Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac metabolic remodelling in chronic kidney disease

Abstract

Chronic kidney disease (CKD) affects millions of people globally and, for most patients, the risk of developing cardiovascular disease is higher than that of progression to kidney failure. Moreover, mortality owing to cardiovascular complications in patients with CKD is markedly higher than in matched individuals from the general population. This mortality was traditionally thought to be driven by coronary heart disease but >75% of patients with CKD have left ventricular hypertrophy, which contributes to mortality, particularly sudden cardiac death. The aetiology of cardiac complications in CKD is multifactorial. In addition to haemodynamic overload, uraemic toxin accumulation and altered ion homeostasis, which are known to underlie left ventricular hypertrophy in CKD and drive cardiac dysfunction, we examine the role of myocardial metabolic remodelling in CKD. Uraemic cardiomyopathy is characterized by myriad cardiac metabolic maladaptations, including altered mitochondrial function, changes in myocardial substrate utilization, altered metabolic transporter function and expression, and impaired insulin response and phosphoinositide-3 kinase–AKT signalling, which collectively lead to impaired cardiac energetics. Interestingly, none of the standard treatments used to treat CKD target the metabolism of the uraemic heart directly. An improved understanding of the cardiac metabolic perturbations that occur in CKD might allow the development of novel treatments for uraemic cardiomyopathy.

Key points

  • Uraemic cardiomyopathy observed in patients with chronic kidney disease (CKD) is characterized by the presence of diastolic dysfunction, left ventricular hypertrophy and fibrosis. Some of the main mechanisms underlying this cardiomyopathy are unique to CKD, whereas others are also observed in other conditions, such as hypertension and volume overload.

  • Left ventricular hypertrophy is a hallmark of CKD and the main factors underlying its development include insulin resistance, accumulation of endogenous cardiotonic steroids and uraemic toxins, vitamin D deficiency, hyperphosphataemia and haemodynamic overload, which induces mechanical stress.

  • Uraemic cardiomyopathy is characterized by extensive metabolic remodelling, including secondary carnitine deficiency, reduced fatty acid use, enhanced glucose utilization, mitochondrial dysfunction and altered expression of metabolic regulatory genes, which collectively result in impaired energetics.

  • The prevalence of CKD and its associated cardiovascular complications is rising globally, therefore increasing the demand for novel therapeutic approaches. Cardiac metabolic remodelling in uraemia represents a potential therapeutic target for addressing cardiovascular mortality in CKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms involved in the progression to HFpEF in CKD.
Fig. 2: Left ventricular hypertrophy mechanisms in CKD.
Fig. 3: Altered cardiac metabolism in CKD.
Fig. 4: Mechanism of myocardial insulin resistance in CKD.

Similar content being viewed by others

References

  1. Vaidya, S. R. & Aeddula, N. R. Chronic Renal Failure (StatPearls, 2020).

  2. Chen, T. K., Knicely, D. H. & Grams, M. E. Chronic kidney disease diagnosis and management: a review. JAMA 322, 1294–1304 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hounkpatin, H. O. et al. Prevalence of chronic kidney disease in adults in England: comparison of nationally representative cross-sectional surveys from 2003 to 2016. BMJ Open. 10, e038423 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Public Health England. CKD prevalence estimates for local and regional populations https://www.gov.uk/government/publications/ckd-prevalence-estimates-for-local-and-regional-populations (2015).

  5. Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2021 https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fkidneydisease%2Fpublications-resources%2F2019-national-facts.html (2021).

  6. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  7. Thomas, R., Kanso, A. & Sedor, J. R. Chronic kidney disease and its complications. Prim. Care 35, 329–344 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Causes of death. United States Renal Data System. Am. J. Kidney Dis. 32, S81–88 (1998).

    Article  Google Scholar 

  9. Saran, R. et al. US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 69, A7–A8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kundhal, K. & Lok, C. E. Clinical epidemiology of cardiovascular disease in chronic kidney disease. Nephron Clin. Pract. 101, c47–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. House, A. A. et al. Heart failure in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 95, 1304–1317 (2019).

    Article  PubMed  Google Scholar 

  12. Parfrey, P. S. & Foley, R. N. The clinical epidemiology of cardiac disease in chronic renal failure. J. Am. Soc. Nephrol. 10, 1606–1615 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Amann, K. & Ritz, E. Cardiac disease in chronic uremia: pathophysiology. Adv. Ren. Replace. Ther. 4, 212–224 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Wing, A. J. et al. Cardiovascular-related causes of death and the fate of patients with renovascular disease. Contrib. Nephrol. 41, 306–311 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Rostand, S., Kirk, K. & Rutsky, E. The epidemiology of coronary artery disease in patients on maintenance hemodialysis: implications for management. Contrib. Nephrol. 52, 34–41 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Clyne, N., Lins, L. E. & Pehrsson, S. K. Occurrence and significance of heart disease in uraemia. An autopsy study. Scand. J. Urol. Nephrol. 20, 307–311 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, X. & Shapiro, J. I. Evolving concepts in the pathogenesis of uraemic cardiomyopathy. Nat. Rev. Nephrol. 15, 159–175 (2019).

    Article  PubMed  Google Scholar 

  18. Wang, X., Liu, J., Drummond, C. A. & Shapiro, J. I. Sodium potassium adenosine triphosphatase (Na/K-ATPase) as a therapeutic target for uremic cardiomyopathy. Expert Opin. Ther. Targets 21, 531–541 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grabner, A. & Faul, C. The role of fibroblast growth factor 23 and Klotho in uremic cardiomyopathy. Curr. Opin. Nephrol. Hypertens. 25, 314–324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shinohara, K. et al. Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J. Am. Soc. Nephrol. 13, 1894–1900 (2002).

    Article  PubMed  Google Scholar 

  21. Spoto, B., Pisano, A. & Zoccali, C. Insulin resistance in chronic kidney disease: a systematic review. Am. J. Physiol. Renal Physiol. 311, F1087–F1108 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Hung, S. C., Kuo, K. L., Wu, C. C. & Tarng, D. C. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.116.005022 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vanholder, R., Schepers, E., Pletinck, A., Nagler, E. V. & Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J. Am. Soc. Nephrol. 25, 1897–1907 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kennedy, D. J., Malhotra, D. & Shapiro, J. I. Molecular insights into uremic cardiomyopathy: cardiotonic steroids and Na/K ATPase signaling. Cell Mol. Biol. 52, 3–14 (2006).

    CAS  PubMed  Google Scholar 

  25. Ahmed, A. & Campbell, R. C. Epidemiology of chronic kidney disease in heart failure. Heart Fail. Clin. 4, 387–399 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. van de Wouw, J. et al. Chronic kidney disease as a risk factor for heart failure with preserved ejection fraction: a focus on microcirculatory factors and therapeutic targets. Front. Physiol. 10, 1108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hickson, L. J. et al. Echocardiography criteria for structural heart disease in patients with end-stage renal disease initiating hemodialysis. J. Am. Coll. Cardiol. 67, 1173–1182 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Antlanger, M. et al. Heart failure with preserved and reduced ejection fraction in hemodialysis patients: prevalence, disease prediction and prognosis. Kidney Blood Press. Res. 42, 165–176 (2017).

    Article  PubMed  Google Scholar 

  29. Roderick, P. J. & Feest, T. in Oxford Textbook of Clinical Nephrology (eds Davidson, A. et al.) (Oxford University Press, 2005).

  30. Akchurin, O. M. Chronic kidney disease and dietary measures to improve outcomes. Pediatr. Clin. North. Am. 66, 247–267 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Middleton, R. J., Parfrey, P. S. & Foley, R. N. Left ventricular hypertrophy in the renal patient. J. Am. Soc. Nephrol. 12, 1079–1084 (2001).

    Article  PubMed  Google Scholar 

  32. Foley, R. N. et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 47, 186–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Simone, D. Left ventricular geometry and hypotension in end-stage renal disease: a mechanical perspective. J. Am. Soc. Nephrol. 14, 2421–2427 (2003).

    Article  PubMed  Google Scholar 

  34. Alhaj, E. et al. Uremic cardiomyopathy: an underdiagnosed disease. Congestive Heart Fail. 19, E40–E45 (2013).

    Article  Google Scholar 

  35. Jankowski, J., Floege, J., Fliser, D., Bohm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Di Lullo, L., Gorini, A., Russo, D., Santoboni, A. & Ronco, C. Left ventricular hypertrophy in chronic kidney disease patients: from pathophysiology to treatment. Cardiorenal Med. 5, 254–266 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Little, W. C. Heart failure with a normal left ventricular ejection fraction: diastolic heart failure. Trans. Am. Clin. Climatol. Assoc. 119, 93–99 (2008). discussion 99–102.

    PubMed  PubMed Central  Google Scholar 

  38. Meerson, F. Z. Mechanism of hypertrophy of the heart and experimental prevention of acute cardiac insufficiency. Br. Heart J. 33 (Suppl), 100–108 (1971).

    Article  PubMed Central  Google Scholar 

  39. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Amann, K. et al. Cardiomyocyte loss in experimental renal failure: prevention by ramipril. Kidney Int. 63, 1708–1713 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Lekawanvijit, S. et al. Chronic kidney disease-induced cardiac fibrosis is ameliorated by reducing circulating levels of a non-dialysable uremic toxin, indoxyl sulfate. PLoS One 7, e41281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garikapati, K., Goh, D., Khanna, S. & Echampati, K. Uraemic cardiomyopathy: a review of current literature. Clin. Med. Insights Cardiol. 15, 1179546821998347 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gross, M. L. & Ritz, E. Hypertrophy and fibrosis in the cardiomyopathy of uremia — beyond coronary heart disease. Semin. Dial. 21, 308–318 (2008).

    Article  PubMed  Google Scholar 

  44. Graham-Brown, M. P. et al. Imaging of myocardial fibrosis in patients with end-stage renal disease: current limitations and future possibilities. Biomed. Res. Int. 2017, 5453606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yutao, X., Geru, W., Xiaojun, B., Tao, G. & Aiqun, M. Mechanical stretch-induced hypertrophy of neonatal rat ventricular myocytes is mediated by β1-integrin-microtubule signaling pathways. Eur. J. Heart Fail. 8, 16–22 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. Sadoshima, J., Xu, Y., Slayter, H. S. & Izumo, S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75, 977–984 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Semple, D., Smith, K., Bhandari, S. & Seymour, A. M. Uremic cardiomyopathy and insulin resistance: a critical role for Akt? J. Am. Soc. Nephrol. 22, 207–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Kennedy, D. J. et al. Partial nephrectomy as a model for uremic cardiomyopathy in the mouse. Am. J. Physiol. Renal Physiol. 294, F450–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Amann, K., Breitbach, M., Ritz, E. & Mall, G. Myocyte/capillary mismatch in the heart of uremic patients. J. Am. Soc. Nephrol. 9, 1018–1022 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Amann, K. et al. Cardiac remodelling in experimental renal failure — an immunohistochemical study. Nephrol. Dial. Transpl. 13, 1958–1966 (1998).

    Article  CAS  Google Scholar 

  51. Ho, K. K., Pinsky, J. L., Kannel, W. B. & Levy, D. The epidemiology of heart failure: the Framingham Study. J. Am. Coll. Cardiol. 22, 6A–13A (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Wilkins, B. J. & Molkentin, J. D. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem. Biophys. Res. Commun. 322, 1178–1191 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Niwa, A. et al. Echocardiographic and Holter findings in 321 uremic patients on maintenance hemodialysis. Jpn. Heart J. 26, 403–411 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. de Lima, J. J. et al. Blood pressure and the risk of complex arrhythmia in renal insufficiency, hemodialysis, and renal transplant patients. Am. J. Hypertens. 12, 204–208 (1999).

    PubMed  Google Scholar 

  55. Ward, M. L., Crossman, D. J. & Cannell, M. B. Mechanisms of reduced contractility in an animal model of hypertensive heart failure. Clin. Exp. Pharmacol. Physiol. 38, 711–716 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Rostand, S. G., Sanders, C., Kirk, K. A., Rutsky, E. A. & Fraser, R. G. Myocardial calcification and cardiac dysfunction in chronic renal failure. Am. J. Med. 85, 651–657 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Rostand, S. G., Brunzell, J. D., Cannon, R. O. & Victor, R. G. Cardiovascular complications in renal failure. J. Am. Soc. Nephrol. 2, 1053–1062 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Raine, A. E., Seymour, A. M., Roberts, A. F., Radda, G. K. & Ledingham, J. G. Impairment of cardiac function and energetics in experimental renal failure. J. Clin. Invest. 92, 2934–2940 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McMahon, A. C. et al. Contractile dysfunction of isolated ventricular myocytes in experimental uraemia. Exp. Nephrol. 4, 144–150 (1996).

    CAS  PubMed  Google Scholar 

  60. Donohoe, P. et al. L-type calcium current of isolated rat cardiac myocytes in experimental uraemia. Nephrol. Dial. Transpl. 15, 791–798 (2000).

    Article  CAS  Google Scholar 

  61. McMahon, A. C., Greenwald, S. E., Dodd, S. M., Hurst, M. J. & Raine, A. E. Prolonged calcium transients and myocardial remodelling in early experimental uraemia. Nephrol. Dial. Transpl. 17, 759–764 (2002).

    Article  CAS  Google Scholar 

  62. McMahon, A. C., Naqvi, R. U., Hurst, M. J., Raine, A. E. & MacLeod, K. T. Diastolic dysfunction and abnormality of the Na+/Ca2+ exchanger in single uremic cardiac myocytes. Kidney Int. 69, 846–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Kennedy, D. et al. Effect of chronic renal failure on cardiac contractile function, calcium cycling, and gene expression of proteins important for calcium homeostasis in the rat. J. Am. Soc. Nephrol. 14, 90–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Stokes, G. S., Norris, L. A., Marwood, J. F., Johnston, H. & Caterson, R. J. Effect of dialysis on circulating Na, K ATPase inhibitor in uremic patients. Nephron 54, 127–133 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Sohn, H. J., Stokes, G. S. & Johnston, H. An Na, K ATPase inhibitor from ultrafiltrate obtained by hemodialysis of patients with uremia. J. Lab. Clin. Med. 120, 264–271 (1992).

    CAS  PubMed  Google Scholar 

  66. Periyasamy, S. M. et al. Effects of uremic serum on isolated cardiac myocyte calcium cycling and contractile function. Kidney Int. 60, 2367–2376 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Xie, Z. et al. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J. Biol. Chem. 274, 19323–19328 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 113, 709–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oleinikov, D. Myocardial Metabolism (IntechOpen, 2018).

  70. Gibbs, C. L. Cardiac energetics. Physiol. Rev. 58, 174–254 (1978).

    Article  CAS  PubMed  Google Scholar 

  71. Suga, H. Ventricular energetics. Physiol. Rev. 70, 247–277 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Neubauer, S. The failing heart — an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).

    Article  PubMed  Google Scholar 

  73. Kolwicz, S. C., Purohit, S. & Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603–616 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Ingwall, J. S. ATP and the Heart. Vol. 11 (Springer Science & Business Media, 2002).

  75. Opie, L. H. Heart Physiology: From Cell to Circulation. (Lippincott Williams & Wilkins, 2004).

  76. Wisneski, J. A. et al. Metabolic fate of extracted glucose in normal human myocardium. J. Clin. Invest. 76, 1819–1827 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stanley, W. C., Lopaschuk, G. D., Hall, J. L. & McCormack, J. G. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc. Res. 33, 243–257 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Neely, J. R. & Morgan, H. E. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu. Rev. Physiol. 36, 413–459 (1974).

    Article  CAS  PubMed  Google Scholar 

  79. Jeffrey, F. M., Diczku, V., Sherry, A. D. & Malloy, C. R. Substrate selection in the isolated working rat heart: effects of reperfusion, afterload, and concentration. Basic. Res. Cardiol. 90, 388–396 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Berg, J. M., Tymockzo, J. L. & Stryer, L. Biochemistry 5 edn, (W H Freeman, 2002).

  81. Cardol, P., Figueroa, F., Remacle, C., Franzén, L. & González-Halphen, D. The Chlamydomonas Sourcebook 2edn, Vol. 2 469–502 (Elsevier, 2009).

  82. Peterzan, M. A., Lygate, C. A., Neubauer, S. & Rider, O. J. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am. J. Physiol. Heart Circ. Physiol. 313, H597–H616 (2017).

    Article  PubMed  Google Scholar 

  83. Dzeja, P. P. & Terzic, A. Phosphotransfer networks and cellular energetics. J. Exp. Biol. 206, 2039–2047 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hue, L. & Taegtmeyer, H. The Randle cycle revisited: a new head for an old hat. Am. J. Physiol. Endocrinol. Metab. 297, E578–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chatham, J. C. & Young, M. E. Metabolic remodeling in the hypertrophic heart: fuel for thought. Circ. Res. 111, 666–668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaur, M. & Tappia, P. Metabolic shifts during cardiac hypertrophy. Clin. Lipidol. 4, 725–729 (2009).

    Article  CAS  Google Scholar 

  88. Allard, M. F., Schönekess, B. O., Henning, S. L., English, D. R. & Lopaschuk, G. D. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. 267, H742–750 (1994).

    CAS  PubMed  Google Scholar 

  89. Tran, D. H. & Wang, Z. V. Glucose metabolism in cardiac hypertrophy and heart failure. J. Am. Heart Assoc. 8, e012673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    Article  CAS  PubMed  Google Scholar 

  91. Kolwicz, S. C. & Tian, R. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res. 90, 194–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Allard, M. F. et al. Glycogen metabolism in the aerobic hypertrophied rat heart. Circulation 96, 676–682 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Frey, N. & Olson, E. N. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol. 65, 45–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Tuomainen, T. & Tavi, P. The role of cardiac energy metabolism in cardiac hypertrophy and failure. Exp. Cell Res. 360, 12–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Akki, A., Smith, K. & Seymour, A. M. Compensated cardiac hypertrophy is characterised by a decline in palmitate oxidation. Mol. Cell Biochem. 311, 215–224 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Sorokina, N. et al. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115, 2033–2041 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Barger, P. M., Brandt, J. M., Leone, T. C., Weinheimer, C. J. & Kelly, D. P. Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J. Clin. Invest. 105, 1723–1730 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aitman, T. J. et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat. Genet. 21, 76–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. el Alaoui-Talibi, Z., Landormy, S., Loireau, A. & Moravec, J. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am. J. Physiol. 262, H1068–1074 (1992).

    CAS  PubMed  Google Scholar 

  100. Nascimben, L. et al. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44, 662–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Razeghi, P. et al. Metabolic gene expression in fetal and failing human heart. Circulation 104, 2923–2931 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Tian, R., Musi, N., D’Agostino, J., Hirshman, M. F. & Goodyear, L. J. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104, 1664–1669 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Depre, C., Rider, M. H., Veitch, K. & Hue, L. Role of fructose 2,6-bisphosphate in the control of heart glycolysis. J. Biol. Chem. 268, 13274–13279 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Mailleux, F., Beauloye, C., Balligand, J. L., Horman, S. & Bertrand, L. Studying the Role of AMPK in cardiac hypertrophy and protein synthesis. Methods Mol. Biol. 1732, 321–342 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, K. et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol. Lett. 234, 110–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Pound, K. M. et al. Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ. Res. 104, 805–812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lahey, R. et al. Enhanced redox state and efficiency of glucose oxidation with mir based suppression of maladaptive NADPH-dependent malic enzyme 1 expression in hypertrophied hearts. Circ. Res. 122, 836–845 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Suarez, J. et al. Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am. J. Physiol. Cell Physiol. 295, C1561–1568 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Luptak, I. et al. Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress. Circulation 116, 901–909 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Liao, R., Nascimben, L., Friedrich, J., Gwathmey, J. K. & Ingwall, J. S. Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ. Res. 78, 893–902 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Liao, R. et al. Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106, 2125–2131 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Opie, L. H. & Sack, M. N. Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning. J. Mol. Cell Cardiol. 34, 1077–1089 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Brosius, F. C. III et al. Persistent myocardial ischemia increases GLUT1 glucose transporter expression in both ischemic and non-ischemic heart regions. J. Mol. Cell Cardiol. 29, 1675–1685 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Pereira, R. O. et al. Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction. J. Am. Heart Assoc. 2, e000301 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Smith, K., Semple, D., Aksentijevic, D., Bhandari, S. & Seymour, A. M. Functional and metabolic adaptation in uraemic cardiomyopathy. Front. Biosci. 2, 1492–1501 (2010).

    Article  Google Scholar 

  116. Dilsizian, V. & Fink, J. C. Deleterious effect of altered myocardial fatty acid metabolism in kidney disease. J. Am. Coll. Cardiol. 51, 146–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Chesser, A. M., Harwood, S. M., Raftery, M. J. & Yaqoob, M. M. Myocardial bioenergetic abnormalities in experimental uremia. Int. J. Nephrol. Renovasc. Dis. 9, 129–137 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Reddy, V., Bhandari, S. & Seymour, A. M. Myocardial function, energy provision, and carnitine deficiency in experimental uremia. J. Am. Soc. Nephrol. 18, 84–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Bhandari, S. Risk factors and metabolic mechanisms in the pathogenesis of uraemic cardiac disease. Front. Biosci. 16, 1364–1387 (2011).

    Article  CAS  Google Scholar 

  120. Molyneux, R., Seymour, A. M. & Bhandari, S. Value of carnitine therapy in kidney dialysis patients and effects on cardiac function from human and animal studies. Curr. Drug Targets 13, 285–293 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Seymour, A. M., Reddy, V. & Bhandari, S. Effects of carnitine supplementation on myocardial function and energy provision in experimental uraemia. Front. Biosci. 5, 834–844 (2013).

    Article  Google Scholar 

  122. Chess, D. J. & Stanley, W. C. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc. Res. 79, 269–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Yamashita, H., Bharadwaj, K. G., Ikeda, S., Park, T. S. & Goldberg, I. J. Cardiac metabolic compensation to hypertension requires lipoprotein lipase. Am. J. Physiol. Endocrinol. Metab. 295, E705–713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Smeets, P. J. et al. Cardiac hypertrophy is enhanced in PPARα−/− mice in response to chronic pressure overload. Cardiovasc. Res. 78, 79–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, Y. et al. IRF1-mediated downregulation of PGC1α contributes to cardiorenal syndrome type 4. Nat. Commun. 11, 4664 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Hu, M. C. et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J. Am. Soc. Nephrol. 26, 1290–1302 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Popkov, V. A., Silachev, D. N., Zalevsky, A. O., Zorov, D. B. & Plotnikov, E. Y. Mitochondria as a source and a target for uremic toxins. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20123094 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Takemura, K., Nishi, H. & Inagi, R. Mitochondrial dysfunction in kidney disease and uremic sarcopenia. Front. Physiol. 11, 565023 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Thome, T. et al. Impaired muscle mitochondrial energetics is associated with uremic metabolite accumulation in chronic kidney disease. JCI Insight https://doi.org/10.1172/jci.insight.139826 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Taylor, D., Bhandari, S. & Seymour, A. M. Mitochondrial dysfunction in uremic cardiomyopathy. Am. J. Physiol. Renal Physiol. 308, F579–587 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Halestrap, A. P. What is the mitochondrial permeability transition pore? J. Mol. Cell Cardiol. 46, 821–831 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Aksentijevic, D., O’Brien, B. A., Eykyn, T. R. & Shattock, M. J. Is there a causal link between intracellular Na elevation and metabolic remodelling in cardiac hypertrophy? Biochem. Soc. Trans. 46, 817–827 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shroff, G. R., Frederick, P. D. & Herzog, C. A. Renal failure and acute myocardial infarction: clinical characteristics in patients with advanced chronic kidney disease, on dialysis, and without chronic kidney disease. A collaborative project of the United States Renal Data System/National Institutes of Health and the National Registry of Myocardial Infarction. Am. Heart J. 163, 399–406 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Schrauben, S. J. et al. Insulin resistance and chronic kidney disease progression, cardiovascular events, and death: findings from the chronic renal insufficiency cohort study. BMC Nephrol. 20, 60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Eldin, W. S., Ragheb, A., Klassen, J. & Shoker, A. Evidence for increased risk of prediabetes in the uremic patient. Nephron Clin. Pract. 108, c47–55 (2008).

    Article  PubMed  Google Scholar 

  136. Chapagain, A. et al. Elevated hepatic 11beta-hydroxysteroid dehydrogenase type 1 induces insulin resistance in uremia. Proc. Natl Acad. Sci. USA 111, 3817–3822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cheng, H. T. et al. Metabolic syndrome and insulin resistance as risk factors for development of chronic kidney disease and rapid decline in renal function in elderly. J. Clin. Endocrinol. Metab. 97, 1268–1276 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Belke, D. D. et al. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J. Clin. Invest. 109, 629–639 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Semple, D. J., Bhandari, S. & Seymour, A. M. Uremic cardiomyopathy is characterized by loss of the cardioprotective effects of insulin. Am. J. Physiol. Renal Physiol. 303, F1275–1286 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Aksentijevic, D., Bhandari, S. & Seymour, A. M. Insulin resistance and altered glucose transporter 4 expression in experimental uremia. Kidney Int. 75, 711–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Aerni-Flessner, L., Abi-Jaoude, M., Koenig, A., Payne, M. & Hruz, P. W. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovasc. Diabetol. 11, 63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shao, D. & Tian, R. Glucose transporters in cardiac metabolism and hypertrophy. Compr. Physiol. 6, 331–351 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Smoak, I. W. & Branch, S. Glut-1 expression and its response to hypoglycemia in the embryonic mouse heart. Anat. Embryol. 201, 327–333 (2000).

    Article  CAS  Google Scholar 

  144. Studelska, D. R., Campbell, C., Pang, S., Rodnick, K. J. & James, D. E. Developmental expression of insulin-regulatable glucose transporter GLUT-4. Am. J. Physiol. 263, E102–106 (1992).

    CAS  PubMed  Google Scholar 

  145. Sadler, J. B., Bryant, N. J., Gould, G. W. & Welburn, C. R. Posttranslational modifications of GLUT4 affect its subcellular localization and translocation. Int. J. Mol. Sci. 14, 9963–9978 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Ashford, D. A., Bhandari, S., Bulmer, K. & Seymour, A. L. Alterations in levels of O-linked N-acetylglucosamine modified proteins in the uraemic heart. J. Mol. Cell. Cardiol. 42, S58 (2007).

    Article  Google Scholar 

  147. Nagoshi, T. et al. PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J. Clin. Invest. 115, 2128–2138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. & Birnbaum, M. J. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276, 38349–38352 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. McMullen, J. R. et al. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl Acad. Sci. USA 100, 12355–12360 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Duda, M. K. et al. Low-carbohydrate/high-fat diet attenuates pressure overload-induced ventricular remodeling and dysfunction. J. Card. Fail. 14, 327–335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ha, T. et al. Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFκB activation in vivo. Free. Radic. Biol. Med. 39, 1570–1580 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Shiojima, I. et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shiraishi, I. et al. Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ. Res. 94, 884–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Sindhu, R. K., Ehdaie, A., Vaziri, N. D. & Roberts, C. K. Effects of chronic renal failure on caveolin-1, guanylate cyclase and AKT protein expression. Biochim. Biophys. Acta 1690, 231–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Pavlovic, D. The role of cardiotonic steroids in the pathogenesis of cardiomyopathy in chronic kidney disease. Nephron Clin. Pract. 128, 11–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Kennedy, D. J. et al. Elevated plasma marinobufagenin, an endogenous cardiotonic steroid, is associated with right ventricular dysfunction and nitrative stress in heart failure. Circ. Heart Fail. 8, 1068–1076 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tian, J. et al. Renal ischemia regulates marinobufagenin release in humans. Hypertension 56, 914–919 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Komiyama, Y. et al. A novel endogenous digitalis, telocinobufagin, exhibits elevated plasma levels in patients with terminal renal failure. Clin. Biochem. 38, 36–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Kolmakova, E. V. et al. Endogenous cardiotonic steroids in chronic renal failure. Nephrol. Dial. Transpl. 26, 2912–2919 (2011).

    Article  CAS  Google Scholar 

  160. Bagrov, A. Y., Shapiro, J. I. & Fedorova, O. V. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol. Rev. 61, 9–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pavlovic, D. Endogenous cardiotonic steroids and cardiovascular disease, where to next? Cell Calcium 86, 102156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fedorova, O. V., Shapiro, J. I. & Bagrov, A. Y. Endogenous cardiotonic steroids and salt-sensitive hypertension. Biochim. Biophys. Acta 1802, 1230–1236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lingrel, J. B. Na,K-ATPase: isoform structure, function, and expression. J. Bioenerg. Biomembr. 24, 263–270 (1992).

    CAS  PubMed  Google Scholar 

  164. Liu, J. et al. The redox-sensitive Na/K-ATPase signaling in uremic cardiomyopathy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21041256 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Barry, W. H., Hasin, Y. & Smith, T. W. Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ. Res. 56, 231–241 (1985).

    Article  CAS  PubMed  Google Scholar 

  166. Scoote, M. & Williams, A. J. The cardiac ryanodine receptor (calcium release channel): emerging role in heart failure and arrhythmia pathogenesis. Cardiovasc. Res. 56, 359–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Aksentijević, D. et al. Intracellular sodium elevation reprograms cardiac metabolism. Nat. Commun. 11, 4337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Aksentijevic, D. & Shattock, M. J. With a grain of salt: sodium elevation and metabolic remodelling in heart failure. J. Mol. Cell Cardiol. 161, 106–115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Han, S. et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57, 1723–1729 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Chun, K. J. & Jung, H. H. SGLT2 inhibitors and kidney and cardiac outcomes according to estimated GFR and albuminuria levels: a meta-analysis of randomized controlled trials. Kidney Med. 3, 732–744.e1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Zannad, F. et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396, 819–829 (2020).

    Article  PubMed  Google Scholar 

  172. Zelniker, T. A. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393, 31–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Chen, S., Coronel, R., Hollmann, M. W., Weber, N. C. & Zuurbier, C. J. Direct cardiac effects of SGLT2 inhibitors. Cardiovasc. Diabetol. 21, 45 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mustroph, J. et al. Empagliflozin enhances human and murine cardiomyocyte glucose uptake by increased expression of GLUT1. Diabetologia 62, 726–729 (2019).

    Article  PubMed  Google Scholar 

  175. Zhang, H. et al. Empagliflozin decreases lactate generation in an NHE-1 dependent fashion and increases alpha-ketoglutarate synthesis from palmitate in Type II diabetic mouse hearts. Front. Cardiovasc. Med. 7, 592233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xiong, S. et al. Stimulation of Na. Oxid. Med. Cell Longev. 2019, 4616034 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. Belardinelli, L., Shryock, J. C. & Fraser, H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart 92 (Suppl. 4), iv6–iv14 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Hale, S. L. & Kloner, R. A. Ranolazine, an inhibitor of the late sodium channel current, reduces postischemic myocardial dysfunction in the rabbit. J. Cardiovasc. Pharmacol. Ther. 11, 249–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Fuller, W. et al. Regulation of the cardiac sodium pump. Cell Mol. Life Sci. 70, 1357–1380 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Semplicini, A. et al. Ouabain-inhibiting activity of aldosterone antagonists. Steroids 60, 110–113 (1995).

    Article  CAS  PubMed  Google Scholar 

  181. Finotti, P. & Palatini, P. Canrenone as a partial agonist at the digitalis receptor site of sodium-potassium-activated adenosine triphosphatase. J. Pharmacol. Exp. Ther. 217, 784–790 (1981).

    CAS  PubMed  Google Scholar 

  182. Hammer, F. et al. A randomized controlled trial of the effect of spironolactone on left ventricular mass in hemodialysis patients. Kidney Int. 95, 983–991 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Charytan, D. M. et al. Safety and cardiovascular efficacy of spironolactone in dialysis-dependent ESRD (SPin-D): a randomized, placebo-controlled, multiple dosage trial. Kidney Int. 95, 973–982 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Matsumoto, Y. et al. Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J. Am. Coll. Cardiol. 63, 528–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. US National Library of Medicine. Clinicialtrials.gov https://clinicaltrials.gov/ct2/show/NCT01848639 (2020).

  186. Katalinic, L., Krtalic, B., Jelakovic, B. & Basic-Jukic, N. The unexpected effects of L-carnitine supplementation on lipid metabolism in hemodialysis patients. Kidney Blood Press. Res. 43, 1113–1120 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Chen, Y. et al. L-carnitine supplementation for adults with end-stage kidney disease requiring maintenance hemodialysis: a systematic review and meta-analysis. Am. J. Clin. Nutr. 99, 408–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Guarnieri, G., Biolo, G., Vinci, P., Massolino, B. & Barazzoni, R. Advances in carnitine in chronic uremia. J. Ren. Nutr. 17, 23–29 (2007).

    Article  PubMed  Google Scholar 

  189. Ahmad, S. L-carnitine in dialysis patients. Semin. Dial. 14, 209–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Golper, T. A. et al. Multicenter trial of L-carnitine in maintenance hemodialysis patients. I. Carnitine concentrations and lipid effects. Kidney Int. 38, 904–911 (1990).

    Article  CAS  PubMed  Google Scholar 

  191. Fagher, B. et al. Carnitine and left ventricular function in haemodialysis patients. Scand. J. Clin. Lab. Invest. 45, 193–198 (1985).

    Article  CAS  PubMed  Google Scholar 

  192. Y., S., Narita, M. & Yamazaki, N. Effects of L-carnitine on arrhythmias during hemodialysis. Jpn. Heart J. 23, 349–359 (1982).

    Article  Google Scholar 

  193. Khoss, A. E. et al. [L-carnitine therapy and myocardial function in children treated with chronic hemodialysis]. Wien. Klin. Wochenschr. 101, 17–20 (1989).

    CAS  PubMed  Google Scholar 

  194. Fraser, S. D. & Blakeman, T. Chronic kidney disease: identification and management in primary care. Pragmat. Obs. Res. 7, 21–32 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. KDIGO. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 136–150 (2013).

    Article  Google Scholar 

  196. Walker, M. A. & Tian, R. NAD(H) in mitochondrial energy transduction: implications for health and disease. Curr. Opin. Physiol. 3, 101–109 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Lee, C. F. et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134, 883–894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ardehali, H. et al. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur. J. Heart Fail. 14, 120–129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Liu, J. et al. Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J. Biol. Chem. 275, 27838–27844 (2000).

    Article  CAS  PubMed  Google Scholar 

  200. Saltiel, A. R. & Pessin, J. E. Insulin signaling pathways in time and space. Trends Cell Biol. 12, 65–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Dugani, C. B. & Klip, A. Glucose transporter 4: cycling, compartments and controversies. EMBO Rep. 6, 1137–1142 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Leto, D. & Saltiel, A. R. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 13, 383–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.P. has received a British Heart Foundation MRes/PhD Studentship. [FS/4YPhD/P/20/34016]. D.A. has received funding from the Wellcome Trust (221604/Z/20/Z) and Barts Charity Grants (MRC0215, G-002145). M.M.Y. acknowledges a Barts Charity programme grant for the Diabetic Kidney Care research centre.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to discussions of the content, wrote, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Dunja Aksentijevic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks C. Faul, D. Haffner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pressure overload

Pathological state in which the heart has to contract with excessive afterload owing to an increase in arterial pressure.

Volume overload

Expansion of extracellular fluid volume, which is common in patients with CKD and is associated with anaemia, hypertension, proteinuria, arterial stiffness and inflammation.

Concentric hypertrophy

Increased cardiac muscle wall thickness resulting in diminished capacity or volume.

Positive inotropic responses

Increased strength of muscular contraction and cardiac output.

Rapid cooling contractures

Muscle damage and impaired recovery caused by rapid myocardial cooling.

Randle cycle

Metabolic process also known as the glucose–fatty acid cycle, which describes metabolic fuel flux and selection in tissues.

Anaplerosis

Replenishment of Krebs cycle intermediates that have been extracted for biosynthetic pathways.

Dobutamine stress

Administration of strongly inotropic catecholamine dobutamine to increase cardiac output.

Late Na+ current

The residual Na+ current flowing after the large peak Na+ current during an action potential or voltage clamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, N., Yaqoob, M.M. & Aksentijevic, D. Cardiac metabolic remodelling in chronic kidney disease. Nat Rev Nephrol 18, 524–537 (2022). https://doi.org/10.1038/s41581-022-00576-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00576-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing