol. 12, 2835–2875 (2021).

    Article  Google Scholar 

  38. Elder, T. D. & Wyngaarden, J. B. The biosynthesis and turnover of oxalate in normal and hyperoxaluric subjects. J. Clin. Invest. 39, 1337–1344 (1960).

    Article  CAS  Google Scholar 

  39. Hautmann, R. & Osswald, H. Pharmacokinetic studies of oxalate in man. Invest. Urol. 16, 395–398 (1979).

    CAS  Google Scholar 

  40. Senekjian, H. O. & Weinman, E. J. Oxalate transport by proximal tubule of the rabbit kidney. Am. J. Physiol. 243, F271–F275 (1982).

    CAS  Google Scholar 

  41. Costello, J. F., Smith, M., Stolarski, C. & Sadovnic, M. J. Extrarenal clearance of oxalate increases with progression of renal failure in the rat. J. Am. Soc. Nephrol. 3, 1098–1104 (1992).

    Article  CAS  Google Scholar 

  42. Hatch, M., Freel, R. W. & Vaziri, N. D. Intestinal excretion of oxalate in chronic renal failure. J. Am. Soc. Nephrol. 5, 1339–1343 (1994).

    Article  CAS  Google Scholar 

  43. Robijn, S., Hoppe, B., Vervaet, B. A., D’Haese, P. C. & Verhulst, A. Hyperoxaluria: a gut-kidney axis? Kidney Int. 80, 1146–1158 (2011).

    Article  CAS  Google Scholar 

  44. Low, I., Friedrich, T. & Burckhardt, G. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol. 246, F334–F342 (1984).

    CAS  Google Scholar 

  45. Knickelbein, R. G., Aronson, P. S. & Dobbins, J. W. Oxalate transport by anion exchange across rabbit ileal brush border. J. Clin. Invest. 77, 170–175 (1986).

    Article  CAS  Google Scholar 

  46. Karniski, L. P. & Aronson, P. S. Anion exchange pathways for Cl- transport in rabbit renal microvillus membranes. Am. J. Physiol. 253, F513–F521 (1987).

    CAS  Google Scholar 

  47. Kuo, S. M. & Aronson, P. S. Oxalate transport via the sulfate/HCO3 exchanger in rabbit renal basolateral membrane vesicles. J. Biol. Chem. 263, 9710–9717 (1988).

    Article  CAS  Google Scholar 

  48. Knickelbein, R. G. & Dobbins, J. W. Sulfate and oxalate exchange for bicarbonate across the basolateral membrane of rabbit ileum. Am. J. Physiol. 259, G807–G813 (1990).

    CAS  Google Scholar 

  49. Yamakawa, K. & Kawamura, J. Oxalate:OH exchange across rat renal cortical brush border membrane. Kidney Int. 37, 1105–1112 (1990).

    Article  CAS  Google Scholar 

  50. Kuo, S. M. & Aronson, P. S. Pathways for oxalate transport in rabbit renal microvillus membrane vesicles. J. Biol. Chem. 271, 15491–15497 (1996).

    Article  CAS  Google Scholar 

  51. Jiang, Z., Grichtchenko, I. I., Boron, W. F. & Aronson, P. S. Specificity of anion exchange mediated by mouse Slc26a6. J. Biol. Chem. 277, 33963–33967 (2002).

    Article  CAS  Google Scholar 

  52. Xie, Q., Welch, R., Mercado, A., Romero, M. F. & Mount, D. B. Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am. J. Physiol. Ren. Physiol. 283, F826–F838 (2002).

    Article  Google Scholar 

  53. Heneghan, J. F. et al. Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am. J. Physiol. Cell Physiol. 298, C1363–C1375 (2010).

    Article  CAS  Google Scholar 

  54. Silberg, D. G., Wang, W., Moseley, R. H. & Traber, P. G. The Down Regulated in Adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. J. Biol. Chem. 270, 11897–11902 (1995).

    Article  CAS  Google Scholar 

  55. Bai, J. P. et al. Prestin’s anion transport and voltage-sensing capabilities are independent. Biophys. J. 96, 3179–3186 (2009).

    Article  CAS  Google Scholar 

  56. Lohi, H. et al. Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J. Biol. Chem. 277, 14246–14254 (2002).

    Article  CAS  Google Scholar 

  57. Stewart, A. K. et al. SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization. Am. J. Physiol. Cell Physiol. 301, C289–C303 (2011).

    Article  CAS  Google Scholar 

  58. Jennings, M. L. & Adame, M. F. Characterization of oxalate transport by the human erythrocyte band 3 protein. J. Gen. Physiol. 107, 145–159 (1996).

    Article  CAS  Google Scholar 

  59. Reimold, F. R. et al. Substitution of transmembrane domain Cys residues alters pH(o)-sensitive anion transport by AE2/SLC4A2 anion exchanger. Pflug. Arch. 465, 839–851 (2013).

    Article  CAS  Google Scholar 

  60. Knauf, F. et al. Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J. Am. Soc. Nephrol. 22, 2247–2255 (2011).

    Article  CAS  Google Scholar 

  61. Freel, R. W., Whittamore, J. M. & Hatch, M. Transcellular oxalate and Cl absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G520–G527 (2013).

    Article  CAS  Google Scholar 

  62. Cil, O., Chu, T., Lee, S., Haggie, P. M. & Verkman, A. S. Small-molecule inhibitor of intestinal anion exchanger SLC26A3 for treatment of hyperoxaluria and nephrolithiasis. JCI Insight https://doi.org/10.1172/jci.insight.153359 (2022).

    Article  Google Scholar 

  63. Chernova, M. N. et al. Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J. Physiol. 549, 3–19 (2003).

    Article  CAS  Google Scholar 

  64. Wasiluk, T. et al. Simultaneous expression of ClopHensor and SLC26A3 reveals the nature of endogenous oxalate transport in CHO cells. Biol. Open https://doi.org/10.1242/bio.041665 (2019).

    Article  Google Scholar 

  65. Chernova, M. N. et al. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: differences in anion selectivity, regulation, and electrogenicity. J. Biol. Chem. 280, 8564–8580 (2005).

    Article  CAS  Google Scholar 

  66. Freel, R. W., Hatch, M., Green, M. & Soleimani, M. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G719–G728 (2006).

    Article  CAS  Google Scholar 

  67. Jiang, Z. et al. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat. Genet. 38, 474–478 (2006).

    Article  CAS  Google Scholar 

  68. Liu, Y. et al. Short-Chain fatty acids reduced renal calcium oxalate stones by regulating the expression of intestinal oxalate transporter SLC26A6. mSystems 6, e0104521 (2021).

    Article  Google Scholar 

  69. Whittamore, J. M. & Hatch, M. The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine. Pflug. Arch. 473, 95–106 (2021).

    Article  CAS  Google Scholar 

  70. Capolongo, G., Abul-Ezz, S., Moe, O. W. & Sakhaee, K. Subclinical celiac disease and crystal-induced kidney disease following kidney transplant. Am. J. Kidney Dis. 60, 662–667 (2012).

    Article  Google Scholar 

  71. Cornière, N. et al. Dominant negative mutation in oxalate transporter SLC26A6 associated with enteric hyperoxaluria and nephrolithiasis. J. Med. Genet. https://doi.org/10.1136/jmedgenet-2021-108256 (2022).

    Article  Google Scholar 

  72. Mukaibo, T. et al. The apical anion exchanger Slc26a6 promotes oxalate secretion by murine submandibular gland acinar cells. J. Biol. Chem. 293, 6259–6268 (2018).

    Article  CAS  Google Scholar 

  73. Bissig, M., Hagenbuch, B., Stieger, B., Koller, T. & Meier, P. J. Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J. Biol. Chem. 269, 3017–3021 (1994).

    Article  CAS  Google Scholar 

  74. Karniski, L. P. et al. Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am. J. Physiol. 275, F79–F87 (1998).

    CAS  Google Scholar 

  75. Lee, A., Beck, L. & Markovich, D. The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation thyroid hormone. DNA Cell Biol. 22, 19–31 (2003).

    Article  CAS  Google Scholar 

  76. Quondamatteo, F. et al. Localization of the sulfate/anion exchanger in the rat liver. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1075–G1081 (2006).

    Article  CAS  Google Scholar 

  77. Krick, W., Schnedler, N., Burckhardt, G. & Burckhardt, B. C. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions. Am. J. Physiol. Ren. Physiol. 297, F145–F154 (2009).

    Article  CAS  Google Scholar 

  78. Dawson, P. A. et al. Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J. Clin. Invest. 120, 706–712 (2010).

    Article  CAS  Google Scholar 

  79. Ko, N., Knauf, F., Jiang, Z., Markovich, D. & Aronson, P. S. Sat1 is dispensable for active oxalate secretion in mouse duodenum. Am. J. Physiol. Cell Physiol. 303, C52–C57 (2012).

    Article  CAS  Google Scholar 

  80. Whittamore, J. M., Stephens, C. E. & Hatch, M. Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G82–G94 (2019).

    Article  CAS  Google Scholar 

  81. Gee, H. Y. et al. Mutations in SLC26A1 cause nephrolithiasis. Am. J. Hum. Genet. 98, 1228–1234 (2016).

    Article  CAS  Google Scholar 

  82. Lohi, H. et al. Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics 70, 102–112 (2000).

    Article  CAS  Google Scholar 

  83. Waldegger, S. et al. Cloning and characterization of SLC26A6, a novel member of the solute carrier 26 gene family. Genomics 72, 43–50 (2001).

    Article  CAS  Google Scholar 

  84. Knauf, F. et al. Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc. Natl Acad. Sci. USA 98, 9425–9430 (2001).

    Article  CAS  Google Scholar 

  85. Wang, Z., Petrovic, S., Mann, E. & Soleimani, M. Identification of an apical Cl/HCO3 exchanger in the small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G573–G579 (2002).

    Article  CAS  Google Scholar 

  86. Sugimoto, T. et al. Fate of circulating oxalate in rats. Eur. Urol. 23, 485–489 (1993).

    Article  CAS  Google Scholar 

  87. Weinman, E. J., Frankfurt, S. J., Ince, A. & Sansom, S. Renal tubular transport of organic acids. Studies with oxalate and para-aminohippurate in the rat. J. Clin. Invest. 61, 801–806 (1978).

    Article  CAS  Google Scholar 

  88. Knauf, F., Velazquez, H., Pfann, V., Jiang, Z. & Aronson, P. S. Characterization of renal NaCl and oxalate transport in Slc26a6−/− mice. Am. J. Physiol. Ren. Physiol. 316, F128–F133 (2019).

    Article  CAS  Google Scholar 

  89. Holmes, R. P., Ambrosius, W. T. & Assimos, D. G. Dietary oxalate loads and renal oxalate handling. J. Urol. 174, 943–947 (2005).

    Article  CAS  Google Scholar 

  90. Worcester, E. M. et al. A test of the hypothesis that oxalate secretion produces proximal tubule crystallization in primary hyperoxaluria type I. Am. J. Physiol. Ren. Physiol. 305, F1574–F1584 (2013).

    Article  CAS  Google Scholar 

  91. Chandhoke, P. S. & Fan, J. Transport of oxalate across the rabbit papillary surface epithelium. J. Urol. 164, 1724–1728 (2000).

    Article  CAS  Google Scholar 

  92. Ohana, E., Shcheynikov, N., Moe, O. W. & Muallem, S. SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J. Am. Soc. Nephrol. 24, 1617–1626 (2013).

    Article  CAS  Google Scholar 

  93. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

    Article  CAS  Google Scholar 

  94. The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).

    Article  Google Scholar 

  95. Abratt, V. R. & Reid, S. J. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv. Appl. Microbiol. 72, 63–87 (2010).

    Article  CAS  Google Scholar 

  96. Daniel, S. L. et al. Forty years of Oxalobacter formigenes, a gutsy oxalate-degrading specialist. Appl. Environ. Microbiol. 87, e0054421 (2021).

    Article  Google Scholar 

  97. Arvans, D. et al. Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J. Am. Soc. Nephrol. 28, 876–887 (2017).

    Article  CAS  Google Scholar 

  98. Hatch, M. & Freel, R. W. A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion. Urolithiasis 41, 379–384 (2013).

    Article  CAS  Google Scholar 

  99. Tasian, G. E. et al. Oral antibiotic exposure and kidney stone disease. J. Am. Soc. Nephrol. 29, 1731–1740 (2018).

    Article  Google Scholar 

  100. Ferraro, P. M., Curhan, G. C., Gambaro, G. & Taylor, E. N. Antibiotic use and risk of incident kidney stones in female nurses. Am. J. Kidney Dis. 74, 736–741 (2019).

    Article  CAS  Google Scholar 

  101. Nazzal, L. & Blaser, M. J. Does the receipt of antibiotics for common infectious diseases predispose to kidney stones? A cautionary note for all health care practitioners. J. Am. Soc. Nephrol. 29, 1590–1592 (2018).

    Article  CAS  Google Scholar 

  102. Miller, A. W. & Dearing, D. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens 2, 636–652 (2013).

    Article  CAS  Google Scholar 

  103. Ticinesi, A. et al. Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut 67, 2097–2106 (2018).

    Article  CAS  Google Scholar 

  104. Suryavanshi, M. V. et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Sci. Rep. 6, 34712 (2016).

    Article  CAS  Google Scholar 

  105. Denburg, M. R. et al. Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney stone disease. J. Am. Soc. Nephrol. 31, 1358–1369 (2020).

    Article  CAS  Google Scholar 

  106. Kaufman, D. W. et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 19, 1197–1203 (2008).

    Article  CAS  Google Scholar 

  107. Ticinesi, A., Nouvenne, A. & Meschi, T. Gut microbiome and kidney stone disease: not just an Oxalobacter story. Kidney Int. 96, 25–27 (2019).

    Article  CAS  Google Scholar 

  108. Miller, A. W., Choy, D., Penniston, K. L. & Lange, D. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int. 96, 180–188 (2019).

    Article  CAS  Google Scholar 

  109. Dill, H., Martin-Higueras, C. & Hoppe, B. Diet-related urine collections: assistance in categorization of hyperoxaluria. Urolithiasis https://doi.org/10.1007/s00240-021-01290-2 (2021).

    Article  Google Scholar 

  110. Shee, K. & Stoller, M. L. Perspectives in primary hyperoxaluria — historical, current and future clinical interventions. Nat. Rev. Urol. https://doi.org/10.1038/s41585-021-00543-4 (2021).

    Article  Google Scholar 

  111. Martin-Higueras, C. et al. A report from the European Hyperoxaluria Consortium (OxalEurope) Registry on a large cohort of patients with primary hyperoxaluria type 3. Kidney Int. 100, 621–635 (2021).

    Article  CAS  Google Scholar 

  112. Garrelfs, S. F. et al. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. Kidney Int. 96, 1389–1399 (2019).

    Article  CAS  Google Scholar 

  113. Hopp, K. et al. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J. Am. Soc. Nephrol. 26, 2559–2570 (2015).

    Article  CAS  Google Scholar 

  114. Mandrile, G. et al. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int. 86, 1197–1204 (2014).

    Article  CAS  Google Scholar 

  115. Zhao, Y. et al. Extended genetic analysis of exome sequencing for primary hyperoxaluria in pediatric urolithiasis patients with hyperoxaluria. Gene https://doi.org/10.1016/j.gene.2021.146155 (2022).

    Article  Google Scholar 

  116. Tu, X. et al. Human MiR-4660 regulates the expression of alanine-glyoxylate aminotransferase and may be a biomarker for idiopathic oxalosis. Clin. Exp. Nephrol. 23, 890–897 (2019).

    Article  CAS  Google Scholar 

  117. Belostotsky, R. et al. Translation inhibition corrects aberrant localization of mutant alanine-glyoxylate aminotransferase: possible therapeutic approach for hyperoxaluria. J. Mol. Med. 96, 621–630 (2018).

    Article  Google Scholar 

  118. Lorenz, E. C. et al. Recovery from dialysis in patients with primary hyperoxaluria type 1 treated with pyridoxine: a report of 3 cases. Am. J. Kidney Dis. 77, 816–819 (2021).

    Article  CAS  Google Scholar 

  119. Dindo, M., Oppici, E., Dell’Orco, D., Montone, R. & Cellini, B. Correlation between the molecular effects of mutations at the dimer interface of alanine-glyoxylate aminotransferase leading to primary hyperoxaluria type I and the cellular response to vitamin B(6). J. Inherit. Metab. Dis. 41, 263–275 (2018).

    Article  CAS  Google Scholar 

  120. Monico, C. G., Rossetti, S., Olson, J. B. & Milliner, D. S. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 67, 1704–1709 (2005).

    Article  CAS  Google Scholar 

  121. Dindo, M. et al. Dimerization drives proper folding of human alanine:glyoxylate aminotransferase but is dispensable for peroxisomal targeting. J. Pers. Med. https://doi.org/10.3390/jpm11040273 (2021).

    Article  Google Scholar 

  122. Reddy, S. et al. Clinical outcomes and histological patterns in oxalate nephropathy due to enteric and nonenteric risk factors. Am. J. Nephrol. https://doi.org/10.1159/000520286 (2021).

    Article  Google Scholar 

  123. Joshi, S., Wang, W. & Khan, S. R. Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition. PLoS ONE 12, e0185009 (2017).

    Article  Google Scholar 

  124. Ogawa, Y. et al. Calcium oxalate saturation in dialysis patients with and without primary hyperoxaluria. Urol. Res. 34, 12–16 (2006).

    Article  Google Scholar 

  125. Worcester, E. M., Nakagawa, Y., Bushinsky, D. A. & Coe, F. L. Evidence that serum calcium oxalate supersaturation is a consequence of oxalate retention in patients with chronic renal failure. J. Clin. Invest. 77, 1888–1896 (1986).

    Article  CAS  Google Scholar 

  126. Hueppelshaeuser, R. et al. Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn’s disease. Pediatr. Nephrol. 27, 1103–1109 (2012).

    Article  Google Scholar 

  127. Shah, R. J., Vaughan, L. E., Enders, F. T., Milliner, D. S. & Lieske, J. C. Plasma oxalate as a predictor of kidney function decline in a primary hyperoxaluria cohort. Int. J. Mol. Sci. 21, 3608 (2020).

    Article  CAS  Google Scholar 

  128. Mulay, S. R. et al. Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am. J. Physiol. Ren. Physiol. https://doi.org/10.1152/ajprenal.00488.2015 (2016).

    Article  Google Scholar 

  129. Tubben, A. et al. Urinary oxalate excretion and long-term outcomes in kidney transplant recipients. J. Clin. Med. https://doi.org/10.3390/jcm8122104 (2019).

    Article  Google Scholar 

  130. Pinheiro, H. S., Camara, N. O., Osaki, K. S., De Moura, L. A. & Pacheco-Silva, A. Early presence of calcium oxalate deposition in kidney graft biopsies is associated with poor long-term graft survival. Am. J. Transpl. 5, 323–329 (2005).

    Article  CAS  Google Scholar 

  131. Palsson, R. et al. The association of calcium oxalate deposition in kidney allografts with graft and patient survival. Nephrol. Dial. Transpl. 35, 888–894 (2020).

    Article  CAS  Google Scholar 

  132. Krogstad, V. et al. High plasma oxalate levels early after kidney transplantation are associated with impaired long-term outcomes. Transpl. Int. 35, 10240 (2022).

    Article  Google Scholar 

  133. Rule, A. D., Krambeck, A. E. & Lieske, J. C. Chronic kidney disease in kidney stone formers. Clin. J. Am. Soc. Nephrol. 6, 2069–2075 (2011).

    Article  Google Scholar 

  134. Amin, R. et al. Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria. Kidney Int. 93, 1098–1107 (2018).

    Article  CAS  Google Scholar 

  135. Gianmoena, K. et al. Epigenomic and transcriptional profiling identifies impaired glyoxylate detoxification in NAFLD as a risk factor for hyperoxaluria. Cell Rep. 36, 109526 (2021).

    Article  CAS  Google Scholar 

  136. Evan, A. P. et al. Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int. 78, 310–317 (2010).

    Article  CAS  Google Scholar 

  137. Convento, M. B. et al. Calcium oxalate crystals and oxalate induce an epithelial-to-mesenchymal transition in the proximal tubular epithelial cells: contribution to oxalate kidney injury. Sci. Rep. 7, 45740 (2017).

    Article  Google Scholar 

  138. Convento, M., Pessoa, E., Aragão, A., Schor, N. & Borges, F. Oxalate induces type II epithelial to mesenchymal transition (EMT) in inner medullary collecting duct cells (IMCD) in vitro and stimulate the expression of osteogenic and fibrotic markers in kidney medulla in vivo. Oncotarget 10, 1102–1118 (2019).

    Article  Google Scholar 

  139. Liu, Y. et al. Role of ROS-induced NLRP3 inflammasome activation in the formation of calcium oxalate nephrolithiasis. Front. Immunol. 13, 818625 (2022).

    Article  CAS  Google Scholar 

  140. Kohri, K. et al. Biomolecular mechanism of urinary stone formation involving osteopontin. Urol. Res. 40, 623–637 (2012).

    Article  CAS  Google Scholar 

  141. Khan, S. R., Canales, B. K. & Dominguez-Gutierrez, P. R. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat. Rev. Nephrol. 17, 417–433 (2021).

    Article  CAS  Google Scholar 

  142. Patel, M. et al. Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line. Redox Biol. 15, 207–215 (2018).

    Article  CAS  Google Scholar 

  143. Kumar, P., Saini, K., Saini, V. & Mitchell, T. Oxalate alters cellular bioenergetics, redox homeostasis, antibacterial response, and immune response in macrophages. Front. Immunol. 12, 694865 (2021).

    Article  CAS  Google Scholar 

  144. Recht, P. A. et al. Oxalic acid alters intracellular calcium in endothelial cells. Atherosclerosis 173, 321–328 (2004).

    Article  CAS  Google Scholar 

  145. Bao, Y., Tu, X. & Wei, Q. Water for preventing urinary stones. Cochrane Database Syst. Rev. 2, CD004292 (2020).

    Google Scholar 

  146. Kumar, R. et al. Fat malabsorption and increased intestinal oxalate absorption are common after roux-en-Y gastric bypass surgery. Surgery 149, 654–661 (2011).

    Article  Google Scholar 

  147. Cheungpasitporn, W., Erickson, S. B., Rule, A. D., Enders, F. & Lieske, J. C. Short-term tolvaptan increases water intake and effectively decreases urinary calcium oxalate, calcium phosphate and uric acid supersaturations. J. Urol. 195, 1476–1481 (2016).

    Article  CAS  Google Scholar 

  148. Reilly, R. F., Peixoto, A. J. & Desir, G. V. The evidence-based use of thiazide diuretics in hypertension and nephrolithiasis. Clin. J. Am. Soc. Nephrol. 5, 1893 (2010).

    Article  CAS  Google Scholar 

  149. Phillips, R. et al. Citrate salts for preventing and treating calcium containing kidney stones in adults.Cochrane Database Syst. Rev. 10, CD010057 (2015).

    Google Scholar 

  150. Chung, J. et al. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition. Nature 536, 446–450 (2016).

    Article  CAS  Google Scholar 

  151. Ruggenenti, P. et al. Fresh lemon juice supplementation for the prevention of recurrent stones in calcium oxalate nephrolithiasis: a pragmatic, prospective, randomised, open, blinded endpoint (PROBE) trial. EClinicalMedicine 43, 101227 (2022).

    Article  Google Scholar 

  152. Espino-Grosso, P., Monsour, C. & Canales, B. K. The effect of calcium and vitamin B6 Supplementation on oxalate excretion in a rodent gastric bypass model of enteric hyperoxaluria. Urology 124, 310.e9–310.e14 (2019).

    Article  Google Scholar 

  153. Nazzal, L., Puri, S. & Goldfarb, D. S. Enteric hyperoxaluria: an important cause of end-stage kidney disease. Nephrol. Dial. Transplant. 31, 375–382 (2015).

    Article  Google Scholar 

  154. Emmett, M. et al. Conjugated bile acid replacement therapy reduces urinary oxalate excretion in short bowel syndrome. Am. J. Kidney Dis. 41, 230–237 (2003).

    Article  Google Scholar 

  155. Oka, Y., Miyazaki, M., Takatsu, S. & Matsuda, H. Calcium-based phosphate binders and plasma oxalate concentration in dialysis patients. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2022030248 (2022).

    Article  Google Scholar 

  156. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. Suppl. 7, 1–59 (2017).

    Article  Google Scholar 

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03346369 (2017).

  158. Lieske, J. C., Regnier, C. & Dillon, J. J. Use of sevelamer hydrochloride as an oxalate binder. J. Urol. 179, 1407–1410 (2008).

    Article  CAS  Google Scholar 

  159. Vekeman, J. et al. In search of an efficient complexing agent for oxalates and phosphates: a quantum chemical study. Nanomaterials https://doi.org/10.3390/nano11071763 (2021).

    Article  Google Scholar 

  160. Canales, B. K. & Hatch, M. Oxalobacter formigenes colonization normalizes oxalate excretion in a gastric bypass model of hyperoxaluria. Surg. Obes. Relat. Dis. 13, 1152–1157 (2017).

    Article  Google Scholar 

  161. Milliner, D., Hoppe, B. & Groothoff, J. A randomised phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46, 313–323 (2018).

    Article  CAS  Google Scholar 

  162. Hoppe, B. et al. Effects of Oxalobacter formigenes in subjects with primary hyperoxaluria Type 1 and end-stage renal disease: a phase II study. Nephrol. Dial. Transplant. 36, 1464–1473 (2020).

    Article  Google Scholar 

  163. Klimesova, K., Whittamore, J. M. & Hatch, M. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 43, 107–117 (2015).

    Article  CAS  Google Scholar 

  164. Lieske, J. C., Goldfarb, D. S., De Simone, C. & Regnier, C. Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int. 68, 1244–1249 (2005).

    Article  CAS  Google Scholar 

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04909723 (2021).

  166. Mehra, Y. & Viswanathan, P. High-quality whole-genome sequence analysis of Lactobacillus paragasseri UBLG-36 reveals oxalate-degrading potential of the strain. PLoS ONE 16, e0260116 (2021).

    Article  CAS  Google Scholar 

  167. Lubkowicz, D. et al. An engineered bacterial therapeutic lowers urinary oxalate in preclinical models and in silico simulations of enteric hyperoxaluria. Mol. Syst. Biol. 18, e10539 (2022).

    Article  CAS  Google Scholar 

  168. Miller, A. W., Dale, C. & Dearing, M. D. The induction of oxalate metabolism in vivo is more effective with functional microbial communities than with functional microbial species. mSystems https://doi.org/10.1128/mSystems.00088-17 (2017).

    Article  Google Scholar 

  169. Miller, A. W., Oakeson, K. F., Dale, C. & Dearing, M. D. Microbial community transplant results in increased and long-term oxalate degradation. Microb. Ecol. 72, 470–478 (2016).

    Article  CAS  Google Scholar 

  170. Stern, J. M. et al. Fecal transplant modifies urine chemistry risk factors for urinary stone disease. Physiol. Rep. 7, e14012 (2019).

    Article  Google Scholar 

  171. Quintero, E. et al. A prospective, double-blind, randomized, placebo-controlled, crossover study using an orally administered oxalate decarboxylase (OxDC). Kidney360 1, 1284–1290 (2020).

    Article  Google Scholar 

  172. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/study/NCT01127087 (2010).

  173. Lingeman, J. E. et al. ALLN-177, oral enzyme therapy for hyperoxaluria. Int. Urol. Nephrol. 51, 601–608 (2019).

    Article  CAS  Google Scholar 

  174. Pfau, A. et al. Pilot study of reloxaliase in patients with severe enteric hyperoxaluria and hyperoxalemia. Nephrol. Dial. Transpl. 36, 945–948 (2021).

    Article  CAS  Google Scholar 

  175. Lieske John, C. et al. Randomized placebo-controlled trial of reloxaliase in enteric hyperoxaluria. NEJM Evid. 1, EVIDoa2100053 (2022).

    Google Scholar 

  176. Dejban, P. & Lieske, J. C. New therapeutics for primary hyperoxaluria type 1. Curr. Opin. Nephrol. Hypertens. 31, 344–350 (2022).

    Article  CAS  Google Scholar 

  177. Aagaard, L. & Rossi, J. J. RNAi therapeutics: principles, prospects and challenges. Adv. Drug Deliv. Rev. 59, 75–86 (2007).

    Article  CAS  Google Scholar 

  178. Traber, G. M. & Yu, A.-M. RNAi based therapeutics and novel RNA bioengineering technologies. J. Pharmacol. Exp. Ther. https://doi.org/10.1124/jpet.122.001234 (2022).

    Article  Google Scholar 

  179. Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    Article  CAS  Google Scholar 

  180. Sas, D. J. et al. Phase 3 trial of lumasiran for primary hyperoxaluria type 1: a new RNAi therapeutic in infants and young children. Genet. Med. https://doi.org/10.1016/j.gim.2021.10.024 (2021).

    Article  Google Scholar 

  181. Leth, P. M. & Gregersen, M. Ethylene glycol poisoning. Forensic Sci. Int. 155, 179–184 (2005).

    Article  CAS  Google Scholar 

  182. Méaux, M. N. et al. The effect of lumasiran therapy for primary hyperoxaluria type 1 in small infants. Pediatr. Nephrol. https://doi.org/10.1007/s00467-021-05393-1 (2022).

    Article  Google Scholar 

  183. Joher, N. et al. Early post-transplant recurrence of oxalate nephropathy in a patient with primary hyperoxaluria type 1, despite pretransplant lumasiran therapy. Kidney Int. 101, 185–186 (2022).

    Article  Google Scholar 

  184. Shee, K. et al. Nedosiran dramatically reduces serum oxalate in dialysis-dependent primary hyperoxaluria 1: a compassionate use case report. Urology 156, e147–e149 (2021).

    Article  Google Scholar 

  185. Hoppe, B. et al. Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHYOX1) in primary hyperoxaluria. Kidney Int. https://doi.org/10.1016/j.kint.2021.08.015 (2021).

    Article  Google Scholar 

  186. Zabaleta, N. et al. CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nat. Commun. 9, 5454 (2018).

    Article  CAS  Google Scholar 

  187. Zheng, R. et al. Knockdown of lactate dehydrogenase by adeno-associated virus-delivered CRISPR/Cas9 system alleviates primary hyperoxaluria type 1. Clin. Transl Med. 10, e261 (2020).

    Article  CAS  Google Scholar 

  188. Martinez-Turrillas, R. et al. In vivo CRISPR-Cas9 inhibition of hepatic LDH as treatment of primary hyperoxaluria. Mol. Ther. Methods Clin. Dev. 25, 137–146 (2022).

    Article  CAS  Google Scholar 

  189. Mulay, S. R. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int. 96, 58–66 (2019).

    Article  CAS  Google Scholar 

  190. Song, Z. et al. Long noncoding RNA LINC00339 promotes renal tubular epithelial pyroptosis by regulating the miR-22-3p/NLRP3 axis in calcium oxalate-induced kidney stone. J. Cell. Biochem. 120, 10452–10462 (2019).

    Article  CAS  Google Scholar 

  191. Lu, C.-L., Teng, T.-Y., Liao, M.-T. & Ma, M.-C. TRPV1 hyperfunction contributes to renal inflammation in oxalate nephropathy. Int. J. Mol. Sci. 22, 6204 (2021).

    Article  CAS  Google Scholar 

  192. Ludwig-Portugall, I. et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int. 90, 525–539 (2016).

    Article  CAS  Google Scholar 

  193. Holmes, R. P. & Assimos, D. G. Glyoxylate synthesis and its modulation and influence on oxalate synthesis. J. Urol. 160, 1617–1624 (1998).

    Article  CAS  Google Scholar 

  194. Clark, B., Baqdunes, M. W. & Kunkel, G. M. Diet-induced oxalate nephropathy. BMJ Case Rep. 12, e231284 (2019).

    Article  Google Scholar 

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/study/NCT04860492 (2021).

  196. Lieske, J. C. et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 78, 1178–1185 (2010).

    Article  CAS  Google Scholar 

  197. Pape, L., Ahlenstiel-Grunow, T., Birtel, J., Krohne, T. U. & Hoppe, B. Oxalobacter formigenes treatment combined with intensive dialysis lowers plasma oxalate and halts disease progression in a patient with severe infantile oxalosis. Pediatr. Nephrol. https://doi.org/10.1007/s00467-019-04463-9 (2020).

    Article  Google Scholar 

  198. Lorenz, E. C. et al. Sustained pyridoxine response in primary hyperoxaluria type 1 recipients of kidney alone transplant. Am. J. Transplant. 14, 1433–1438 (2014).

    Article  CAS  Google Scholar 

  199. Hoyer-Kuhn, H. et al. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin. J. Am. Soc. Nephrol. 9, 468–477 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The work of F.K. was supported by the German Research Foundation (DFG) — KN1148/4-1 and Project-ID 394046635, SFB 1365.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, and wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Felix Knauf.

Ethics declarations

Competing interests

F.K. reports personal fees from Allena, Oxthera, Sanofi, Fresenius Medical Care, Alnylam Pharmaceuticals, Advicenne, Medice and Zai, and grant support from Alnylam and Dicerna Pharmaceuticals. S.W. reports personal fees from Public Health Advocacy Institute, CVS, Roth Capital Partners, Kantum Pharma, Mallinckrodt, Wolters Kluewer, GE Health Care, GSK, Allena Pharmaceuticals, Mass Medical International, Barron and Budd (versus Fresenius), JNJ, Venbio, Strataca, Takeda, Cerus, Pfizer, Bunch and James, Harvard Clinical Research Institute (also known as Baim Institute for Clinical Research), Oxidien, Sironax, Metro Biotechnology, Biomarin, Bain and Regeneron. L.N. reports personal fees from Oxthera, Dicerna, Federation Bio, Allena, Novome and Synlogic. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks B. Hoppe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Gene Mutation Database: http://www.hgmd.cf.ac.uk/ac/index.php

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermer, T., Nazzal, L., Tio, M.C. et al. Oxalate homeostasis. Nat Rev Nephrol 19, 123–138 (2023). https://doi.org/10.1038/s41581-022-00643-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00643-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing