Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Membranous nephropathy: new pathogenic mechanisms and their clinical implications

Abstract

Membranous nephropathy (MN) is characterized histomorphologically by the presence of immune deposits in the subepithelial space of the glomerular filtration barrier; its clinical hallmarks are nephrotic range proteinuria with oedema. In patients with primary MN, autoimmunity is driven by circulating autoantibodies that bind to one or more antigens on the surface of glomerular podocytes. Compared with other autoimmune kidney diseases, the understanding of the pathogenesis of MN has substantially improved in the past decade, thanks to the discovery of pathogenic circulating autoantibodies against phospholipase A2 receptor 1 (PLA2R1) and thrombospondin type 1 domain-containing protein 7A (THSD7A). The subsequent identification of more proteins associated with MN, some of which are also endogenous podocyte antigens, might further advance the clinical characterization of MN, including its diagnosis, treatment and prognosis. Insights from studies in patients with MN, combined with the development of novel in vivo and in vitro experimental models, have potential to improve the management of patients with MN. Characterizing the interaction between autoimmunity and local glomerular lesions provides an opportunity to develop more specific, pathogenesis-based treatments.

Key points

  • The exact pathomechanisms underlying the development of membranous nephropathy (MN) are still not fully defined, but loss of immune tolerance, genetic factors, environmental factors, complement activation, glomerular inflammation and cellular adaptive processes in the glomeruli have major roles.

  • In primary MN, circulating autoantibodies, mostly of the IgG4 subclass, bind to one or more antigens that are endogenously expressed on the surface of podocytes in glomeruli.

  • The identification of target antigens in MN allows a specific, molecular diagnosis based on staining of the target antigens in the glomeruli and detection of autoantibodies in blood.

  • Animal models have confirmed that human phospholipase A2 receptor 1 (PLA2R1) and thrombospondin type 1 domain-containing protein 7A (THSD7A) autoantibodies are pathogenic and induce disease after binding to their respective antigens.

  • MN is driven by autoimmune processes, which are the main target of immunosuppressive treatments. Measurement of anti-PLA2R1 antibodies enables assessment of immunological disease activity and informs the use of immunosuppressive treatments.

  • Potential targets for novel antigen-specific treatment options in MN include autoantibody production, antibody–antigen binding, immune-mediated podocyte injury and cell-specific glomerular pathomechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenesis of primary membranous nephropathy.
Fig. 2: Autoantibody binding to PLA2R1 and THSD7A domains.
Fig. 3: Known antigens in membranous nephropathy.
Fig. 4: B cell development stages and expression of cell-surface markers.

Similar content being viewed by others

References

  1. Glassock, R. J. Human idiopathic membranous nephropathy–a mystery solved? N. Engl. J. Med. 361, 81–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Couser, W. G. Primary membranous nephropathy. Clin. J. Am. Soc. Nephrol. 12, 983–997 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glassock, R. J. The pathogenesis of membranous nephropathy. Curr. Opin. Nephrol. Hypertens. 21, 235–242 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Hoxha, E., von Haxthausen, F., Wiech, T. & Stahl, R. A. K. Membranous nephropathy–one morphologic pattern with different diseases. Pflügers Arch. Eur. J. Physiol. 469, 989–996 (2017).

    Article  CAS  Google Scholar 

  5. De Vriese, A. S., Glassock, R. J., Nath, K. A., Sethi, S. & Fervenza, F. C. A proposal for a serology-based approach to membranous nephropathy. J. Am. Soc. Nephrol. 28, 421–430 (2017).

    Article  PubMed  Google Scholar 

  6. Stahl, R. A. K., Reinhard, L. & Hoxha, E. Characterization of autoantibodies in primary membranous nephropathy and their clinical significance. Expert Rev. Clin. Immunol. 15, 165–175 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Alsharhan, L. & Beck, L. H. Membranous nephropathy: core curriculum 2021. Am. J. Kidney Dis. 77, 440–453 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Beck, L. H. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoxha, E. et al. Enhanced expression of the M-type phospholipase A2 receptor in glomeruli correlates with serum receptor antibodies in primary membranous nephropathy. Kidney Int. 82, 797–804 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Tomas, N. M. et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 371, 2277–2287 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hoxha, E. et al. An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J. Am. Soc. Nephrol. 28, 520–531 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Sethi, S. et al. Exostosin 1/exostosin 2-associated membranous nephropathy. J. Am. Soc. Nephrol. 30, 1123–1136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sethi, S. et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int. 97, 163–174 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Caza, T. N. et al. NELL1 is a target antigen in malignancy-associated membranous nephropathy. Kidney Int. 99, 967–976 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Al-Rabadi, L. F. et al. Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy. J. Am. Soc. Nephrol. 32, 1666–1681 (2021).

    Article  CAS  Google Scholar 

  16. Sethi, S. et al. Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int. 98, 1253–1264 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Sethi, S. et al. Protocadherin 7-associated membranous nephropathy. J. Am. Soc. Nephrol. 32, 1249–1261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caza, T. N. et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney Int. 100, 171–181 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Caza, T. N. et al. Transforming growth factor beta receptor 3 (TGFBR3)-associated membranous nephropathy. Kidney360 2, 1275–1286 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Le Quintrec, M. et al. Contactin-1 is a novel target antigen in membranous nephropathy associated with chronic inflammatory demyelinating polyneuropathy. Kidney Int. 100, 1240–1249 (2021).

    Article  PubMed  CAS  Google Scholar 

  21. Santoro, D. et al. Contactin 1, a potential new antigen target in membranous nephropathy: a case report. Am. J. Kidney Dis., https://doi.org/10.1053/j.ajkd.2021.08.025 (2021).

  22. Reinhard, L. et al. Netrin G1 is a novel target antigen in membranous nephropathy [abstract PO1468] (American Society of Nephrology, 2021); https://www.asn-online.org/education/kidneyweek/2021/program-abstract.aspx?controlId=3607621

  23. Sethi, S., Maddan, B. J., Nasr, S. H., Fervenza, F. C. & Haas, M. Hematopoietic stem cell transplant membranous nephropathy is associated with protocadherin FAT1 [abstract]. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2021111488 (2022).

    Article  PubMed  Google Scholar 

  24. Gupta, S. et al. Genetics of membranous nephropathy. Nephrol. Dial. Transpl. 33, 1493–1502 (2018).

    Article  CAS  Google Scholar 

  25. Xie, J. et al. The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nat. Commun. 11, 1600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reinhard, L., Stahl, R. A. K. & Hoxha, E. Is primary membranous nephropathy a complement mediated disease? Mol. Immunol. 128, 195–204 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Ronco, P. & Debiec, H. Molecular pathogenesis of membranous nephropathy. Annu. Rev. Pathol. Mech. Dis. 15, 287–313 (2020).

    Article  CAS  Google Scholar 

  28. Lerner, G. B., Virmani, S., Henderson, J. M., Francis, J. M. & Beck, L. H. A conceptual framework linking immunology, pathology, and clinical features in primary membranous nephropathy. Kidney Int. 100, 289–300 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. von Haxthausen, F. et al. Antigen-specific IgG subclasses in primary and malignancy-associated membranous nephropathy. Front. Immunol. 9, 3035 (2018).

