Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glomerular hyperfiltration

Abstract

Circulating blood is filtered across the glomerular barrier to form an ultrafiltrate of plasma in the Bowman’s space. The volume of glomerular filtration adjusted by time is defined as the glomerular filtration rate (GFR), and the total GFR is the sum of all single-nephron GFRs. Thus, when the single-nephron GFR is increased in the context of a normal number of functioning nephrons, single glomerular hyperfiltration results in ‘absolute’ hyperfiltration in the kidney. ‘Absolute’ hyperfiltration can occur in healthy people after high protein intake, during pregnancy and in patients with diabetes, obesity or autosomal-dominant polycystic kidney disease. When the number of functioning nephrons is reduced, single-nephron glomerular hyperfiltration can result in a GFR that is within or below the normal range. This ‘relative’ hyperfiltration can occur in patients with a congenitally reduced nephron number or with an acquired reduction in nephron mass consequent to surgery or kidney disease. Improved understanding of the mechanisms that underlie ‘absolute’ and ‘relative’ glomerular hyperfiltration in different clinical settings, and of whether and how the single-nephron haemodynamic and related biomechanical forces that underlie glomerular hyperfiltration promote glomerular injury, will pave the way toward the development of novel therapeutic interventions that attenuate glomerular hyperfiltration and potentially prevent or limit consequent progressive kidney injury and loss of function.

Key points

  • ‘Absolute’ hyperfiltration is a supraphysiological elevation in glomerular filtration rate (GFR) that occurs when the single-nephron glomerular filtration rate (SNGFR) increases in a kidney with a normal number of functioning nephrons.

  • ‘Absolute’ hyperfiltration can occur in healthy people following consumption of a high protein meal and during pregnancy as well as in patients with obesity, diabetes mellitus or autosomal-dominant polycystic kidney disease.

  • ‘Relative’ hyperfiltration is an increase in SNGFR in the setting of a reduced number of functioning nephrons, which can result in a GFR that is within or below the normal range.

  • ‘Relative’ hyperfiltration can occur in patients with a congenitally reduced number of nephrons and in those with an acquired reduction in kidney mass as a result of surgery or kidney disease.

  • Independent of ‘absolute’ or ‘relative’ hyperfiltration, persistent increases in the SNGFR that are associated with glomerular hypertension can eventually lead to proteinuria, glomerulosclerosis and a decline in kidney function.

  • Improved understanding of the underlying mechanisms could lead to the development of novel therapeutic interventions to attenuate glomerular hyperfiltration and protect the kidney.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in kidney function during feeding.
Fig. 2: Kidney function during pregnancy.
Fig. 3: Potential origins of obesity-related glomerular hyperfiltration.
Fig. 4: ‘Absolute’ glomerular hyperfiltration in diabetes mellitus.
Fig. 5: The effects of SGLT2 inhibition on ‘absolute’ glomerular hyperfiltration in diabetes mellitus.

Similar content being viewed by others

References

  1. Deen, W. M., Robertson, C. R. & Brenner, B. M. A model of glomerular ultrafiltration in the rat. Am. J. Physiol. 223, 1178–1183 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Pollak, M. R., Quaggin, S. E., Hoenig, M. P. & Dworkin, L. D. The glomerulus: the sphere of influence. Clin. J. Am. Soc. Nephrol. 9, 1461–1469 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cachat, F., Combescure, C., Cauderay, M., Girardin, E. & Chehade, H. A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin. J. Am. Soc. Nephrol. 10, 382–389 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Porrini, E. et al. Estimated GFR: time for a critical appraisal. Nat. Rev. Nephrol. 15, 177–190 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Gaspari, F. et al. The GFR and GFR decline cannot be accurately estimated in type 2 diabetics. Kidney Int. 84, 164–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Denic, A. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Denic, A. et al. Detection and clinical patterns of nephron hypertrophy and nephrosclerosis among apparently healthy adults. Am. J. Kidney Dis. 68, 58–67 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharma, A., Mucino, M. J. & Ronco, C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin. Pract. 127, 94–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Armenta, A., Madero, M. & Rodriguez-Iturbe, B. Functional reserve of the kidney. Clin. J. Am. Soc. Nephrol. https://doi.org/10.2215/CJN.11070821 (2021).

    Article  PubMed  Google Scholar 

  10. De Nicola, L., Keiser, J. A., Blantz, R. C. & Gabbai, F. B. Angiotensin II and renal functional reserve in rats with Goldblatt hypertension. Hypertension 19, 790–794 (1992).

    Article  PubMed  Google Scholar 

  11. Raes, A., Donckerwolcke, R., Craen, M., Hussein, M. C. & Vande Walle, J. Renal hemodynamic changes and renal functional reserve in children with type I diabetes mellitus. Pediatr. Nephrol. 22, 1903–1909 (2007).

    Article  PubMed  Google Scholar 

  12. ter Wee, P. M., Tegzess, A. M. & Donker, A. J. Renal reserve filtration capacity before and after kidney donation. J. Intern. Med. 228, 393–399 (1990).

    Article  PubMed  Google Scholar 

  13. Palsson, R. & Waikar, S. S. Renal functional reserve revisited. Adv. Chronic Kidney Dis. 25, e1–e8 (2018).

    Article  PubMed  Google Scholar 

  14. Barai, S., Gambhir, S., Prasad, N., Sharma, R. K. & Ora, M. Functional renal reserve capacity in different stages of chronic kidney disease. Nephrology 15, 350–353 (2010).

    Article  PubMed  Google Scholar 

  15. Remuzzi, A. et al. Glomerular response to hyperglycemia in human diabetic nephropathy. Am. J. Physiol. 259, F545–F552 (1990).

    CAS  PubMed  Google Scholar 

  16. Brenner, B. M., Meyer, T. W. & Hostetter, T. H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 307, 652–659 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Castellino, P., Coda, B. & DeFronzo, R. A. Effect of amino acid infusion on renal hemodynamics in humans. Am. J. Physiol. 251, F132–F140 (1986).

    CAS  PubMed  Google Scholar 

  18. Hostetter, T. H. Human renal response to meat meal. Am. J. Physiol. 250, F613–F618 (1986).

    CAS  PubMed  Google Scholar 

  19. Bosch, J. P., Lew, S., Glabman, S. & Lauer, A. Renal hemodynamic changes in humans. Response to protein loading in normal and diseased kidneys. Am. J. Med. 81, 809–815 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Viberti, G. et al. Effect of protein-restricted diet on renal response to a meat meal in humans. Am. J. Physiol. 253, F388–F393 (1987).

    CAS  PubMed  Google Scholar 

  21. ter Wee, P. M., Rosman, J. B., van der Geest, S., Sluiter, W. J. & Donker, A. J. Renal hemodynamics during separate and combined infusion of amino acids and dopamine. Kidney Int. 29, 870–874 (1986).

    Article  PubMed  Google Scholar 

  22. Bankir, L., Roussel, R. & Bouby, N. Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea. Am. J. Physiol. Renal Physiol. 309, F2–F23 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Mahieu, S. et al. Monosodium glutamate intake affect the function of the kidney through NMDA receptor. Life Sci. 149, 114–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Gabbai, F. B. The role of renal response to amino acid infusion and oral protein load in normal kidneys and kidney with acute and chronic disease. Curr. Opin. Nephrol. Hypertens. 27, 23–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Wei, J. et al. High-protein diet-induced glomerular hyperfiltration is dependent on neuronal nitric oxide synthase β in the macula densa via tubuloglomerular feedback response. Hypertension 74, 864–871 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Kontessis, P. et al. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 38, 136–144 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Wakefield, A. P., House, J. D., Ogborn, M. R., Weiler, H. A. & Aukema, H. M. A diet with 35% of energy from protein leads to kidney damage in female Sprague-Dawley rats. Br. J. Nutr. 106, 656–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Hostetter, T. H., Meyer, T. W., Rennke, H. G. & Brenner, B. M. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int. 30, 509–517 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Jia, Y. et al. Long-term high intake of whole proteins results in renal damage in pigs. J. Nutr. 140, 1646–1652 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Cirillo, M. et al. Protein intake and kidney function in the middle-age population: contrast between cross-sectional and longitudinal data. Nephrol. Dial. Transpl. 29, 1733–1740 (2014).

    Article  CAS  Google Scholar 

  31. Farhadnejad, H., Asghari, G., Emamat, H., Mirmiran, P. & Azizi, F. Low-carbohydrate high-protein diet is associated with increased risk of incident chronic kidney diseases among Tehranian adults. J. Ren. Nutr. 29, 343–349 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Lew, Q.-L. J. et al. Red meat intake and risk of ESRD. J. Am. Soc. Nephrol. 28, 304–312 (2017).

    Article  PubMed  Google Scholar 

  33. Esmeijer, K., Geleijnse, J. M., de Fijter, J. W., Kromhout, D. & Hoogeveen, E. K. Dietary protein intake and kidney function decline after myocardial infarction: the Alpha Omega Cohort. Nephrol. Dial. Transpl. 35, 106–115 (2020).

    Article  CAS  Google Scholar 

  34. Jhee, J. H. et al. High-protein diet with renal hyperfiltration is associated with rapid decline rate of renal function: a community-based prospective cohort study. Nephrol. Dial. Transpl. 35, 98–106 (2020).

    CAS  Google Scholar 

  35. Haring, B. et al. Dietary protein sources and risk for incident chronic kidney disease: results from the atherosclerosis risk in communities (ARIC) Study. J. Ren. Nutr. 27, 233–242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Halbesma, N. et al. High protein intake associates with cardiovascular events but not with loss of renal function. J. Am. Soc. Nephrol. 20, 1797–1804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beasley, J. M. et al. Dietary protein intake and change in estimated GFR in the Cardiovascular Health Study. Nutrition 30, 794–799 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Friedman, A. N. et al. Comparative effects of low-carbohydrate high-protein versus low-fat diets on the kidney. Clin. J. Am. Soc. Nephrol. 7, 1103–1111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wycherley, T. P., Brinkworth, G. D., Clifton, P. M. & Noakes, M. Comparison of the effects of 52 weeks weight loss with either a high-protein or high-carbohydrate diet on body composition and cardiometabolic risk factors in overweight and obese males. Nutr. Diabetes 2, e40 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, Z. et al. Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: an outpatient randomized controlled trial. Nutr. J. 9, 72 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tay, J. et al. Long-term effects of a very low carbohydrate compared with a high carbohydrate diet on renal function in individuals with type 2 diabetes: a randomized trial. Medicine 94, e2181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheung, K. L. & Lafayette, R. A. Renal physiology of pregnancy. Adv. Chronic Kidney Dis. 20, 209–214 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Baylis, C. Glomerular filtration and volume regulation in gravid animal models. Baillieres Clin. Obstet. Gynaecol. 8, 235–264 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Reckelhoff, J. F., Yokota, S. D. & Baylis, C. Renal autoregulation in midterm and late-pregnant rats. Am. J. Obstet. Gynecol. 166, 1546–1550 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Chapman, A. B. et al. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 54, 2056–2063 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Dunlop, W. Serial changes in renal haemodynamics during normal human pregnancy. Br. J. Obstet. Gynaecol. 88, 1–9 (1981).

    Article  CAS  PubMed  Google Scholar 

  47. Odutayo, A. & Hladunewich, M. Obstetric nephrology: renal hemodynamic and metabolic physiology in normal pregnancy. Clin. J. Am. Soc. Nephrol. 7, 2073–2080 (2012).

    Article  PubMed  Google Scholar 

  48. Roberts, M., Lindheimer, M. D. & Davison, J. M. Altered glomerular permselectivity to neutral dextrans and heteroporous membrane modeling in human pregnancy. Am. J. Physiol. 270, F338–F343 (1996).

    CAS  PubMed  Google Scholar 

  49. Hladunewich, M. A. et al. The dynamics of glomerular filtration in the puerperium. Am. J. Physiol. Renal Physiol. 286, F496–F503 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Conrad, K. P. Maternal vasodilation in pregnancy: the emerging role of relaxin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R267–R275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lafayette, R. A. et al. Serum relaxin levels and kidney function in late pregnancy with or without preeclampsia. Clin. Nephrol. 75, 226–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Novak, J. et al. Reduced sensitivity of the renal circulation to angiotensin II in pregnant rats. Hypertension 30, 580–584 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Irani, R. A. & Xia, Y. Renin angiotensin signaling in normal pregnancy and preeclampsia. Semin. Nephrol. 31, 47–58 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gant, N. F., Worley, R. J., Everett, R. B. & MacDonald, P. C. Control of vascular responsiveness during human pregnancy. Kidney Int. 18, 253–258 (1980).

    Article  CAS  PubMed  Google Scholar 

  55. AbdAlla, S., Lother, H., el Massiery, A. & Quitterer, U. Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med. 7, 1003–1009 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Gumus, I. I. et al. Does glomerular hyperfiltration in pregnancy damage the kidney in women with more parities? Int. Urol. Nephrol. 41, 927–932 (2009).

    Article  PubMed  Google Scholar 

  57. Wiles, K. S., Nelson-Piercy, C. & Bramham, K. Reproductive health and pregnancy in women with chronic kidney disease. Nat. Rev. Nephrol. 14, 165–184 (2018).

    Article  PubMed  Google Scholar 

  58. Garofalo, C. et al. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 91, 1224–1235 (2017).

    Article  PubMed  Google Scholar 

  59. Hsu, C., McCulloch, C. E., Iribarren, C., Darbinian, J. & Go, A. S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 144, 21–28 (2006).

    Article  PubMed  Google Scholar 

  60. Henegar, J. R., Bigler, S. A., Henegar, L. K., Tyagi, S. C. & Hall, J. E. Functional and structural changes in the kidney in the early stages of obesity. J. Am. Soc. Nephrol. 12, 1211–1217 (2001).

    Article  PubMed  Google Scholar 

  61. Chagnac, A. et al. Glomerular hemodynamics in severe obesity. Am. J. Physiol. Renal Physiol. 278, F817–F822 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Chagnac, A. et al. Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol. Dial. Transpl. 23, 3946–3952 (2008).

    Article  CAS  Google Scholar 

  63. Wuerzner, G. et al. Marked association between obesity and glomerular hyperfiltration: a cross-sectional study in an African population. Am. J. Kidney Dis. 56, 303–312 (2010).

    Article  PubMed  Google Scholar 

  64. Brenner, B. M., Lawler, E. V. & Mackenzie, H. S. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 49, 1774–1777 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol. 15, 367–385 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Oosterhuis, N. R. et al. Extravascular renal denervation ameliorates juvenile hypertension and renal damage resulting from experimental hyperleptinemia in rats. J. Hypertens. 35, 2537–2547 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Shi, Z., Li, B. & Brooks, V. L. Role of the paraventricular nucleus of the hypothalamus in the sympathoexcitatory effects of leptin. Hypertension 66, 1034–1041 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. D’Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 (2016).

    Article  PubMed  CAS  Google Scholar 

  69. Chagnac, A. et al. The effects of weight loss on renal function in patients with severe obesity. J. Am. Soc. Nephrol. 14, 1480–1486 (2003).

    Article  PubMed  Google Scholar 

  70. Friedman, A. N. et al. Predicting the glomerular filtration rate in bariatric surgery patients. Am. J. Nephrol. 39, 8–15 (2014).

    Article  PubMed  Google Scholar 

  71. Lieske, J. C. et al. Gastric bypass surgery and measured and estimated GFR in women. Am. J. Kidney Dis. 64, 663–665 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. von Scholten, B. J. et al. Effect of large weight reductions on measured and estimated kidney function. BMC Nephrol. 18, 52 (2017).

    Article  CAS  Google Scholar 

  73. Navarro-Díaz, M. et al. Effect of drastic weight loss after bariatric surgery on renal parameters in extremely obese patients: long-term follow-up. J. Am. Soc. Nephrol. 17, S213–S217 (2006).

    Article  PubMed  Google Scholar 

  74. Serra, A. et al. The effect of bariatric surgery on adipocytokines, renal parameters and other cardiovascular risk factors in severe and very severe obesity: 1-year follow-up. Clin. Nutr. 25, 400–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ruggenenti, P. et al. Renal and systemic effects of calorie restriction in patients with type 2 diabetes with abdominal obesity: a randomized controlled trial. Diabetes 66, 75–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Afshinnia, F., Wilt, T. J., Duval, S., Esmaeili, A. & Ibrahim, H. N. Weight loss and proteinuria: systematic review of clinical trials and comparative cohorts. Nephrol. Dial. Transpl. 25, 1173–1183 (2010).

    Article  Google Scholar 

  77. Li, K. et al. Effects of bariatric surgery on renal function in obese patients: a systematic review and meta analysis. PLoS One 11, e0163907 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Navaneethan, S. D. & Yehnert, H. Bariatric surgery and progression of chronic kidney disease. Surg. Obes. Relat. Dis. 5, 662–665 (2009).

    Article  PubMed  Google Scholar 

  79. Imam, T. H. et al. Estimated GFR before and after bariatric surgery in CKD. Am. J. Kidney Dis. 69, 380–388 (2017).

    Article  PubMed  Google Scholar 

  80. Morales, E. et al. Renoprotective role of bariatric surgery in patients with established chronic kidney disease. Clin. Kidney J. 14, 2037–2046 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Praga, M. et al. Effects of body-weight loss and captopril treatment on proteinuria associated with obesity. Nephron 70, 35–41 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Morales, E., Valero, M. A., León, M., Hernández, E. & Praga, M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am. J. Kidney Dis. 41, 319–327 (2003).

    Article  PubMed  Google Scholar 

  83. Navaneethan, S. D. et al. Bariatric surgery, kidney function, insulin resistance, and adipokines in patients with decreased GFR: a cohort study. Am. J. Kidney Dis. 65, 345–347 (2015).

    Article  PubMed  Google Scholar 

  84. Favre, G., Schiavo, L., Lemoine, S., Esnault, V. L. M. & Iannelli, A. Longitudinal assessment of renal function in native kidney after bariatric surgery. Surg. Obes. Relat. Dis. 14, 1411–1418 (2018).

    Article  PubMed  Google Scholar 

  85. López-Martínez, M. et al. The estimation of GFR and the adjustment for BSA in overweight and obesity: a dreadful combination of two errors. Int. J. Obes. 44, 1129–1140 (2020).

    Article  CAS  Google Scholar 

  86. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Levey, A. S. et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 130, 461–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Inker, L. A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tamboli, R. A. et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery. Obesity 18, 1718–1724 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Chew-Harris, J. S. C., Florkowski, C. M., George, P. M., Elmslie, J. L. & Endre, Z. H. The relative effects of fat versus muscle mass on cystatin C and estimates of renal function in healthy young men. Ann. Clin. Biochem. 50, 39–46 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Chang, A. R. et al. Performance of glomerular filtration rate estimating equations before and after bariatric surgery. Kidney Med. 2, 699–706.e1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Delanaye, P., Radermecker, R. P., Rorive, M., Depas, G. & Krzesinski, J. M. Indexing glomerular filtration rate for body surface area in obese patients is misleading: concept and example. Nephrol. Dial. Transpl. 20, 2024–2028 (2005).

    Article  Google Scholar 

  93. Friedman, A. N. et al. Effect of bariatric surgery on CKD risk. J. Am. Soc. Nephrol. 29, 1289–1300 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mallamaci, F. et al. ACE inhibition is renoprotective among obese patients with proteinuria. J. Am. Soc. Nephrol. 22, 1122–1128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zingerman, B. et al. Effect of acetazolamide on obesity-induced glomerular hyperfiltration: a randomized controlled trial. PLoS ONE 10, e0137163 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Saran, R. et al. US renal data system 2019 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 75, A6–A7 (2020).

    Article  PubMed  Google Scholar 

  97. Tonneijck, L. et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 28, 1023–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hostetter, T. H., Troy, J. L. & Brenner, B. M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 19, 410–415 (1981).

    Article  CAS  PubMed  Google Scholar 

  99. Zatz, R., Meyer, T. W., Rennke, H. G. & Brenner, B. M. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc. Natl Acad. Sci. USA 82, 5963–5967 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sasson, A. N. & Cherney, D. Z. Renal hyperfiltration related to diabetes mellitus and obesity in human disease. World J. Diabetes 3, 1–6 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sochett, E. B. et al. Impact of renin angiotensin system modulation on the hyperfiltration state in type 1 diabetes. J. Am. Soc. Nephrol. 17, 1703–1709 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Lovshin, J. A. et al. Renin-angiotensin-aldosterone system activation in long-standing type 1 diabetes. JCI Insight 3, 96968 (2018).

    Article  PubMed  Google Scholar 

  103. Chiarelli, F. et al. Increased circulating nitric oxide in young patients with type 1 diabetes and persistent microalbuminuria: relation to glomerular hyperfiltration. Diabetes 49, 1258–1263 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Cherney, D. Z. I. et al. Renal hyperfiltration is a determinant of endothelial function responses to cyclooxygenase 2 inhibition in type 1 diabetes. Diabetes Care 33, 1344–1346 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 16, 317–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cherney, D. Z. I., Scholey, J. W. & Miller, J. A. Insights into the regulation of renal hemodynamic function in diabetic mellitus. Curr. Diabetes Rev. 4, 280–290 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Mogensen, C. E. & Andersen, M. J. Increased kidney size and glomerular filtration rate in untreated juvenile diabetes: normalization by insulin-treatment. Diabetologia 11, 221–224 (1975).

    Article  CAS  PubMed  Google Scholar 

  108. Wiseman, M. J., Saunders, A. J., Keen, H. & Viberti, G. Effect of blood glucose control on increased glomerular filtration rate and kidney size in insulin-dependent diabetes. N. Engl. J. Med. 312, 617–621 (1985).

    Article  CAS  PubMed  Google Scholar 

  109. De Cosmo, S. et al. Glucose-induced changes in renal haemodynamics in proteinuric type 1 (insulin-dependent) diabetic patients: inhibition by acetylsalicilic acid infusion. Diabetologia 36, 622–627 (1993).

    Article  PubMed  Google Scholar 

  110. Magee, G. M. et al. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia 52, 691–697 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Ruggenenti, P. et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care 35, 2061–2068 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bjornstad, P. et al. Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with Type 1 diabetes. Nephrol. Dial. Transpl. 30, 1706–1711 (2015).

    Article  Google Scholar 

  113. Ficociello, L. H. et al. Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care 32, 889–893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Thomas, M. C. et al. Hyperfiltration in type 1 diabetes: does it exist and does it matter for nephropathy? Diabetologia 55, 1505–1513 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Molitch, M. E. et al. Early glomerular hyperfiltration and long-term kidney outcomes in type 1 diabetes: The DCCT/EDIC experience. Clin. J. Am. Soc. Nephrol. 14, 854–861 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pugliese, G. et al. Diabetic kidney disease: New clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on ‘The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function’. Nutr. Metab. Cardiovasc. Dis. 29, 1127–1150 (2019).

    Article  PubMed  Google Scholar 

  117. Porrini, E. et al. Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. Lancet Diabetes Endocrinol. 3, 382–391 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Kramer, H. J., Nguyen, Q. D., Curhan, G. & Hsu, C.-Y. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289, 3273–3277 (2003).

    Article  PubMed  Google Scholar 

  119. Thomas, M. C. et al. Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment co-existing with NIDDM [NEFRON] 11). Diabetes Care 32, 1497–1502 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Thomas, M. C. et al. Diabetic kidney disease. Nat. Rev. Dis. Prim. 1, 15018 (2015).

    Article  PubMed  Google Scholar 

  121. Remuzzi, G., Schieppati, A. & Ruggenenti, P. Clinical practice. Nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 346, 1145–1151 (2002).

    Article  PubMed  Google Scholar 

  122. Alicic, R. Z., Rooney, M. T. & Tuttle, K. R. Diabetic kidney disease: challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 12, 2032–2045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lastra, G., Syed, S., Kurukulasuriya, L. R., Manrique, C. & Sowers, J. R. Type 2 diabetes mellitus and hypertension: an update. Endocrinol. Metab. Clin. North. Am. 43, 103–122 (2014).

    Article  PubMed  Google Scholar 

  124. Mennuni, S. et al. Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J. Hum. Hypertens. 28, 74–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Lemley, K. V. A basis for accelerated progression of diabetic nephropathy in Pima Indians. Kidney Int. Suppl. https://doi.org/10.1046/j.1523-1755.63.s83.9.x (2003).

    Article  PubMed  Google Scholar 

  126. Carrara, F. et al. Increased pre-glomerular resistance and kidney hypoperfusion may sustain accelerated GFR decline in hypertensive, type 2 diabetics with normal and high normal albuminuria. Nephrol. Dial. Transpl. 33, 317 (2018).

    Article  Google Scholar 

  127. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Zatz, R. et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest. 77, 1925–1930 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Benigni, A., Gagliardini, E. & Remuzzi, G. Changes in glomerular perm-selectivity induced by angiotensin II imply podocyte dysfunction and slit diaphragm protein rearrangement. Semin. Nephrol. 24, 131–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Remuzzi, A. et al. Short- and long-term effect of angiotensin II receptor blockade in rats with experimental diabetes. J. Am. Soc. Nephrol. 4, 40–49 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Gagliardini, E. et al. Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. Am. J. Physiol. Renal Physiol. 297, F1448–F1456 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Perkovic, V. et al. Canagliflozin and renal outcomes in Type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Wanner, C. et al. Empagliflozin and progression of kidney disease in Type 2 Diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Ruggenenti, P. et al. Nephrotic-range proteinuria in type 2 diabetes: effects of empagliflozin on kidney disease progression and clinical outcomes. EClinicalMedicine 43, 101240 (2022).

    Article  PubMed  Google Scholar 

  139. Cherney, D. Z. I. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129, 587–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Kidokoro, K. et al. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging. Circulation 140, 303–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. van Bommel, E. J. M. et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 97, 202–212 (2020).

    Article  PubMed  CAS  Google Scholar 

  142. Ott, C., Kannenkeril, D., Jung, S. & Schnieder, R. Combination therapy of empagliflozin and linagliptin vs. metformin and insulin glargine on intra- and renal hemodynamics in type 2 diabetes [abstract SA-OR083] (ASN Kidney Week, 2019).

  143. Thomson, S. C. & Vallon, V. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. Am. J. Physiol. Renal Physiol. 320, F761–F771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhao, Y. et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 20, 458–462 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. DeFronzo, R. A., Reeves, W. B. & Awad, A. S. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 17, 319–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Grantham, J. J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 359, 1477–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Spithoven, E. M. et al. Analysis of data from the ERA-EDTA Registry indicates that conventional treatments for chronic kidney disease do not reduce the need for renal replacement therapy in autosomal dominant polycystic kidney disease. Kidney Int. 86, 1244–1252 (2014).

    Article  PubMed  Google Scholar 

  148. Grantham, J. J., Chapman, A. B. & Torres, V. E. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin. J. Am. Soc. Nephrol. 1, 148–157 (2006).

    Article  PubMed  Google Scholar 

  149. Grantham, J. J., Mulamalla, S. & Swenson-Fields, K. I. Why kidneys fail in autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol. 7, 556–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Franz, K. A. & Reubi, F. C. Rate of functional deterioration in polycystic kidney disease. Kidney Int. 23, 526–529 (1983).

    Article  CAS  PubMed  Google Scholar 

  151. Chapman, A. B. et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the consortium for radiologic imaging studies of polycystic kidney disease (CRISP) cohort. Kidney Int. 64, 1035–1045 (2003).

    Article  PubMed  Google Scholar 

  152. Grantham, J. J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Fick-Brosnahan, G. M., Belz, M. M., McFann, K. K., Johnson, A. M. & Schrier, R. W. Relationship between renal volume growth and renal function in autosomal dominant polycystic kidney disease: a longitudinal study. Am. J. Kidney Dis. 39, 1127–1134 (2002).

    Article  PubMed  Google Scholar 

  154. King, B. F., Reed, J. E., Bergstralh, E. J., Sheedy, P. F. & Torres, V. E. Quantification and longitudinal trends of kidney, renal cyst, and renal parenchyma volumes in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 11, 1505–1511 (2000).

    Article  PubMed  Google Scholar 

  155. Meijer, E. et al. Early renal abnormalities in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1091–1098 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Torres, V. E. et al. Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2, 112–120 (2007).

    Article  PubMed  Google Scholar 

  157. Wong, H., Vivian, L., Weiler, G. & Filler, G. Patients with autosomal dominant polycystic kidney disease hyperfiltrate early in their disease. Am. J. Kidney Dis. 43, 624–628 (2004).

    Article  PubMed  Google Scholar 

  158. Helal, I. et al. Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 2439–2443 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Messchendorp, A. L. et al. Kidney function reserve capacity in early and later stage autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 13, 1680–1692 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gentile, G., Mastroluca, D., Perna, A., Remuzzi, G. & Ruggenenti, P. Glomerular hyperfiltration is a common risk factor for accelerated GFR decline in young adults with autosomal polycystic kidney disease (ADPKD) (American Society of Nephrology (ASN) Kidney Week 2014).

  161. Caroli, A. et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet 382, 1485–1495 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Brouhard, B. H., LaGrone, L. F., Richards, G. E. & Travis, L. B. Somatostatin limits rise in glomerular filtration rate after a protein meal. J. Pediatr. 110, 729–734 (1987).

    Article  CAS  PubMed  Google Scholar 

  163. Vora, J. et al. Renal response to intravenous somatostatin in insulin-dependent diabetic patients and normal subjects. J. Clin. Endocrinol. Metab. 64, 975–979 (1987).

    Article  CAS  PubMed  Google Scholar 

  164. Ginès, A. et al. Effects of somatostatin on renal function in cirrhosis. Gastroenterology 103, 1868–1874 (1992).

    Article  PubMed  Google Scholar 

  165. Colao, A. et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N. Engl. J. Med. 366, 914–924 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Remuzzi, G., Perico, N., Macia, M. & Ruggenenti, P. The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int. Suppl. https://doi.org/10.1111/j.1523-1755.2005.09911.x (2005).

    Article  PubMed  Google Scholar 

  167. Chapman, A. B., Johnson, A., Gabow, P. A. & Schrier, R. W. The renin-angiotensin-aldosterone system and autosomal dominant polycystic kidney disease. N. Engl. J. Med. 323, 1091–1096 (1990).

    Article  CAS  PubMed  Google Scholar 

  168. Loghman-Adham, M., Soto, C. E., Inagami, T. & Cassis, L. The intrarenal renin-angiotensin system in autosomal dominant polycystic kidney disease. Am. J. Physiol. Renal Physiol. 287, F775–F788 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Cadnapaphornchai, M. A., McFann, K., Strain, J. D., Masoumi, A. & Schrier, R. W. Prospective change in renal volume and function in children with ADPKD. Clin. J. Am. Soc. Nephrol. 4, 820–829 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Schrier, R. W. et al. Blood pressure in early autosomal dominant polycystic kidney disease. N. Engl. J. Med. 371, 2255–2266 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. van Gastel, M. D. A. & Torres, V. E. Polycystic kidney disease and the vasopressin pathway. Ann. Nutr. Metab. 70, 43–50 (2017).

    Article  PubMed  Google Scholar 

  172. Bankir, L., Bouby, N. & Ritz, E. Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat. Rev. Nephrol. 9, 223–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Irazabal, M. V. et al. Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease. Kidney Int. 80, 295–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Boertien, W. E. et al. Short-term renal hemodynamic effects of tolvaptan in subjects with autosomal dominant polycystic kidney disease at various stages of chronic kidney disease. Kidney Int. 84, 1278–1286 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Takahashi, N. et al. Vasopressin stimulates Cl- transport in ascending thin limb of Henle’s loop in hamster. J. Clin. Invest. 95, 1623–1627 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mutig, K. et al. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am. J. Physiol. Renal Physiol. 293, F1166–F1177 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Gabow, P. A. et al. The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney Int. 35, 675–680 (1989).

    Article  CAS  PubMed  Google Scholar 

  178. Torres, V. E., Wilson, D. M., Offord, K. P., Burnett, J. C. & Romero, J. C. Natriuretic response to volume expansion in polycystic kidney disease. Mayo Clin. Proc. 64, 509–515 (1989).

    Article  CAS  PubMed  Google Scholar 

  179. Deen, W. M., Lazzara, M. J. & Myers, B. D. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281, F579–F596 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Dane, M. J. C. et al. Glomerular endothelial surface layer acts as a barrier against albumin filtration. Am. J. Pathol. 182, 1532–1540 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Kawachi, H. et al. Role of podocyte slit diaphragm as a filtration barrier. Nephrology 11, 274–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Tryggvason, K. & Wartiovaara, J. Molecular basis of glomerular permselectivity. Curr. Opin. Nephrol. Hypertens. 10, 543–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  183. Srivastava, T. et al. Hyperfiltration-mediated injury in the remaining kidney of a transplant donor. Transplantation 102, 1624–1635 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Chagnac, A., Zingerman, B., Rozen-Zvi, B. & Herman-Edelstein, M. Consequences of glomerular hyperfiltration: the role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity. Nephron 143, 38–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Kriz, W. & Endlich, K. Podocytes and disease: introduction. Semin. Nephrol. 32, 305–306 (2012).

    Article  PubMed  Google Scholar 

  186. Mundel, P. & Shankland, S. J. Podocyte biology and response to injury. J. Am. Soc. Nephrol. 13, 3005–3015 (2002).

    Article  PubMed  Google Scholar 

  187. Kriz, W., Gretz, N. & Lemley, K. V. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int. 54, 687–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  188. Fries, J. W., Sandstrom, D. J., Meyer, T. W. & Rennke, H. G. Glomerular hypertrophy and epithelial cell injury modulate progressive glomerulosclerosis in the rat. Lab. Invest. 60, 205–218 (1989).

    CAS  PubMed  Google Scholar 

  189. Kriz, W. & Lemley, K. V. The role of the podocyte in glomerulosclerosis. Curr. Opin. Nephrol. Hypertens. 8, 489–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. Pabst, R. & Sterzel, R. B. Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int. 24, 626–631 (1983).

    Article  CAS  PubMed  Google Scholar 

  191. Lemley, K. V. Mechanical challenges to the glomerulus and podocyte loss: evolution of a paradigm. Pflugers Arch. 469, 959–963 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Gagliardini, E., Conti, S., Benigni, A., Remuzzi, G. & Remuzzi, A. Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J. Am. Soc. Nephrol. 21, 2081–2089 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Rice, W. L. et al. High resolution helium ion scanning microscopy of the rat kidney. PLoS One 8, e57051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tsuji, K. et al. Re-characterization of the glomerulopathy in CD2AP deficient mice by high-resolution helium ion scanning microscopy. Sci. Rep. 7, 8321 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Rodewald, R. & Karnovsky, M. J. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J. Cell Biol. 60, 423–433 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Butt, L. et al. A molecular mechanism explaining albuminuria in kidney disease. Nat. Metab. 2, 461–474 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Kriz, W. & Lemley, K. V. Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr. Nephrol. 32, 405–417 (2017).

    Article  PubMed  Google Scholar 

  198. Benzing, T. & Salant, D. Insights into glomerular filtration and albuminuria. N. Engl. J. Med. 384, 1437–1446 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Neal, C. R. et al. Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions. Am. J. Physiol. Renal Physiol. 293, F1787–F1798 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Remuzzi, A., Puntorieri, S., Mazzoleni, A. & Remuzzi, G. Sex related differences in glomerular ultrafiltration and proteinuria in Munich-Wistar rats. Kidney Int. 34, 481–486 (1988).

    Article  CAS  PubMed  Google Scholar 

  201. Remuzzi, A. et al. Role of ultrastructural determinants of glomerular permeability in ultrafiltration function loss. JCI Insight 5, 137249 (2020).

    Article  PubMed  Google Scholar 

  202. Fall, B. et al. Urinary podocyte loss is increased in patients with Fabry disease and correlates with clinical severity of Fabry nephropathy. PLoS One 11, e0168346 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Mella, A. et al. Detection of urinary podocytes by flow cytometry in idiopathic membranous nephropathy. Sci. Rep. 10, 16362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Vogelmann, S. U., Nelson, W. J., Myers, B. D. & Lemley, K. V. Urinary excretion of viable podocytes in health and renal disease. Am. J. Physiol. Renal Physiol. 285, F40–F48 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Hayslett, J. P. Functional adaptation to reduction in renal mass. Physiol. Rev. 59, 137–164 (1979).

    Article  CAS  PubMed  Google Scholar 

  206. Deen, W. M., Maddox, D. A., Robertson, C. R. & Brenner, B. M. Dynamics of glomerular ultrafiltration in the rat. VII. Response to reduced renal mass. Am. J. Physiol. 227, 556–562 (1974).

    Article  CAS  PubMed  Google Scholar 

  207. Kaufman, J. M., Siegel, N. J. & Hayslett, J. P. Functional and hemodynamic adaptation to progressive renal ablation. Circ. Res. 36, 286–293 (1975).

    Article  CAS  PubMed  Google Scholar 

  208. Hostetter, T. H., Rennke, H. G. & Brenner, B. M. Compensatory renal hemodynamic injury: a final common pathway of residual nephron destruction. Am. J. Kidney Dis. 1, 310–314 (1982).

    Article  CAS  PubMed  Google Scholar 

  209. Morrison, A. B. Experimental chronic renal insufficiency. Methods Achiev. Exp. Pathol. 1, 455–475 (1966).

    Google Scholar 

  210. Purkerson, M. L., Hoffsten, P. E. & Klahr, S. Pathogenesis of the glomerulopathy associated with renal infarction in rats. Kidney Int. 9, 407–417 (1976).

    Article  CAS  PubMed  Google Scholar 

  211. Shea, S. M., Raskova, J. & Morrison, A. B. A stereologic study of glomerular hypertrophy in the subtotally nephrectomized rat. Am. J. Pathol. 90, 201–210 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Shimamura, T. & Morrison, A. B. A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. Am. J. Pathol. 79, 95–106 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Hostetter, T. H., Olson, J. L., Rennke, H. G., Venkatachalam, M. A. & Brenner, B. M. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol. 241, F85–F93 (1981).

    CAS  PubMed  Google Scholar 

  214. Anderson, S., Meyer, T. W., Rennke, H. G. & Brenner, B. M. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J. Clin. Invest. 76, 612–619 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Remuzzi, A., Puntorieri, S., Battaglia, C., Bertani, T. & Remuzzi, G. Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat. J. Clin. Invest. 85, 541–549 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wachtel, L. W., Cole, L. J. & Rosen, V. J. X-ray-induced glomerulosclerosis in rats: modification of lesion by food restriction, uninephrectomy, and age. J. Gerontol. 21, 442–448 (1966).

    Article  CAS  PubMed  Google Scholar 

  217. Teodoru, C. V., Saifer, A. & Frankel, H. Conditioning factors influencing evolution of experimental glomerulonephritis in rabbits. Am. J. Physiol. 196, 457–460 (1959).

    Article  CAS  PubMed  Google Scholar 

  218. Velosa, J. A., Glasser, R. J., Nevins, T. E. & Michael, A. F. Experimental model of focal sclerosis. II. Correlation with immunopathologic changes, macromolecular kinetics, and polyanion loss. Lab. Invest. 36, 527–534 (1977).

    CAS  PubMed  Google Scholar 

  219. Beyer, M. M., Steinberg, A. D., Nicastri, A. D. & Friedman, E. A. Unilateral nephrectomy: effect on survival in NZB/NZW mice. Science 198, 511–513 (1977).

    Article  CAS  PubMed  Google Scholar 

  220. Schreuder, M. F., Westland, R. & van Wijk, J. A. E. Unilateral multicystic dysplastic kidney: a meta-analysis of observational studies on the incidence, associated urinary tract malformations and the contralateral kidney. Nephrol. Dial. Transpl. 24, 1810–1818 (2009).

    Article  Google Scholar 

  221. Westland, R., Schreuder, M. F., Ket, J. C. F. & van Wijk, J. A. E. Unilateral renal agenesis: a systematic review on associated anomalies and renal injury. Nephrol. Dial. Transpl. 28, 1844–1855 (2013).

    Article  Google Scholar 

  222. van Vuuren, S. H. et al. Compensatory enlargement of a solitary functioning kidney during fetal development. Ultrasound Obstet. Gynecol. 40, 665–668 (2012).

    Article  PubMed  Google Scholar 

  223. Abou Jaoudé, P. et al. Congenital versus acquired solitary kidney: is the difference relevant? Nephrol. Dial. Transpl. 26, 2188–2194 (2011).

    Article  Google Scholar 

  224. Westland, R., Kurvers, R. A. J., van Wijk, J. A. E. & Schreuder, M. F. Risk factors for renal injury in children with a solitary functioning kidney. Pediatrics 131, e478–e485 (2013).

    Article  PubMed  Google Scholar 

  225. Sanna-Cherchi, S. et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 76, 528–533 (2009).

    Article  PubMed  Google Scholar 

  226. Abitbol, C. L. & Moxey-Mims, M. Chronic kidney disease: Low birth weight and the global burden of kidney disease. Nat. Rev. Nephrol. 12, 199–200 (2016).

    Article  PubMed  Google Scholar 

  227. Luyckx, V. A. & Brenner, B. M. Clinical consequences of developmental programming of low nephron number. Anat. Rec. 303, 2613–2631 (2020).

    Article  Google Scholar 

  228. Ojo, A. Addressing the global burden of chronic kidney disease through clinical and translational research. Trans. Am. Clin. Climatol. Assoc. 125, 229–246 (2014).

    PubMed  PubMed Central  Google Scholar 

  229. Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes–a global concern. Nat. Rev. Nephrol. 11, 135–149 (2015).

    Article  PubMed  Google Scholar 

  230. Seymour, A. E. Glomerular disease in whites versus Australian aboriginals: ‘last of a race in ruin’ (G.K. Chesterton). Nephrol. Dial. Transpl. 10, 769–770 (1995).

    CAS  Google Scholar 

  231. Thomas, M. Deprivation and dialysis: pathways to kidney failure in Australian Aborigines. Adv. Chronic Kidney Dis. 12, 84–87 (2005).

    Article  PubMed  Google Scholar 

  232. Hoy, W. E. et al. The influence of birthweight, past poststreptococcal glomerulonephritis and current body mass index on levels of albuminuria in young adults: the multideterminant model of renal disease in a remote Australian Aboriginal population with high rates of renal disease and renal failure. Nephrol. Dial. Transpl. 31, 971–977 (2016).

    Article  CAS  Google Scholar 

  233. Hoy, W. E. et al. The multidimensional nature of renal disease: rates and associations of albuminuria in an Australian Aboriginal community. Kidney Int. 54, 1296–1304 (1998).

    Article  CAS  PubMed  Google Scholar 

  234. Stengel, B., Tarver-Carr, M. E., Powe, N. R., Eberhardt, M. S. & Brancati, F. L. Lifestyle factors, obesity and the risk of chronic kidney disease. Epidemiology 14, 479–487 (2003).

    Article  PubMed  Google Scholar 

  235. Nenov, V. D., Taal, M. W., Sakharova, O. V. & Brenner, B. M. Multi-hit nature of chronic renal disease. Curr. Opin. Nephrol. Hypertens. 9, 85–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  236. Lenihan, C. R. et al. Longitudinal study of living kidney donor glomerular dynamics after nephrectomy. J. Clin. Invest. 125, 1311–1318 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Kasiske, B. L. et al. A prospective controlled study of metabolic and physiologic effects of kidney donation suggests that donors retain stable kidney function over the first nine years. Kidney Int. 98, 168–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Gill, J. S. & Tonelli, M. Understanding rare adverse outcomes following living kidney donation. JAMA 311, 577–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  239. Steiner, R. GFR-related risks for kidney donors are here to stay, but what are they? Am. J. Transpl. 18, 2612 (2018).

    Article  Google Scholar 

  240. Muzaale, A. D. et al. Risk of end-stage renal disease following live kidney donation. JAMA 311, 579–586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Mjøen, G. et al. Long-term risks for kidney donors. Kidney Int. 86, 162–167 (2014).

    Article  PubMed  Google Scholar 

  242. Anjum, S. et al. Patterns of end-stage renal disease caused by diabetes, hypertension, and glomerulonephritis in live kidney donors. Am. J. Transpl. 16, 3540–3547 (2016).

    Article  CAS  Google Scholar 

  243. Li, L. et al. Risk of chronic kidney disease after cancer nephrectomy. Nat. Rev. Nephrol. 10, 135–145 (2014).

    Article  PubMed  Google Scholar 

  244. Timsit, M.-O. et al. Kidney function following nephrectomy: similitude and discrepancies between kidney cancer and living donation. Urol. Oncol. 30, 482–486 (2012).

    Article  PubMed  Google Scholar 

  245. Miller, A. J., Kiberd, B. A., Alwayn, I. P., Odutayo, A. & Tennankore, K. K. Donor-recipient weight and sex mismatch and the risk of graft loss in renal transplantation. Clin. J. Am. Soc. Nephrol. 12, 669–676 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Giral, M. et al. Kidney and recipient weight incompatibility reduces long-term graft survival. J. Am. Soc. Nephrol. 21, 1022–1029 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Kasiske, B. L., Snyder, J. J. & Gilbertson, D. Inadequate donor size in cadaver kidney transplantation. J. Am. Soc. Nephrol. 13, 2152–2159 (2002).

    Article  PubMed  Google Scholar 

  248. el-Agroudy, A. E. et al. Effect of donor/recipient body weight mismatch on patient and graft outcome in living-donor kidney transplantation. Am. J. Nephrol. 23, 294–299 (2003).

    Article  PubMed  Google Scholar 

  249. Ghafari, A., Etemadi, J. & Ardalan, M. Impact of donor/recipient body weight mismatch on allograft outcome in renal transplant recipients. Transpl. Proc. 40, 135–136 (2008).

    Article  CAS  Google Scholar 

  250. Miles, A. M. et al. The effect of kidney size on cadaveric renal allograft outcome. Transplantation 61, 894–897 (1996).

    Article  CAS  PubMed  Google Scholar 

  251. Brenner, B. M., Cohen, R. A. & Milford, E. L. In renal transplantation, one size may not fit all. J. Am. Soc. Nephrol. 3, 162–169 (1992).

    Article  CAS  PubMed  Google Scholar 

  252. Brenner, B. M. & Milford, E. L. Nephron underdosing: a programmed cause of chronic renal allograft failure. Am. J. Kidney Dis. 21, 66–72 (1993).

    Article  CAS  PubMed  Google Scholar 

  253. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  254. Ruggenenti, P., Schieppati, A. & Remuzzi, G. Progression, remission, regression of chronic renal diseases. Lancet 357, 1601–1608 (2001).

    Article  CAS  PubMed  Google Scholar 

  255. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J. Am. Soc. Nephrol. 19, 1213–1224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Brøchner-Mortensen, J., Rickers, H. & Balslev, I. Renal function and body composition before and after intestinal bypass operation in obese patients. Scand. J. Clin. Lab. Invest. 40, 695–702 (1980).

    Article  PubMed  Google Scholar 

  257. Clerte, M. et al. The measured glomerular filtration rate (mGFR) before and 6 months after bariatric surgery: a pilot study. Nephrol. Ther. 13, 160–167 (2017).

    Article  PubMed  Google Scholar 

  258. Chuah, L. L. et al. Measurement of glomerular filtration rate in patients undergoing obesity surgery. BMC Nephrol. 19, 383 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Kerstin Mierke (Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy) for her help with English language editing of the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

M.C. and N.P. researched the data for the article. M.C., N.P., P.R., A.R. and G.R. wrote the text and reviewed or edited the manuscript before submission. All authors made substantial contributions to discussions of the content.

Corresponding author

Correspondence to Giuseppe Remuzzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks M. Praga, H. Trujillo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Microalbuminuria

A moderate increase in albuminuria indicating incipient nephropathy.

Macroalbuminuria

A severe increase in albuminuria characteristic of overt nephropathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortinovis, M., Perico, N., Ruggenenti, P. et al. Glomerular hyperfiltration. Nat Rev Nephrol 18, 435–451 (2022). https://doi.org/10.1038/s41581-022-00559-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00559-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing