Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunometabolic rewiring of tubular epithelial cells in kidney disease

Abstract

Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type — like cells of the innate immune system — that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.

Key points

  • Kidney tubular epithelial cells (TECs) have a high energy demand, relying primarily on fatty acid oxidation as an energy source.

  • The metabolic and immune profile of TECs is affected by injury; further alterations occur with disease progression or repair processes.

  • Following exposure to cellular stress, TECs rewire their metabolism, resulting in an accumulation of lipids and lipotoxicity.

  • Activation of immunometabolic processes influence the response of TECs to stress; innate immune sensors act to sense immunological changes in the intracellular and extracellular environment but also regulate the metabolic needs, responses and phenotype of TECs.

  • Targeting (immuno)metabolism through, for example, the targeting of innate immune sensors and their metabolic responses may represent a novel strategy for treating or preventing kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy and lipid synthesis pathways.
Fig. 2: Metabolic changes in TECs in response to AKI and CKD.
Fig. 3: The relationship between tubular metabolism and cellular phenotype.
Fig. 4: Immunometabolic pathways in TECs.

Similar content being viewed by others

References

  1. Wang, Z. M. et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92, 1369–1377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Ji, R. et al. The Warburg effect promotes mitochondrial injury regulated by uncoupling protein-2 in septic acute kidney injury. Shock 55, 640–648 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Stokman, G. et al. NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. J. Exp. Med. 214, 2405–2420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rampanelli, E. et al. Metabolic injury-induced NLRP3 inflammasome activation dampens phospholipid degradation. Sci. Rep. 7, 2861 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chou, W. C., Rampanelli, E., Li, X. & Ting, J. P. Y. Impact of intracellular innate immune receptors on immunometabolism. Cell. Mol. Immunol. 19, 337–351 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. O’Neill, L. A. J., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dionne, M. S. Immune-metabolic interaction in Drosophila. Fly 8, 75 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oliva, R. & Quibod, I. L. Immunity and starvation: new opportunities to elevate disease resistance in crops. Curr. Opin. Plant. Biol. 38, 84–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Hotamisligil, G. S. & Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 8, 923–934 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schroder, K., Zhou, R. & Tschopp, J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Tammaro, A., Kers, J., Scantlebery, A. M. L. & Florquin, S. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration. Front. Immunol. 11, 1346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhargava, P. & Schnellmann, R. G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13, 629–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mandel, L. J. Metabolic substrates, cellular energy production, and the regulation of proximal tubular transport. Annu. Rev. Physiol. 47, 85–101 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Dickman, K. G. & Mandel, L. J. Differential effects of respiratory inhibitors on glycolysis in proximal tubules. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 258, F1608-15 (1990).

    Article  Google Scholar 

  16. Jang, H. S., Noh, M. R., Kim, J. & Padanilam, B. J. Defective mitochondrial fatty acid oxidation and lipotoxicity in kidney diseases. Front. Med. 7, 65 (2020).

    Article  Google Scholar 

  17. Tang, C. et al. Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol. 17, 299–318 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang, H., Zhang, S. & Guo, J. Lipotoxic proximal tubular injury: a primary event in diabetic kidney disease. Front. Med. 8, 751529 (2021).

    Article  Google Scholar 

  19. Malek, M. & Nematbakhsh, M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J. Renal Inj. Prev. 4, 20 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Weinberg, J. M., Venkatachalam, M. A., Roeser, N. F. & Nissim, I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc. Natl Acad. Sci. USA 97, 2826–2831 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zager, R. A., Johnson, A. C. M. & Becker, K. Renal cortical pyruvate depletion during AKI. J. Am. Soc. Nephrol. 25, 998–1012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan, L.-J. Folic acid-induced animal model of kidney disease. Animal Model. Exp. Med. 4, 329–342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen, Y. et al. Tubule-derived lactate is required for fibroblast activation in acute kidney injury. Am. J. Physiol. Renal Physiol. 318, F689–F701 (2020).

    Article  PubMed  Google Scholar 

  24. Legouis, D. et al. Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nat. Metab. 2, 732–743 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Scantlebery, A. M. L. et al. The dysregulation of metabolic pathways and induction of the pentose phosphate pathway in renal ischaemia–reperfusion injury. J. Pathol. 253, 404–414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ash, S. R. & Cuppage, F. E. Shift toward anaerobic glycolysis in the regenerating rat kidney. Am. J. Pathol. 60, 385–402 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, J. A., Jay Stallons, L. & Schnellmann, R. G. Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 307, 435–444 (2014).

    Article  CAS  Google Scholar 

  28. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, J., Devalaraja-Narashimha, K. & Padanilam, B. J. TIGAR regulates glycolysis in ischemic kidney proximal tubules. Am. J. Physiol. Renal Physiol. 308, F298–F308 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Kishi, S. et al. Meclizine preconditioning protects the kidney against ischemia-reperfusion injury. EBioMedicine 2, 1090–1101 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lan, R. et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356–3367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zarjou, A. & Agarwal, A. Sepsis and acute kidney injury. J. Am. Soc. Nephrol. 22, 999–1006 (2011).

    Article  PubMed  Google Scholar 

  33. Li, Y. et al. Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury. Am. J. Physiol. Renal Physiol. 319, F229–F244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tran, M. et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003–4014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demine, S., Renard, P. & Arnould, T. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases. Cells 8, 795 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  37. Xiong, W. et al. Relieving lipid accumulation through UCP1 suppresses the progression of acute kidney injury by promoting the AMPK/ULK1/autophagy pathway. Theranostics 11, 4637 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan, C. et al. Inhibition of aerobic glycolysis alleviates sepsis‑induced acute kidney injury by promoting lactate/Sirtuin 3/AMPK‑regulated autophagy. Int. J. Mol. Med. 47, 1–1 (2021).

    Article  Google Scholar 

  39. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, M., Quek, L.-E., Sultani, G. & Turner, N. Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma. Cancer Metab. 4, 19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Naito, M., Bomsztyk, K. & Zager, R. A. Endotoxin mediates recruitment of RNA polymerase II to target genes in acute renal failure. J. Am. Soc. Nephrol. 19, 1321–1330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hato, T. et al. Two-photon intravital fluorescence lifetime imaging of the kidney reveals cell-type specific metabolic signatures. J. Am. Soc. Nephrol. 28, 2420–2430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rao, S. et al. Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. Am. J. Physiol. Renal Physiol. 310, F1136–F1147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Y. et al. Metabolomic changes and protective effect of L-carnitine in rat kidney ischemia/reperfusion injury. Kidney Blood Press. Res. 35, 373–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Tran, M. T. et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531, 528–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wakino, S., Hasegawa, K. & Itoh, H. Sirtuin and metabolic kidney disease. Kidney Int. 88, 691–698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tran, M. T. et al. PGC1α-dependent NAD biosynthesis links oxidative metabolism to renal protection. Nature 531, 528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ozkok, A. & Edelstein, C. L. Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int. 2014, 967826 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zager, R. A., Johnson, A. C. M. & Hanson, S. Y. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int. 67, 111–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Johnson, A. C., Stahl, A. & Zager, R. A. Triglyceride accumulation in injured renal tubular cells: alterations in both synthetic and catabolic pathways. Kidney Int. 67, 2196–2209 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Zager, R. A., Johnson, A. C. & Becker, K. Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and ‘end-stage’ kidney disease. Am. J. Physiol. Renal Physiol. 301, F1334–F1345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, X., Agborbesong, E. & Li, X. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int. J. Mol. Sci. 22, 11253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Todorović, Z. et al. Lipidomics provides new insight into pathogenesis and therapeutic targets of the ischemia–reperfusion injury. Int. J. Mol. Sci. 22, 2798 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ke, Q. et al. UCP2-induced hypoxia promotes lipid accumulation and tubulointerstitial fibrosis during ischemic kidney injury. Cell Death Dis. 11, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sheng, L. & Zhuang, S. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis. Front. Physiol. 11, 1190 (2020).

    Article  Google Scholar 

  57. Chang-Panesso, M. et al. FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J. Clin. Invest. 129, 5501–5517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lemos, D. R. et al. Interleukin-1 β activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Louis, K. & Hertig, A. How tubular epithelial cells dictate the rate of renal fibrogenesis? World J. Nephrol. 4, 367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dhillon, P. et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab. 33, 379–394.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, G., Darshi, M. & Sharma, K. The Warburg effect in diabetic kidney disease. Semin. Nephrol. 38, 111–120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Declèves, A. E. et al. Regulation of lipid accumulation by AMK-activated kinase in high fat diet-induced kidney injury. Kidney Int. 85, 611–623 (2014).

    Article  PubMed  CAS  Google Scholar 

  64. Shackelford, D. B. & Shaw, R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Han, S. H. et al. Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J. Am. Soc. Nephrol. 27, 439–453 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Chevalier, R. L. Molecular and cellular pathophysiology of obstructive nephropathy. Pediatr. Nephrol. 13, 612–619 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Yan, Q. et al. Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Cell Death Discov. 4, 2 (2018).

    Article  PubMed  Google Scholar 

  68. Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. & Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res. 55, 561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khan, S. et al. Fatty acid transport protein-2 regulates glycemic control and diabetic kidney disease progression. JCI Insight 5, e136845 (2020).

    Article  PubMed Central  Google Scholar 

  70. Rampanelli, E. et al. Excessive dietary lipid intake provokes an acquired form of lysosomal lipid storage disease in the kidney. J. Pathol. 246, 470–484 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Prasad, G. V. R. Metabolic syndrome and chronic kidney disease: current status and future directions. World J. Nephrol. 3, 210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ohshima, T. et al. α-Galactosidase A deficient mice: a model of Fabry disease. Proc. Natl Acad. Sci. USA 94, 2540–2544 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schmitz, G. & Muller, G. Structure and function of lamellar bodies, lipid-protein complexes involved in storage and secretion of cellular lipids. J. Lipid Res. 32, 1539–1570 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Platt, F. M., Boland, B. & van der Spoel, A. C. Lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Takabatake, Y., Yamamoto, T. & Isaka, Y. Stagnation of autophagy: a novel mechanism of renal lipotoxicity. Autophagy 13, 775–776 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nakamura, S. et al. LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat. Cell Biol. 22, 1252–1263 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Spampanato, C. et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5, 691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, L. et al. Fasting-induced hormonal regulation of lysosomal function. Cell Res. 27, 748–763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Settembre, C. & Ballabio, A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol. 24, 743–750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamamoto, T. et al. High-fat diet-induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney. J. Am. Soc. Nephrol. 28, 1534–1551 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Piccinini, A. M. & Midwood, K. S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010, 153 (2010).

    Article  CAS  Google Scholar 

  82. Leemans, J. C., Kors, L., Anders, H. J. & Florquin, S. Pattern recognition receptors and the inflammasome in kidney disease. Nat. Rev. Nephrol. 10, 398–414 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Triantafilou, M., Miyake, K., Golenbock, D. T. & Triantafilou, K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J. Cell Sci. 115, 2603–2611 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. O’Neill, L. A. J. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 29, 12–20 (2008).

    Article  PubMed  CAS  Google Scholar 

  85. Leemans, J. C. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Invest. 115, 2894–2903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu, H. et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest. 117, 2847–2859 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pulskens, W. P. et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS ONE 3, e3596 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Reilly, M. et al. Randomized, double-blind, placebo-controlled, dose-escalating phase I, healthy subjects study of intravenous OPN-305, a humanized anti-TLR2 antibody. Clin. Pharmacol. Ther. 94, 593–600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kulkarni, O. P. et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol. 25, 978–989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pulskens, W. P. et al. TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J. Am. Soc. Nephrol. 21, 1299–1308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leemans, J. C. et al. The role of toll-like receptor 2 in inflammation and fibrosis during progressive renal injury. PLoS ONE 4, e5704 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kelly, B. & O’Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Feingold, K. R., Wang, Y., Moser, A., Shigenaga, J. K. & Grunfeld, C. LPS decreases fatty acid oxidation and nuclear hormone receptors in the kidney. J. Lipid Res. 49, 2179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Küper, C., Beck, F.-X. & Neuhofer, W. Toll-like receptor 4 activates NF-κB and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am. J. Physiol. Renal Physiol. 302, 38–46 (2012).

    Article  CAS  Google Scholar 

  97. Brooks Robey, R. et al. Regulation of mesangial cell hexokinase activity and expression by heparin-binding epidermal growth factor-like growth factor: epidermal growth factors and phorbol esters increase glucose metabolism via a common mechanism involving classic mitogen-activated protein kinase pathway activation and induction of hexokinase II expression. J. Biol. Chem. 277, 14370–14378 (2002).

    Article  PubMed  CAS  Google Scholar 

  98. Kim, S. Y. et al. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor. Immunology 129, 516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Semenza, G. L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology 24, 97–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Conde, E. et al. Hypoxia inducible factor 1-alpha (HIF-1 alpha) is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival. PLoS ONE 7, e33258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. West, X. Z. et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467, 972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gounarides, J. et al. Lack of involvement of CEP adducts in TLR activation and in angiogenesis. PLoS ONE 9, e111472 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lin, M. et al. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J. Am. Soc. Nephrol. 23, 86–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Lin, M. et al. The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy. Kidney Int. 83, 887–900 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Devaraj, S. et al. Knockout of Toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arterioscler. Thromb. Vasc. Biol. 31, 1796–1804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jheng, H. F. et al. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis. Model. Mech. 8, 1311–1321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cha, J. J. et al. Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice. Endocrinology 154, 2144–2155 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Shi, H. et al. TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pierre, N. et al. Toll-like receptor 4 knockout mice are protected against endoplasmic reticulum stress induced by a high-fat diet. PLoS ONE 8, e65061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Min, H. S. et al. Effects of toll-like receptor antagonist 4,5-dihydro-3-phenyl-5-isoxasole acetic acid on the progression of kidney disease in mice on a high-fat diet. Kidney Res. Clin. Pract. 33, 33–44 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kuwabara, T. et al. Exacerbation of diabetic nephropathy by hyperlipidaemia is mediated by toll-like receptor 4 in mice. Diabetologia 55, 2256–2266 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Xu, X. H. et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104, 3103–3108 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Rutledge, J. C., Ng, K. F., Aung, H. H. & Wilson, D. W. Role of triglyceride-rich lipoproteins in diabetic nephropathy. Nat. Rev. Nephrol. 6, 361–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Leemans, J. C., Cassel, S. L. & Sutterwala, F. S. Sensing damage by the NLRP3 inflammasome. Immunol. Rev. 243, 152–162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vilaysane, A. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 21, 1732–1744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pulskens, W. P. et al. Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction. PLoS ONE 9, e85775 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Kim, H. J. et al. NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury. J. Pharmacol. Exp. Ther. 346, 465–472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bakker, P. J. et al. A tissue-specific role for Nlrp3 in tubular epithelial repair after renal ischemia/reperfusion. Am. J. Pathol. 184, 2013–2022 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Qiu, Y. Y. & Tang, L. Q. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol. Res. 114, 251–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Hou, Y. et al. CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. Cell Death Dis. 126, 1–16 (2021).

    Google Scholar 

  124. Lu, M. et al. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. Biomed. Res. Int. 2017, 1516985 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sun, Z. et al. Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway. Chem. Biol. Interact. 293, 11–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Han, Y. et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol. 16, 32–46 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Próchnicki, T. & Latz, E. Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab. 26, 71–93 (2017).

    Article  PubMed  CAS  Google Scholar 

  128. Braga, T. T. et al. Soluble uric acid activates the NLRP3 inflammasome. Sci. Rep. 71, 1–14 (2017).

    Google Scholar 

  129. Rajamäki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Shi, G. et al. Inflammasomes induced by 7-ketocholesterol and other stimuli in RPE and in bone marrow–derived cells differ markedly in their production of IL-1β and IL-18. Invest. Ophthalmol. Vis. Sci. 56, 1658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chalkiadaki, A. & Guarente, L. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16, 180–188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Calle, P., Torrico, S., Muñoz, A. & Hotter, G. CPT1a downregulation protects against cholesterol-induced fibrosis in tubular epithelial cells by downregulating TGFβ-1 and inflammasome. Biochem. Biophys. Res. Commun. 517, 715–721 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Xia, X. et al. NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 34, 843–853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Guo, H. et al. NLRX1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host Microbe 19, 515–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moore, C. B. et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573–577 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Lei, Y. et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36, 933–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Arnoult, D. et al. An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J. Cell Sci. 122, 3161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Imbeault, E., Mahvelati, T. M., Braun, R., Gris, P. & Gris, D. Nlrx1 regulates neuronal cell death. Mol. Brain 7, 90 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Jaworska, J. et al. NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein. Proc. Natl Acad. Sci. USA 111, E2110–E2119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Koblansky, A. A. et al. The innate immune receptor NLRX1 functions as a tumor suppressor by reducing colon tumorigenesis and key tumor-promoting signals. Cell Rep. 14, 2562–2575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tattoli, I. et al. NLRX1 acts as an epithelial-intrinsic tumor suppressor through the modulation of TNF-mediated proliferation. Cell Rep. 14, 2576–2586 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Soares, F. et al. The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J. Biol. Chem. 289, 19317–19330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kang, M.-J. et al. Suppression of NLRX1 in chronic obstructive pulmonary disease. J. Clin. Invest. 125, 2458–2462 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Li, H., Zhang, S., Li, F. & Qin, L. NLRX1 attenuates apoptosis and inflammatory responses in myocardial ischemia by inhibiting MAVS-dependent NLRP3 inflammasome activation. Mol. Immunol. 76, 90–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Hong, M., Yoon, Sil & Wilson, I. A. Structure and functional characterization of the RNA-binding element of the NLRX1 innate immune modulator. Immunity 36, 337–347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lu, P. et al. Modeling-enabled characterization of novel NLRX1 ligands. PLoS ONE 10, e0145420 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Singh, K. et al. NLRX1 acts as tumor suppressor by regulating TNF-α induced apoptosis and metabolism in cancer cells. Biochim. Biophys. Acta 1853, 1073–1086 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Leber, A. et al. NLRX1 regulates effector and metabolic functions of CD4+ T cells. J. Immunol. 198, 2260–2268 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Kors, L. et al. Deletion of NLRX1 increases fatty acid metabolism and prevents diet-induced hepatic steatosis and metabolic syndrome. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1883–1895 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Costford, S. R. et al. Male mice lacking NLRX1 are partially protected from high-fat diet–induced hyperglycemia. J. Endocr. Soc. 2, 336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Terao, Y. et al. Phospholipase A2 is activated in the kidney, but not in the liver during ischemia-reperfusion. Res. Commun. Mol. Pathol. Pharmacol. 96, 277–289 (1997).

    CAS  PubMed  Google Scholar 

  152. Vallés, P. G., Lorenzo, A. G., Bocanegra, V. & Vallés, R. Acute kidney injury: what part do toll-like receptors play? Int. J. Nephrol. Renovasc. Dis. 7, 241 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Smith, R. L., Soeters, M. R., Wüst, R. C. I. & Houtkooper, R. H. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 39, 489–517 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Andreux, P. A., Houtkooper, R. H. & Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 12, 465–483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells plays a key role in kidney fibrosis development. Nat. Med. 21, 37 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Sivarajah, A. et al. Agonists of peroxisome-proliferator activated receptor-gamma reduce renal ischemia/reperfusion injury. Am. J. Nephrol. 23, 267–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Zapata-P Erez, R., Wanders, R. J. A., Van Karnebeek, C. D. M. & Houtkooper, R. H. NAD+ homeostasis in human health and disease. EMBO Mol. Med. 13, e13943 (2021).

    CAS  Google Scholar 

  158. Zheng, M. et al. Nicotinamide reduces renal interstitial fibrosis by suppressing tubular injury and inflammation. J. Cell. Mol. Med. 23, 3995–4004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zapata-Pérez, R. et al. Reduced nicotinamide mononucleotide is a new and potent NAD+ precursor in mammalian cells and mice. FASEB J. 35, 1–17 (2021).

    Article  CAS  Google Scholar 

  160. Giroud-Gerbetant, J. et al. A reduced form of nicotinamide riboside defines a new path for NAD+ biosynthesis and acts as an orally bioavailable NAD+ precursor. Mol. Metab. 30, 192–202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lee, S. Y. et al. PGC1 α activators mitigate diabetic tubulopathy by improving mitochondrial dynamics and quality control. J. Diabetes Res. 2017, 6483572 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03831464 (2022).

  163. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Kitada, M. & Koya, D. Renal protective effects of resveratrol. Oxid. Med. Cell. Longev. 2013, 568093 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Andreux, P. A. et al. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat. Metab. 1, 595–603 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Zou, D. et al. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am. J. Physiol. Renal Physiol. 317, F1255–F1264 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Faivre, A., Verissimo, T., Auwerx, H., Legouis, D. & de Seigneux, S. Tubular cell glucose metabolism shift during acute and chronic injuries. Front. Med. 8, 2085 (2021).

    Article  Google Scholar 

  168. Shirakawa, K. & Sano, M. Sodium-glucose co-transporter 2 inhibitors correct metabolic maladaptation of proximal tubular epithelial cells in high-glucose conditions. Int. J. Mol. Sci. 21, 7676 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  169. Liu, X. et al. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway. Metabolism 111, 154334 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Bessho, R. et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci. Rep. 9, 1–12 (2019).

    Article  CAS  Google Scholar 

  171. Farhadi, P., Yarani, R., Dokaneheifard, S. & Mansouri, K. The emerging role of targeting cancer metabolism for cancer therapy. Tumor Biol. 42, 1–18 (2020).

    Article  CAS  Google Scholar 

  172. Festa, B. P. et al. Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat. Commun. 9, 1–17 (2018).

    Article  CAS  Google Scholar 

  173. Zhang, W., Li, X., Wang, S., Chen, Y. & Liu, H. Regulation of TFEB activity and its potential as a therapeutic target against kidney diseases. Cell Death Discov. 6, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Irazoqui, J. E. Key roles of MiT transcription factors in innate immunity and inflammation. Trends Immunol. 41, 157–171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content, writing of the article, and reviewing and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Sandrine Florquin or Alessandra Tammaro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Hans Joachim Anders, Niels Olsen Saraiva Câmara and Theodoros Eleftheriadis for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Lipids

A ubiquitous group of compounds that are insoluble in water and essential for energy metabolism, cell membrane integrity, cell signalling and general homeostasis.

Complex lipids

Unlike simple lipids, which contain a maximum of two types of chemical moieties (e.g. fatty acids and glycerol), complex lipids contain three or more chemical moieties (e.g. fatty acids, glycerol and a phosphate group).

Long-chain fatty acids

Fatty acids containing more than 12 carbon atoms and are an important energy source in the kidney.

Pathogen-associated molecular patterns

(PAMPs). Molecules that are released upon pathogen infection and activate the pattern recognition receptors of the innate immune response.

Damage-associated molecular patterns

(DAMPs). Molecules that are released upon damage and activate the pattern recognition receptors of the innate immune response.

Trained immunity

The concept that, like the adaptive immune system, the innate immune response can also have an immune memory.

Lipotoxicity

The accumulation of lipids in tissues that is harmful for the function and structure of the cells. For instance, it can reduce energy metabolism.

Perilipin 2

A protein that is important for lipid droplet metabolism and is involved in the storage of lipids.

Mitochondrial antiviral-signalling proteins

Proteins that are located in the inner membrane of the mitochondria, peroxisomes and endoplasmic reticulum that are essential for the antiviral innate immune response.

Translation–elongation factors

Proteins that have important roles during protein synthesis, especially in the elongation cycle at the ribosome.

Dynamin-1-like protein

A protein involved in mitochondrial fission, which is important for mitochondrial function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Rijt, S., Leemans, J.C., Florquin, S. et al. Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 18, 588–603 (2022). https://doi.org/10.1038/s41581-022-00592-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00592-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research