    Article  CAS  Google Scholar 

  30. Polanco, N. et al. Spontaneous remission of nephrotic syndrome in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 21, 697–704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fervenza, F. C. et al. Rituximab or cyclosporine in the treatment of membranous nephropathy. N. Engl. J. Med. 381, 36–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Scolari, F. et al. Rituximab or cyclophosphamide in the treatment of membranous nephropathy: the RI-CYCLO randomized trial. J. Am. Soc. Nephrol. 32, 972–982 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  33. Debiec, H. et al. Early-childhood membranous nephropathy due to cationic bovine serum albumin. N. Engl. J. Med. 364, 2101–2110 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Debiec, H. et al. Allo-immune membranous nephropathy and recombinant aryl sulfatase replacement therapy: a need for tolerance induction therapy. J. Am. Soc. Nephrol. 25, 675–680 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Edgington, T. S., Glassock, R. J. & Dixon, F. J. Autologous immune complex nephritis induced with renal tubular antigen. J. Exp. Med. 127, 555–572 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burbelo, P. D. et al. Detection of PLA2R autoantibodies before the diagnosis of membranous nephropathy. J. Am. Soc. Nephrol. 31, 208–217 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, Q. et al. Helper T cells in idiopathic membranous nephropathy. Front. Immunol. 12, 665629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roccatello, D. et al. New insights into immune mechanisms underlying response to rituximab in patients with membranous nephropathy: a prospective study and a review of the literature. Autoimmun. Rev. 15, 529–538 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Motavalli, R. et al. Altered Th17/Treg ratio as a possible mechanism in pathogenesis of idiopathic membranous nephropathy. Cytokine 141, 155452 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Ma, D. et al. Changes and significance of Treg and Th17 in adult patients with primary membranous nephropathy. Clin. Nephrol. 96, 155–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Rosenzwajg, M. et al. B- and T-cell subpopulations in patients with severe idiopathic membranous nephropathy may predict an early response to rituximab. Kidney Int. 92, 227–237 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Cantarelli, C. et al. A comprehensive phenotypic and functional immune analysis unravels circulating anti-phospholipase A2 receptor antibody secreting cells in membranous nephropathy patients. Kidney Int. Rep. 5, 1764–1776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shi, X. et al. Increased ratio of ICOS+/PD-1+ follicular helper T cells positively correlates with the development of human idiopathic membranous nephropathy. Clin. Exp. Pharmacol. Physiol. 43, 410–416 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Z. et al. Higher frequencies of circulating ICOS+, IL-21+ T follicular helper cells and plasma cells in patients with new-onset membranous nephropathy. Autoimmunity 50, 458–467 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Fresquet, M. et al. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy. J. Am. Soc. Nephrol. 26, 302–313 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Hoxha, E. et al. A mechanism for cancer-associated membranous nephropathy. N. Engl. J. Med. 374, 1995–1996 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Stahl, P. R. et al. THSD7A expression in human cancer. Genes Chromosomes Cancer 56, 314–327 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Hanset, N. et al. Podocyte antigen staining to identify distinct phenotypes and outcomes in membranous nephropathy: a retrospective multicenter cohort study. Am. J. Kidney Dis. 76, 624–635 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, Z., Gong, T., Rennke, H. G. & Hayashi, R. Duodenal schwannoma as a rare association with membranous nephropathy: a case report. Am. J. Kidney Dis. 73, 278–280 (2019).

    Article  PubMed  Google Scholar 

  50. Weinmann-Menke, J. et al. Treatment of membranous nephropathy in patients with THSD7A antibodies using immunoadsorption. Am. J. Kidney Dis. 74, 849–852 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Matsumoto, A. et al. Recurrent membranous nephropathy with a possible alteration in the etiology: a case report. BMC Nephrol. 22, 253 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen, M. et al. Case report: THSD7A-positive membranous nephropathy caused by tislelizumab in a lung cancer patient. Front. Immunol. 12, 619147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, X. et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J. Am. Soc. Nephrol. 27, 3739–3746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van de Logt, A.-E., Fresquet, M., Wetzels, J. F. & Brenchley, P. The anti-PLA2R antibody in membranous nephropathy: what we know and what remains a decade after its discovery. Kidney Int. 96, 1292–1302 (2019).

    Article  PubMed  CAS  Google Scholar 

  55. Chen, R. et al. Fine particulate air pollution and the expression of microRNAs and circulating cytokines relevant to inflammation, coagulation, and vasoconstriction. Environ. Health Perspect. 126, 017007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Le, Y. et al. Ambient fine particulate matter induces inflammatory responses of vascular endothelial cells through activating TLR-mediated pathway. Toxicol. Ind. Health 35, 670–678 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Cremoni, M. et al. Th17-immune response in patients with membranous nephropathy is associated with thrombosis and relapses. Front. Immunol. 11, 574997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, W. W. et al. Immunological pathogenesis of membranous nephropathy: focus on PLA2R1 and its role. Front. Immunol. 10, 1809 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hanasaki, K. & Arita, H. Biological and pathological functions of phospholipase A2 receptor. Arch. Biochem. Biophys. 372, 215–223 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Silliman, C. C. et al. Presence of the M-type sPLA2 receptor on neutrophils and its role in elastase release and adhesion. Am. J. Physiol. Cell Physiol. 283, C1102–C1113 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Granata, F. et al. Activation of cytokine production by secreted phospholipase A2 in human lung macrophages expressing the M-type receptor. J. Immunol. 174, 464–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Coenen, M. J. H. et al. Phospholipase A2 receptor (PLA2R1) sequence variants in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 24, 677–683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stanescu, H. C. et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 364, 616–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Y.-H. et al. Association of phospholipase A2 receptor 1 polymorphisms with idiopathic membranous nephropathy in Chinese patients in Taiwan. J. Biomed. Sci. 17, 81 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bullich, G. et al. HLA-DQA1 and PLA2R1 polymorphisms and risk of idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 9, 335–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Ruggenenti, P. et al. Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy. J. Am. Soc. Nephrol. 26, 2545–2558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sekula, P. et al. Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies. Nephrol. Dial. Transpl. 32, 325–332 (2017).

    Article  CAS  Google Scholar 

  68. Wunnenburger, S. et al. Associations between genetic risk variants for kidney diseases and kidney disease etiology. Sci. Rep. 7, 13944 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Saeed, M., Beggs, M. L., Walker, P. D. & Larsen, C. P. PLA2R-associated membranous glomerulopathy is modulated by common variants in PLA2R1 and HLA-DQA1 genes. Genes. Immun. 15, 556–561 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Cui, Z. et al. MHC class II risk alleles and amino acid residues in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 28, 1651–1664 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Seitz-Polski, B. et al. Epitope spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy. J. Am. Soc. Nephrol. 27, 1517–1533 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Seitz-Polski, B. et al. Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced likelihood of remission of membranous nephropathy. J. Am. Soc. Nephrol. 29, 401–408 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Reinhard, L. et al. Clinical relevance of domain-specific phospholipase A2 receptor 1 antibody levels in patients with membranous nephropathy. J. Am. Soc. Nephrol. 31, 197–207 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Berchtold, L. et al. HLA-D and PLA2R1 risk alleles associate with recurrent primary membranous nephropathy in kidney transplant recipients. Kidney Int. 99, 671–685 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Heymann, W., Hackel, D. B., Harwood, S., Wilson, S. G. & Hunter, J. L. Production of nephrotic syndrome in rats by Freund’s adjuvants and rat kidney suspensions. Proc. Soc. Exp. Biol. Med. 100, 660–664 (1959).

    Article  CAS  PubMed  Google Scholar 

  76. Couser, W. G., Steinmuller, D. R., Stilmant, M. M., Salant, D. J. & Lowenstein, L. M. Experimental glomerulonephritis in the isolated perfused rat kidney. J. Clin. Invest. 62, 1275–1287 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heymann, W. III Nephrotic syndrome induced by injection of anti-kidney serum. Methods Med. Res. 5, 264–267 (1952).

    CAS  PubMed  Google Scholar 

  78. Kerjaschki, D. & Farquhar, M. G. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc. Natl Acad. Sci. USA 79, 5557–5561 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Debiec, H. et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N. Engl. J. Med. 346, 2053–2060 (2002).

    Article  PubMed  Google Scholar 

  80. Tomas, N. M. et al. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. J. Clin. Invest. 126, 2519–2532 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Reinhard, L. et al. Human PLA2R-antibodies induce membranous nephropathy in minipigs [abstract FR-OR31] (American Society of Nephrology, 2021); https://www.asn-online.org/education/kidneyweek/2021/program-abstract.aspx?controlId=3603987

  82. Ancian, P., Lambeau, G., Mattéi, M.-G. & Lazdunski, M. The human 180-kDa receptor for secretory phospholipases A2. J. Biol. Chem. 270, 8963–8970 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Škoberne, A. et al. Serum with phospholipase A2 receptor autoantibodies interferes with podocyte adhesion to collagen. Eur. J. Clin. Invest. 44, 753–765 (2014).

    Article  PubMed  CAS  Google Scholar 

  84. Tomas, N. M. et al. A heterologous model of thrombospondin type 1 domain-containing 7A-associated membranous nephropathy. J. Am. Soc. Nephrol. 28, 3262–3277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Herwig, J. et al. Thrombospondin type 1 domain-containing 7A localizes to the slit diaphragm and stabilizes membrane dynamics of fully differentiated podocytes. J. Am. Soc. Nephrol. 30, 824–839 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. International Mouse Phenotyping Consortium. Thsd7a. https://www.mousephenotype.org/data/search?term=thsd7a&type=gene (accessed December 2021).

  87. Fresquet, M. et al. Autoantigens PLA2R and THSD7A in membranous nephropathy share a common epitope motif in the N-terminal domain. J. Autoimmun. 106, 102308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zaghrini, C. et al. Novel ELISA for thrombospondin type 1 domain-containing 7A autoantibodies in membranous nephropathy. Kidney Int. 95, 666–679 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Kao, L., Lam, V., Waldman, M., Glassock, R. J. & Zhu, Q. Identification of the immunodominant epitope region in phospholipase A2 receptor-mediating autoantibody binding in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 26, 291–301 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Tang, H., Zhu, R., Waldman, M. & Zhu, Q. Structural determinants of the dominant conformational epitopes of phospholipase A2 receptor in primary membranous nephropathy. J. Biol. Chem. 298, 101605 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ghiggeri, G. M. et al. Multi-autoantibody signature and clinical outcome in membranous nephropathy. Clin. J. Am. Soc. Nephrol. 15, 1762–1776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. van de Logt, A.-E. et al. Anti-PLA2R1 antibodies as prognostic biomarker in membranous nephropathy. Kidney Int. Rep. 6, 1677–1686 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Seifert, L. et al. The most N-terminal region of THSD7A is the predominant target for autoimmunity in THSD7A-associated membranous nephropathy. J. Am. Soc. Nephrol. 29, 1536–1548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shah, P., Tramontano, A. & Makker, S. P. Intramolecular epitope spreading in heymann nephritis. J. Am. Soc. Nephrol. 18, 3060–3066 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Salinas, G. F., Braza, F., Brouard, S., Tak, P. P. & Baeten, D. The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin. Immunol. 146, 34–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Stahl, R., Hoxha, E. & Fechner, K. PLA2R autoantibodies and recurrent membranous nephropathy after transplantation. N. Engl. J. Med. 363, 496–498 (2010).

    Article  PubMed  Google Scholar 

  97. Larsen, C. P. & Walker, P. D. Phospholipase A2 receptor (PLA2R) staining is useful in the determination of de novo versus recurrent membranous glomerulopathy. Transplantation 95, 1259–1262 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Kattah, A. et al. Anti-phospholipase A2 receptor antibodies in recurrent membranous nephropathy. Am. J. Transpl. 15, 1349–1359 (2015).

    Article  CAS  Google Scholar 

  99. Querol, L. et al. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann. Neurol. 73, 370–380 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Miura, Y. et al. Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory ataxia. Brain 138, 1484–1491 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ravindran, A. et al. In patients with membranous lupus nephritis, exostosin-positivity and exostosin-negativity represent two different phenotypes. J. Am. Soc. Nephrol. 32, 695–706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Salant, D. J., Belok, S., Stilmant, M. M., Darby, C. & Couser, W. G. Determinants of glomerular localization of subepithelial immune deposits: effects of altered antigen to antibody ratio, steroids, vasoactive amine antagonists, and aminonucleoside of puromycin on passive Heymann nephritis in rats. Lab. Invest. 41, 89–99 (1979).

    CAS  PubMed  Google Scholar 

  103. Salant, D. J., Darby, C. & Couser, W. G. Experimental membranous glomerulonephritis in rats. Quantitative studies of glomerular immune deposit formation in isolated glomeruli and whole animals. J. Clin. Invest. 66, 71–81 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cybulsky, A. V., Rennke, H. G., Feintzeig, I. D. & Salant, D. J. Complement-induced glomerular epithelial cell injury. Role of the membrane attack complex in rat membranous nephropathy. J. Clin. Invest. 77, 1096–1107 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Spicer, S. T. et al. Induction of passive heymann nephritis in complement component 6-deficient PVG rats. J. Immunol. 179, 172–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Haddad, G. et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J. Clin. Invest. 131, e140453 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  107. Benzing, T. & Salant, D. Insights into glomerular filtration and albuminuria. N. Engl. J. Med. 384, 1437–1446 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Neale, T. J. et al. Proteinuria in passive Heymann nephritis is associated with lipid peroxidation and formation of adducts on type IV collagen. J. Clin. Invest. 94, 1577–1584 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stahl, R. A. K. et al. Enhanced glomerular prostaglandin formation in experimental membranous nephropathy. Kidney Int. 31, 1126–1131 (1987).

    Article  CAS  PubMed  Google Scholar 

  110. Cybulsky, A. V., Lieberthal, W., Quigg, R. J., Rennke, H. G. & Salant, D. J. A role for thromboxane in complement-mediated glomerular injury. Am. J. Pathol. 128, 45–51 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shankland, S. J. et al. Differential expression of transforming growth factor-β isoforms and receptors in experimental membranous nephropathy. Kidney Int. 50, 116–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. McMillan, J. I., Riordan, J. W., Couser, W. G., Pollock, A. S. & Lovett, D. H. Characterization of a glomerular epithelial cell metalloproteinase as matrix metalloproteinase-9 with enhanced expression in a model of membranous nephropathy. J. Clin. Invest. 97, 1094–1101 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shankland, S. J., Pippin, J. W. & Couser, W. G. Complement (C5b-9) induces glomerular epithelial cell DNA synthesis but not proliferation in vitro. Kidney Int. 56, 538–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Pippin, J. W. et al. DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J. Clin. Invest. 111, 877–885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Meyer-Schwesinger, C. The ubiquitin–proteasome system in kidney physiology and disease. Nat. Rev. Nephrol. 15, 393–411 (2019).

    Article  PubMed  Google Scholar 

  116. Meyer-Schwesinger, C. et al. A novel mouse model of phospholipase A2 receptor 1-associated membranous nephropathy mimics podocyte injury in patients. Kidney Int. 97, 913–919 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Hatje, F. A. et al. Tripartite separation of glomerular cell types and proteomes from reporter-free mice. J. Am. Soc. Nephrol. 32, 2175–2193 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Hoxha, E. & Stahl, R. A. K. Translational aspects of primary membranous nephropathy. Semin. Nephrol. 37, 436–446 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Kerjaschki, D. et al. Transcellular transport and membrane insertion of the C5b-9 membrane attack complex of complement by glomerular epithelial cells in experimental membranous nephropathy. J. Immunol. 143, 546–552 (1989).

    CAS  PubMed  Google Scholar 

  120. Beck, L. H. et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1543–1550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wehrmann, M. et al. Long-term prognosis of chronic idiopathic membranous glomerulonephritis. An analysis of 334 cases with particular regard to tubulo-interstitial changes. Clin. Nephrol. 31, 67–76 (1989).

    CAS  PubMed  Google Scholar 

  122. Horvatic, I. et al. Prognostic significance of glomerular and tubulointerstitial morphometry in idiopathic membranous nephropathy. Pathol. Res. Pract. 208, 662–667 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, Y. et al. Pathological predictors of renal outcomes in nephrotic idiopathic membranous nephropathy with decreased renal function. J. Nephrol. 27, 307–316 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Mahmud, M. et al. Role of phospholipase A2 receptor 1 antibody level at diagnosis for long-term renal outcome in membranous nephropathy. PLoS ONE 14, e0221293 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ruggenenti, P. et al. Rituximab for idiopathic membranous nephropathy: who can benefit? Clin. J. Am. Soc. Nephrol. 1, 738–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Ronco, P. & Debiec, H. Membranous nephropathy: current understanding of various causes in light of new target antigens. Curr. Opin. Nephrol. Hypertens. 30, 287–293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hoxha, E. et al. An immunofluorescence test for phospholipase-A2-receptor antibodies and its clinical usefulness in patients with membranous glomerulonephritis. Nephrol. Dial. Transplant. 26, 2526–2532 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Dähnrich, C. et al. Development of a standardized ELISA for the determination of autoantibodies against human M-type phospholipase A2 receptor in primary membranous nephropathy. Clin. Chim. Acta 421, 213–218 (2013).

    Article  PubMed  CAS  Google Scholar 

  129. Ronco, P. & Debiec, H. Membranous nephropathy: a fairy tale for immunopathologists, nephrologists and patients. Mol. Immunol. 68, 57–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Hofstra, J. M. et al. Antiphospholipase A2 receptor antibody titer and subclass in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 23, 1735–1743 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kanigicherla, D. et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int. 83, 940–948 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Hoxha, E. et al. Phospholipase A2 receptor autoantibodies and clinical outcome in patients with primary membranous nephropathy. J. Am. Soc. Nephrol. 25, 1357–1366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hoxha, E., Harendza, S., Pinnschmidt, H., Panzer, U. & Stahl, R. A. K. M-type phospholipase A2 receptor autoantibodies and renal function in patients with primary membranous nephropathy. Clin. J. Am. Soc. Nephrol. 9, 1883–1890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bech, A. P., Hofstra, J. M., Brenchley, P. E. & Wetzels, J. F. M. Association of anti-PLA2R antibodies with outcomes after immunosuppressive therapy in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 9, 1386–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fernández-Juárez, G. et al. The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy. Kidney Int. 99, 986–998 (2021).

    Article  PubMed  CAS  Google Scholar 

  136. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    Article  PubMed  Google Scholar 

  137. Carambia, A. et al. Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. J. Hepatol. 62, 1349–1356 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Pishesha, N. et al. Induction of antigen-specific tolerance by nanobody–antigen adducts that target class-II major histocompatibility complexes. Nat. Biomed. Eng. 5, 1389–1401 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Irani, V. et al. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol. Immunol. 67, 171–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. de Taeye, S. W., Rispens, T. & Vidarsson, G. The ligands for human IgG and their effector functions. Antibodies 8, 30 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  142. Edwards, J. C. W. & Cambridge, G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat. Rev. Immunol. 6, 394–403 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Deutsche Forschungsgemeinschaft to E.H. (Heisenberg Programme and project B1 and C1 of the SFB 1192) and R.A.K.S. (project B1 of the SFB 1192).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Rolf A. K. Stahl.

Ethics declarations

Competing interests

E.H. has received fees from Morphosys, Planegg, Germany, and Novartis, Basel, Switzerland, for advisory board activities. R.A.K.S. has received fees from Morphosys, Planegg, Germany, for advisory board activities. L.R. declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks B. Seitz-Polski, H. Debiec and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Epitope spreading

Spreading of the specificity of an immune response from an epitope to another located in the same molecule (intramolecular spreading), or in a different molecule (intermolecular spreading).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoxha, E., Reinhard, L. & Stahl, R.A.K. Membranous nephropathy: new pathogenic mechanisms and their clinical implications. Nat Rev Nephrol 18, 466–478 (2022). https://doi.org/10.1038/s41581-022-00564-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00564-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing