Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The impact of excessive salt intake on human health

Abstract

Intake of salt is a biological imperative, inextricably woven into physiological systems, human societies and global culture. However, excessive salt intake is associated with high blood pressure. As this effect likely drives cardiovascular morbidity and mortality, excessive salt intake is estimated to cause ~5 million deaths per annum worldwide. Animal research has identified various mechanisms by which high salt intake drives disease in the kidney, brain, vasculature and immune system. The potential for therapeutic interventions in many of these pathways has yet to be tested. Salt-reduction interventions lower blood pressure, but for most individuals, ‘hidden’ salt in processed foods disconnects salt intake from discretionary control. This problem is compounded by growing inequalities in food systems, which form another hurdle to sustaining individual dietary control of salt intake. The most effective salt-reduction interventions have been implemented at the population level and comprise multi-component approaches, involving government, education and the food industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pathway from salt intake to clinical outcomes.
Fig. 2: Salt consumption and the effects of interventions on blood pressure and cardiovascular risk.
Fig. 3: Guyton & Hall’s approach to studying salt sensitivity.
Fig. 4: Potential mechanisms of salt-sensitive hypertension.

Similar content being viewed by others

References

  1. Huang, L. et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ 368, m315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Powles, J. et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3, e0003733 (2013).

    Article  Google Scholar 

  3. Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

    Article  Google Scholar 

  4. McCarron, D. A., Kazaks, A. G., Geerling, J. C., Stern, J. S. & Graudal, N. A. Normal range of human dietary sodium intake: a perspective based on 24-hour urinary sodium excretion worldwide. Am. J. Hypertens. 26, 1218 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. WHO. Effect of Reduced Sodium Intake on Blood Pressure, Renal Function, Blood Lipids and Other Potential Adverse Effects https://apps.who.int/iris/handle/10665/79325 (2012).

  6. No Authors Listed. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297, 319 (1988).

    Article  Google Scholar 

  7. Taubes, G. The (political) science of salt. Science 281, 898 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Campbell, N. R. C., Lackland, D. T., Niebylski, M. L. & Nilsson, P. M. Is reducing dietary sodium controversial? Is it the conduct of studies with flawed research methods that is controversial? A perspective from the World Hypertension League Executive Committee. J. Clin. Hypertens. 17, 85 (2015).

    Article  Google Scholar 

  9. He, F. J., Tan, M., Ma, Y. & MacGregor, G. A. Salt reduction to prevent hypertension and cardiovascular disease. J. Am. Coll. Cardiol. 75, 632 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. McCarron, D. A., Geerling, J. C. & Alderman, M. H. Urinary sodium excretion measures and health outcomes. Lancet 393, 1294 (2019).

    Article  PubMed  Google Scholar 

  11. Morimoto, A. et al. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 350, 1734 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Weinberger, M. H., Fineberg, N. S., Fineberg, S. E. & Weinberger, M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37, 429 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Titze, J. & Luft, F. C. Speculations on salt and the genesis of arterial hypertension. Kidney Int. 91, 1324–1335 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Rucker, A. J., Rudemiller, N. P. & Crowley, S. D. Salt, hypertension, and immunity. Annu. Rev. Physiol. 80, 283–307 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Mutchler, S. M., Kirabo, A. & Kleyman, T. R. Epithelial sodium channel and salt-sensitive hypertension. Hypertension 77, 759–767 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Kawarazaki, W. & Fujita, T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat. Rev. Nephrol. 17, 350–363 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Garfinkle, M. A. Salt and essential hypertension: pathophysiology and implications for treatment. J. Am. Soc. Hypertens. 11, 385–391 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Bovée, D. M. et al. Salt-sensitive hypertension in chronic kidney disease: distal tubular mechanisms. Am. J. Physiol. Renal Physiol. 319, F729–F745 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Cook, N. R., He, F. J., MacGregor, G. A. & Graudal, N. Sodium and health — concordance and controversy. BMJ 371, m2440 (2020).

    Article  Google Scholar 

  20. Mente, A. et al. Association of urinary sodium and potassium excretion with blood pressure. N. Engl. J. Med. 371, 601 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Welsh, C. E. et al. Urinary sodium excretion, blood pressure, and risk of future cardiovascular disease and mortality in subjects without prior cardiovascular disease. Hypertension 73, 1202 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Mente, A. et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 388, 465 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Pazoki, R. et al. GWAS for urinary sodium and potassium excretion highlights pathways shared with cardiovascular traits. Nat. Commun. 10, 3653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zanetti, D. et al. Urinary albumin, sodium, and potassium and cardiovascular outcomes in the UK biobank: observational and mendelian randomization analyses. Hypertension 75, 714 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Li, C. et al. Genome-wide gene–sodium interaction analyses on blood pressure: the genetic epidemiology network of salt-sensitivity study. Hypertension 68, 348 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Jeong, S. et al. Genetically, dietary sodium intake is causally associated with salt-sensitive hypertension risk in a community-based cohort study: a mendelian randomization approach. Curr. Hypertens. Rep. 22, 45 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Estes, E. H. & Kerivan, L. An archaeologic dig: a rice-fruit diet reverses ECG changes in hypertension. J. Electrocardiol. 47, 59 (2014).

    Article  Google Scholar 

  28. Denton, D. et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat. Med. 1, 1009 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. The Blood Pressure Lowering Treatment Trialists’ Collaboration Effect of antihypertensive drug treatment on long-term blood pressure reduction: an individual patient-level data meta-analysis of 352,744 participants from 51 large-scale randomised clinical trials. medRxiv https://doi.org/10.1101/2021.02.19.21252066 (2021).

  30. Filippini, T. et al. Blood pressure effects of sodium reduction. Circulation 143, 1542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neal, B. et al. Effect of salt substitution on cardiovascular events and death. N. Engl. J. Med. 22, 45 (2021).

    Google Scholar 

  32. Bernabe-Ortiz, A. et al. Effect of salt substitution on community-wide blood pressure and hypertension incidence. Nat. Med. 26, 374 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Forte, J. G., Miguel, J. M., Miguel, M. J., de Pádua, F. & Rose, G. Salt and blood pressure: a community trial. J. Hum. Hypertens. 3, 179 (1989).

    CAS  PubMed  Google Scholar 

  34. Strazzullo, P., D’Elia, L., Kandala, N.-B. & Cappuccio, F. P. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 339, b4567 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ma, Y. et al. 24-hour urinary sodium and potassium excretion and cardiovascular risk. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2109794 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mente, A. et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet 392, 496 (2018).

    Article  PubMed  Google Scholar 

  37. O’Donnell, M. et al. Joint association of urinary sodium and potassium excretion with cardiovascular events and mortality: prospective cohort study. BMJ 364, 1772 (2019).

    Google Scholar 

  38. Mills, K. T. et al. Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. JAMA 315, 2200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kieneker, L. M. et al. Association of low urinary sodium excretion with increased risk of stroke. Mayo Clin. Proc. 93, 1803 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. O’Donnell, M. et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl. J. Med. 371, 612 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Campbell, N. R. C. et al. A call for quality research on salt intake and health: from the World Hypertension League and supporting organizations. J. Clin. Hypertens. 16, 469 (2014).

    Article  Google Scholar 

  42. Aburto, N. J. et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346, f1326 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cook, N. R., Appel, L. J. & Whelton, P. K. Lower levels of sodium intake and reduced cardiovascular risk. Circulation 129, 981–989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elliott, P. et al. Estimated 24-hour urinary sodium excretion and incident cardiovascular disease and mortality among 398 628 individuals in UK Biobank. Hypertension 76, 683 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Taylor, R. S., Ashton, K. E., Moxham, T., Hooper, L. & Ebrahim, S. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane Review). Am. J. Hypertens. 24, 843 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Adler, A. J. et al. Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD009217.pub3 (2014).

  47. He, F. J. & MacGregor, G. A. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet 378, 380 (2011).

    Article  PubMed  Google Scholar 

  48. National Academies of Sciences, Engineering, and Medicine et al. Dietary Reference Intakes for Sodium and Potassium (National Academies Press (US), 2019).

  49. Newberry, S. J. et al. Sodium and Potassium Intake: Effects on Chronic Disease Outcomes and Risks (Agency for Healthcare Research and Quality (US), 2018).

  50. Khan, S. U. et al. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes: an umbrella review and evidence map. Ann. Intern. Med. 171, 190 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kivelä, J. M. et al. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes. Ann. Intern. Med. 172, 75 (2020).

    Article  Google Scholar 

  52. Cook, N. R. et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ 334, 885–888 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Appel, L. J. et al. Effects of reduced sodium intake on hypertension control in older individuals: results from the Trial of Nonpharmacologic Interventions in the Elderly (TONE). Arch. Intern. Med. 161, 685 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Foti, K. et al. Evidence-based policy making for public health interventions in cardiovascular diseases: formally assessing the feasibility of clinical trials. Circ. Cardiovasc. Qual. Outcomes 13, e006378 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chang, H.-Y. et al. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am. J. Clin. Nutr. 83, 1289 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957 (2016).

    Article  PubMed  Google Scholar 

  57. Rahimi, K. et al. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet 397, 1625 (2021).

    Article  Google Scholar 

  58. Mozaffarian, D. et al. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 371, 624 (2014).

    Article  PubMed  Google Scholar 

  59. Coxson Pamela, G. et al. Mortality benefits from us population-wide reduction in sodium consumption. Hypertension 61, 564 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Webb, M. et al. Cost effectiveness of a government supported policy strategy to decrease sodium intake: global analysis across 183 nations. BMJ 356, i6699 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yudkin, J. S., Lipska, K. J. & Montori, V. M. The idolatry of the surrogate. BMJ 343, d7995 (2011).

    Article  PubMed  Google Scholar 

  62. Center for Drug Evaluation and Research Surrogate endpoint resources for drug and biologic development. FDA, https://www.fda.gov/drugs/development-resources/surrogate-endpoint-resources-drug-and-biologic-development (2021).

  63. Poorolajal, J., Moradi, L., Mohammadi, Y., Cheraghi, Z. & Gohari-Ensaf, F. Risk factors for stomach cancer: a systematic review and meta-analysis. Epidemiol. Health 42, e2020004 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Soltani, S., Kolahdouz Mohammadi, R., Shab-Bidar, S., Vafa, M. & Salehi-Abargouei, A. Sodium status and the metabolic syndrome: A systematic review and meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 59, 196 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Toussirot, E., Béreau, M., Vauchy, C. & Saas, P. Could sodium chloride be an environmental trigger for immune-mediated diseases? An Overview of the Experimental and Clinical Evidence. Front. Physiol. 9, 440 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Evans, R. D. R., Antonelou, M., Henderson, S., Walsh, S. B. & Salama, A. D. Emerging evidence of an effect of salt on innate and adaptive immunity. Nephrol. Dial. Transpl. 34, 2007 (2019).

    Article  CAS  Google Scholar 

  67. Ticinesi, A., Nouvenne, A., Maalouf, N. M., Borghi, L. & Meschi, T. Salt and nephrolithiasis. Nephrol. Dial. Transpl. 31, 39–45 (2016).

    Article  CAS  Google Scholar 

  68. Cirillo, M. et al. Salt intake, urinary sodium, and hypercalciuria. Min. Electrolyte Metab. 23, 265–268 (1997).

    CAS  Google Scholar 

  69. Friedman, P. A. Codependence of renal calcium and sodium transport. Annu. Rev. Physiol. 60, 179–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1257–1272 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Yatabe, M. S. et al. Effects of a high-sodium diet on renal tubule Ca2+ transporter and claudin expression in Wistar-Kyoto rats. BMC Nephrol. 13, 160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Borghi, L. et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346, 77 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Clinton, S. K., Giovannucci, E. L. & Hursting, S. D. The World Cancer Research Fund/American Institute for Cancer Research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. J. Nutr. 150, 663–671 (2020).

    Article  PubMed  Google Scholar 

  74. Wang, X. Q., Terry, P. D. & Yan, H. Review of salt consumption and stomach cancer risk: epidemiological and biological evidence. World J. Gastroenterol. 15, 2204–2213 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Anderson, C. A. M. et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J. Am. Diet. Assoc. 110, 736 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ruusunen, M. & Puolanne, E. Reducing sodium intake from meat products. Meat Sci. 70, 531 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Kho, M. et al. Genome-wide association meta-analysis of individuals of European ancestry identifies suggestive loci for sodium intake, potassium intake, and their ratio measured from 24-hour or half-day urine samples. J. Nutr. 150, 2635–2645 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Denton, D. A. & Sabine, J. R. The selective appetite for Na+ shown by Na+-deficient sheep. J. Physiol. 157, 97 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bowell, R. J., Warren, A. & Redmond, I. Formation of cave salts and utilization by elephants in the Mount Elgon region, Kenya. Geol. Soc. Lon. Spec. Publ. 113, 63 (1996).

    Article  CAS  Google Scholar 

  80. Yu, S., Rogers, Q. R. & Morris, J. G. Absence of a salt (NaCl) preference or appetite in sodium-replete or depleted kittens. Appetite 29, 1 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Braun, D. R. et al. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc. Natl Acad. Sci. USA 107, 10002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Eaton, S. B. & Konner, M. Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 312, 283–289 (1985).

    Article  CAS  PubMed  Google Scholar 

  83. Mancilha-Carvalho, J. J., de Oliveira, R. & Esposito, R. J. Blood pressure and electrolyte excretion in the Yanomamo Indians, an isolated population. J. Hum. Hypertens. 3, 309 (1989).

    CAS  PubMed  Google Scholar 

  84. Venable, E. M. et al. Wood and meat as complementary sources of sodium for Kanyawara chimpanzees (Pan troglodytes). Am. J. Phys. Anthropol. 172, 41–47 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cruz, D. N. et al. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int. 59, 710 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Liamis, G., Milionis, H. J. & Elisaf, M. Endocrine disorders: causes of hyponatremia not to neglect. Ann. Med. 43, 179 (2011).

    Article  PubMed  Google Scholar 

  87. Wilkins, L. & Richter, C. P. A great craving for salt by a child with cortico-adrenal insufficiency. JAMA 114, 866 (1940).

    Google Scholar 

  88. Beauchamp, G. K., Bertino, M., Burke, D. & Engelman, K. Experimental sodium depletion and salt taste in normal human volunteers. Am. J. Clin. Nutr. 51, 881 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Hayes, J. E., Sullivan, B. S. & Duffy, V. B. Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking. Physiol. Behav. 100, 369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liedtke, W. B. et al. Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite. Proc. Natl Acad. Sci. USA 108, 12509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. DiNicolantonio, R., Teow, B. H. & Morgan, T. O. Sodium detection threshold and preference for sodium chloride in humans on high and low sodium diets. Clin. Exp. Pharmacol. Physiol. 11, 335 (1984).

    Article  CAS  PubMed  Google Scholar 

  92. Bertino, M., Beauchamp, G. K. & Engelman, K. Long-term reduction in dietary sodium alters the taste of salt. Am. J. Clin. Nutr. 36, 1134 (1982).

    Article  CAS  PubMed  Google Scholar 

  93. Beauchamp, G. K., Bertino, M. & Engelman, K. Modification of salt taste. Ann. Intern. Med. 98, 763 (1983).

    Article  CAS  PubMed  Google Scholar 

  94. Cohen, L. P., Hummel, S. L., Maurer, M. S., López-Pintado, S. & Wessler, J. D. Salt taste recognition in a heart failure cohort. J. Card. Fail. 23, 538 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Cohen, L. P., Wessler, J. D., Maurer, M. S. & Hummel, S. L. Salt taste sensitivity and heart failure outcomes following heart failure hospitalization. Am. J. Cardiol. 127, 58 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. McMahon, E. J., Campbell, K. L. & Bauer, J. D. Taste perception in kidney disease and relationship to dietary sodium intake. Appetite 83, 236 (2014).

    Article  PubMed  Google Scholar 

  97. Chávez-Negrete, A. J., Rojas-Uribe, M., Gallardo-Montoya, J. M. & Intaglietta, M. Hemorrheologic effect of diuretics in the control of blood pressure in the hypertensive patient. Rev. Med. Inst. Mex. Seguro Soc. 55, S343 (2017).

    PubMed  Google Scholar 

  98. Astbäck, J., Fernström, A., Hylander, B., Arvidson, K. & Johansson, O. Taste buds and neuronal markers in patients with chronic renal failure. Perit. Dial. Int. 19, S315 (1999).

    Article  PubMed  Google Scholar 

  99. Campbell, N. R. C. & Train, E. J. A systematic review of fatalities related to acute ingestion of salt. A need for warning labels? Nutrients 9, 648 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  100. Oka, Y., Butnaru, M., von Buchholtz, L., Ryba, N. J. P. & Zuker, C. S. High salt recruits aversive taste pathways. Nature 494, 472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heck, G. L., Mierson, S. & DeSimone, J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223, 403 (1984).

    Article  CAS  PubMed  Google Scholar 

  102. Breza, J. M. & Contreras, R. J. Anion size modulates salt taste in rats. J. Neurophysiol. 107, 1632 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Chandrashekar, J. et al. The cells and peripheral representation of sodium taste in mice. Nature 464, 297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nomura, K., Nakanishi, M., Ishidate, F., Iwata, K. & Taruno, A. All-electrical Ca2+-independent signal transduction mediates attractive sodium taste in taste buds. Neuron 106, 816–829.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Lyall, V. et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. 558, 147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruiz, C., Gutknecht, S., Delay, E. & Kinnamon, S. Detection of NaCl and KCl in TRPV1 knockout mice. Chem. Senses 31, 813 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Delwiche, J. F., Halpern, B. P. & Desimone, J. A. Anion size of sodium salts and simple taste reaction times. Physiol. Behav. 66, 27 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Aguilera, J. M. The food matrix: implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 59, 3612 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Chamoun, E. et al. The relationship between single nucleotide polymorphisms in taste receptor genes, taste function and dietary intake in preschool-aged children and adults in the Guelph Family Health Study. Nutrients 10, 990 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  110. Noh, H., Paik, H.-Y., Kim, J. & Chung, J. Salty taste acuity is affected by the joint action of αENaC A663T gene polymorphism and available zinc intake in young women. Nutrients 5, 4950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pilic, L. & Mavrommatis, Y. Genetic predisposition to salt-sensitive normotension and its effects on salt taste perception and intake. Br. J. Nutr. 120, 721 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Mansley, M. K., Ivy, J. R. & Bailey, M. A. ISN Forefronts Symposium 2015: the evolution of hypertension-old genes, new concepts. Kidney Int. Rep. 1, 197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Chen, X., Gabitto, M., Peng, Y., Ryba, N. J. P. & Zuker, C. S. A gustotopic map of taste qualities in the mammalian brain. Science 333, 1262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cocores, J. A. & Gold, M. S. The salted food addiction hypothesis may explain overeating and the obesity epidemic. Med. Hypotheses 73, 892–899 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Jackson, L., Eldahshan, W., Fagan, S. C. & Ergul, A. Within the brain: the renin angiotensin system. Int. J. Mol. Sci. 19, 876 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  116. Gomez-Sanchez, E. P., Ahmad, N., Romero, D. G. & Gomez-Sanchez, C. E. Is aldosterone synthesized within the rat brain? Am. J. Physiol. Endocrinol. Metab. 288, E342 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Sumners, C. et al. Brain angiotensin type-1 and type-2 receptors: cellular locations under normal and hypertensive conditions. Hypertens. Res. 43, 281 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Matsuda, T. et al. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 20, 230 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Resch, J. M. et al. Aldosterone-sensing neurons in the NTS exhibit state-dependent pacemaker activity and drive sodium appetite via synergy with angiotensin II signaling. Neuron 96, 190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jarvie, B. C. & Palmiter, R. D. HSD2 neurons in the hindbrain drive sodium appetite. Nat. Neurosci. 20, 167 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Hunter, R. W. & Bailey, M. A. Glucocorticoids and 11β-hydroxysteroid dehydrogenases: mechanisms for hypertension. Curr. Opin. Pharmacol. 21, 105 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Evans, L. C. et al. Conditional deletion of Hsd11b2 in the brain causes salt appetite and hypertension. Circulation 133, 1360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kawasaki, T., Delea, C. S., Bartter, F. C. & Smith, H. The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am. J. Med. 64, 193 (1978).

    Article  CAS  PubMed  Google Scholar 

  124. Weinberger, M. H., Miller, J. Z., Luft, F. C., Grim, C. E. & Fineberg, N. S. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8, II127–134 (1986).

    Article  CAS  PubMed  Google Scholar 

  125. Weinberger, M. H. & Fineberg, N. S. Sodium and volume sensitivity of blood pressure. Age and pressure change over time. Hypertension 18, 67 (1991).

    Article  CAS  PubMed  Google Scholar 

  126. Gu, D. et al. Reproducibility of blood pressure responses to dietary sodium and potassium interventions: the GenSalt study. Hypertension 62, 499 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Elijovich, F. et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68, e7 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Kurtz, T. W., DiCarlo, S. E., Pravenec, M. & Morris, R. C. An appraisal of methods recently recommended for testing salt sensitivity of blood pressure. J. Am. Heart Assoc. 6, e005653 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Guyton, A. C. Blood pressure control–special role of the kidneys and body fluids. Science 252, 1813 (1991).

    Article  CAS  PubMed  Google Scholar 

  130. Selkurt, E. E. Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation 4, 541–551 (1951).

    Article  CAS  PubMed  Google Scholar 

  131. Kaloyanides, G. J., DiBona, G. F. & Raskin, P. Pressure natriuresis in the isolated kidney. Am. J. Physiol. 220, 1660–1666 (1971).

    Article  CAS  PubMed  Google Scholar 

  132. Guyton, A. C., Coleman, T. G. & Granger, H. J. Circulation: overall regulation. Annu. Rev. Physiol. 34, 13–46 (1972).

    Article  CAS  PubMed  Google Scholar 

  133. Guyton, A. C. The surprising kidney-fluid mechanism for pressure control–its infinite gain! Hypertension 16, 725–730 (1990).

    Article  CAS  PubMed  Google Scholar 

  134. Roman, R. J. Abnormal renal hemodynamics and pressure-natriuresis relationship in Dahl salt-sensitive rats. Am. J. Physiol. 251, F57–F65 (1986).

    CAS  PubMed  Google Scholar 

  135. Hall, J. E., Mizelle, H. L., Woods, L. L. & Montani, J. P. Pressure natriuresis and control of arterial pressure during chronic norepinephrine infusion. J. Hypertens. 6, 723–731 (1988).

    Article  CAS  PubMed  Google Scholar 

  136. Sipos, A. et al. Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis. J. Am. Soc. Nephrol. 20, 1724–1732 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hall, J. E., Guyton, A. C., Smith, M. J. Jr & Coleman, T. G. Blood pressure and renal function during chronic changes in sodium intake: role of angiotensin. Am. J. Physiol. 239, F271–F280 (1980).

    CAS  PubMed  Google Scholar 

  138. Fliser, D., Nowack, R., Wolf, G. & Ritz, E. Differential effects of ACE inhibitors and vasodilators on renal function curve in patients with primary hypertension. Blood Press. 2, 296–300 (1993).

    Article  CAS  PubMed  Google Scholar 

  139. DeClue, J. W. et al. Subpressor angiotensin infusion, renal sodium handling, and salt-induced hypertension in the dog. Circ. Res. 43, 503 (1978).

    Article  CAS  PubMed  Google Scholar 

  140. Kimura, G. et al. Renal function curve in patients with secondary forms of hypertension. Hypertension 10, 11–15 (1987).

    Article  CAS  PubMed  Google Scholar 

  141. Osborn, J. W., Averina, V. A. & Fink, G. D. Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure. Exp. Physiol. 94, 389 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kurtz, T. W. et al. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int. 90, 965 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Beard, D. A. & Feigl, E. O. Understanding Guyton’s venous return curves. Am. J. Physiol. Heart Circ. Physiol. 301, H629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Beard, D. A. Tautology vs. physiology in the etiology of hypertension. Physiology 28, 270 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Kurtz, T. W., DiCarlo, S. E. & Morris, R. C. Logical issues with the pressure natriuresis theory of chronic hypertension. Am. J. Hypertens. 29, 1325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kurtz, T. W. et al. Testing computer models predicting human responses to a high-salt diet. Hypertension 72, 1407 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Schmidlin, O., Forman, A., Leone, A., Sebastian, A. & Morris, R. C. Salt sensitivity in Blacks. Hypertension 58, 380 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Singer, D. R. et al. Angiotensin II suppression is a major factor permitting excretion of an acute sodium load in humans. Am. J. Physiol. Ren. Physiol. 266, F89–93 (1994).

    Article  Google Scholar 

  149. Rodriguez-Iturbe, B., Romero, F. & Johnson, R. J. Pathophysiological mechanisms of salt-dependent hypertension. Am. J. Kidney Dis. 50, 655 (2007).

    Article  PubMed  Google Scholar 

  150. Ando, K. & Fujita, T. Pathophysiology of salt sensitivity hypertension. Ann. Med. 44, S119 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Carlström, M., Sällström, J., Skøtt, O., Larsson, E. & Persson, A. E. G. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats. Hypertension 49, 1342 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Basting, T. & Lazartigues, E. DOCA-salt hypertension: an update. Curr. Hypertens. Rep. 19, 32 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Campese, V. M. et al. Salt intake and plasma atrial natriuretic peptide and nitric oxide in hypertension. Hypertension 28, 335–340 (1996).

    Article  CAS  PubMed  Google Scholar 

  154. Morgan, D. A., DiBona, G. F. & Mark, A. L. Effects of interstrain renal transplantation on NaCl-induced hypertension in Dahl rats. Hypertension 15, 436 (1990).

    Article  CAS  PubMed  Google Scholar 

  155. Rossitto, G. et al. Tissue sodium excess is not hypertonic and reflects extracellular volume expansion. Nat. Commun. 11, 4222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Laffer, C. L., Scott, R. C., Titze, J. M., Luft, F. C. & Elijovich, F. Hemodynamics and salt-and-water balance link sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension 68 (2016).

  157. Iwamoto, T. et al. Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat. Med. 10, 1193 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Wu, J. et al. Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension. Cardiovasc. Res. 117, 308–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Lerman, L. O. et al. Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 73, e87 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Ralph, A. F. et al. Activation of the sympathetic nervous system promotes blood pressure salt-sensitivity in C57BL6/J mice. Hypertension 77, 158 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Nomura, K. et al. Na+ increases in body fluids sensed by central nax induce sympathetically mediated blood pressure elevations via H+-dependent activation of ASIC1a. Neuron 101, 60 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wu, C. et al. Induction of pathogenic T H 17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Norlander, A. E. et al. Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II-Induced Hypertension. Hypertension 68, 167–174 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Evans, R. D. R. et al. Inherited salt-losing tubulopathies are associated with immunodeficiency due to impaired IL-17 responses. Nat. Commun. https://doi.org/10.1038/s41467-020-18184-3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wilck, N. et al. Salt-responsive gut commensal modulates T H 17 axis and disease. Nature 551, 585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ferguson, J. F. et al. High dietary salt–induced DC activation underlies microbial dysbiosis-associated hypertension. JCI Insight https://doi.org/10.1172/jci.insight.126241 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Chakraborty, S. et al. Diurnal timing dependent alterations in gut microbial composition are synchronously linked to salt-sensitive hypertension and renal damage. Hypertension 76, 59 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Poch, E. et al. Molecular Basis of Salt Sensitivity in Human Hypertension. Hypertension 38, 1204 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. He, J. et al. Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese. Circ. Cardiovasc. Genet. 6, 598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hachiya, T. et al. Genome-wide analysis of polymorphism × sodium interaction effect on blood pressure identifies a novel 3′-BCL11B gene desert locus. Sci. Rep. 8, 14162 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. O’Donnell, M. et al. Salt and cardiovascular disease: insufficient evidence to recommend low sodium intake. Eur. Heart J. 41, 3363 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. British Heart Foundation. High Blood Pressure: How Can We Do Better? https://www.bhf.org.uk/for-professionals/healthcare-professionals/data-and-statistics/bp-how-can-we-do-better (2018).

  176. Hasan, M. M. et al. Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based cross-sectional study. BMJ Open 10, e037592 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wall, H. K., Hannan, J. A. & Wright, J. S. Patients with undiagnosed hypertension. JAMA 312, 1973 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Barnett, K. et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380, 37 (2012).

    Article  PubMed  Google Scholar 

  179. Finegold, J. A. et al. Distribution of lifespan gain from primary prevention intervention. Open Heart 3, e000343 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. The National Food Strategy. The Plan https://www.nationalfoodstrategy.org (2021).

  181. Monsivais, P., Rehm, C. D. & Drewnowski, A. The DASH diet and diet costs among ethnic and racial groups in the United States. JAMA Intern. Med. 173, 1922–1924 (2013).

    Article  PubMed  Google Scholar 

  182. Santos, J. A. et al. A systematic review of salt reduction initiatives around the world: a midterm evaluation of progress towards the 2025 global non-communicable diseases salt reduction target. Adv. Nutr. 12, 1768–1780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. WHO. Impact of Salt Reduction in Finland and the United Kingdom, https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/news/news/2014/12/reducing-salt-consumption/impact-of-salt-reduction-in-finland-and-the-united-kingdom (2014).

  184. He, F. J., Brinsden, H. C. & MacGregor, G. A. Salt reduction in the United Kingdom: a successful experiment in public health. J. Hum. Hypertens. 28, 345 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Queen Mary University of London. Finland World Action on Salt, Sugar & Health, http://www.worldactiononsalt.com/worldaction/europe/finland (2009).

  186. Reinivuo, H., Valsta, L. M., Laatikainen, T., Tuomilehto, J. & Pietinen, P. Sodium in the Finnish diet: II Trends in dietary sodium intake and comparison between intake and 24-h excretion of sodium. Eur. J. Clin. Nutr. 60, 1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Laatikainen, T. et al. Sodium in the Finnish diet: 20-year trends in urinary sodium excretion among the adult population. Eur. J. Clin. Nutr. 60, 965 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. He, F. J., Pombo-Rodrigues, S. & MacGregor, G. A. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4, e004549 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  189. MacGregor, G. A., He, F. J. & Pombo-Rodrigues, S. Food and the responsibility deal: how the salt reduction strategy was derailed. BMJ 350, h1936 (2015).

    Article  PubMed  Google Scholar 

  190. Hyseni, L. et al. Systematic review of dietary salt reduction policies: evidence for an effectiveness hierarchy? PLoS One 12, e0177535 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. McLaren, L. et al. Population-level interventions in government jurisdictions for dietary sodium reduction. Cochrane Database Syst. Rev. 46, 1551–1563 (2016).

    Google Scholar 

  192. Shangguan, S. et al. A meta-analysis of food labeling effects on consumer diet behaviors and industry practices. Am. J. Prev. Med. 56, 300 (2019).

    Article  PubMed  Google Scholar 

  193. Eren, O. C. et al. Multilayered interplay between fructose and salt in development of hypertension. Hypertension 73, 265 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Chen, J. et al. Salt-restriction-spoon improved the salt intake among residents in China. PLoS One 8, e78963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Burgermaster, M., Rudel, R. & Seres, D. Dietary sodium restriction for heart failure: a systematic review of intervention outcomes and behavioral determinants. Am. J. Med. 133, 1391–1402 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Meuleman, Y. et al. Sodium restriction in patients With CKD: a randomized controlled trial of self-management support. Am. J. Kidney Dis. 69, 576 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Humalda, J. K. et al. A self-management approach for dietary sodium restriction in patients with CKD: a randomized controlled trial. Am. J. Kidney Dis. 75, 847 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Bovée, D. M. et al. A randomized trial of distal diuretics versus dietary sodium restriction for hypertension in chronic kidney disease. J. Am. Soc. Nephrol. 31, 650 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Mattes, R. D., Christensen, C. M. & Engelman, K. Effects of hydrochlorothiazide and amiloride on salt taste and excretion (intake). Am. J. Hypertens. 3, 436 (1990).

    Article  CAS  PubMed  Google Scholar 

  200. Huang, L. et al. Interim effects of salt substitution on urinary electrolytes and blood pressure in the China Salt Substitute and Stroke Study (SSaSS). Am. Heart J. 221, 136 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. KDIGO 2021 Clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 99, S1 (2021).

    Article  Google Scholar 

  202. Williams, B. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).

    Article  PubMed  Google Scholar 

  203. McDonough, A. A., Veiras, L. C., Guevara, C. A. & Ralph, D. L. Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am. J. Physiol. Endocrinol. Metab. 312, E348 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Elfassy, T. et al. Results of the CARDIA study suggest that higher dietary potassium may be kidney protective. Kidney Int. 98, 187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sacks, F. M. et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) Diet. N. Engl. J. Med. 344, 3 (2001).

    Article  CAS  PubMed  Google Scholar 

  206. Whelton, P. K. et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 277, 1624 (1997).

    Article  CAS  PubMed  Google Scholar 

  207. Filippini, T. et al. Potassium intake and blood pressure: a dose-response meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 9, e015719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Murillo-de-Ozores, A. R., Gamba, G. & Castañeda-Bueno, M. Molecular mechanisms for the regulation of blood pressure by potassium. Curr. Top. Membr. 83, 285 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Palmer, B. F., Colbert, G. & Clegg, D. J. Potassium homeostasis, chronic kidney disease, and the plant-enriched diets. Kidney360 1, 65 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Goraya, N., Simoni, J., Jo, C.-H. & Wesson, D. E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 8, 371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ramos, C. I. et al. Does dietary potassium intake associate with hyperkalemia in patients with chronic kidney disease? Nephrol. Dial. Transpl. 36, 2049–2057 (2020).

    Article  CAS  Google Scholar 

  212. Bernier-Jean, A. et al. Dietary potassium intake and all-cause mortality in adults undergoing hemodialysis: The DIET-HD Cohort Study (Conference Abstract). Clin. J. Am. Soc. Nephrol. https://doi.org/10.2215/CJN.08360621 (2021).

    Article  PubMed  Google Scholar 

  213. Heitmann, B. L. & Lissner, L. Dietary underreporting by obese individuals–is it specific or non-specific? BMJ 311, 986 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Garden, L., Clark, H., Whybrow, S. & Stubbs, R. J. Is misreporting of dietary intake by weighed food records or 24-hour recalls food specific? Eur. J. Clin. Nutr. 72, 1026 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. McLean, R. M. et al. Twenty-four-hour diet recall and diet records compared with 24-hour urinary excretion to predict an individual’s sodium consumption: a systematic review. J. Clin. Hypertens. 20, 1360 (2018).

    Article  Google Scholar 

  216. Birukov, A. et al. Ultra-long-term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion. Am. J. Clin. Nutr. 104, 49 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Olde Engberink, R. H. G. et al. Use of a single baseline versus multiyear 24-hour urine collection for estimation of long-term sodium intake and associated cardiovascular and renal risk. Circulation 136, 917 (2017).

    Article  CAS  PubMed  Google Scholar 

  218. Lerchl, K. et al. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension 66, 850 (2015).

    Article  CAS  PubMed  Google Scholar 

  219. Campbell, N. R. C. et al. The International Consortium for Quality Research on Dietary Sodium/Salt (TRUE) position statement on the use of 24-hour, spot, and short duration (<24 hours) timed urine collections to assess dietary sodium intake. J. Clin. Hypertens. 21, 700 (2019).

    Article  Google Scholar 

  220. Campino, C. et al. Usefulness and pitfalls in sodium intake estimation: comparison of dietary assessment and urinary excretion in Chilean children and adults. Am. J. Hypertens. 29, 1212 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. He, F. J. et al. Formulas to estimate dietary sodium intake from spot urine alter sodium-mortality relationship. Hypertension 74, 572 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Mente, A. et al. Validation and comparison of three formulae to estimate sodium and potassium excretion from a single morning fasting urine compared to 24-h measures in 11 countries. J. Hypertens. 32, 1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  223. He, F. J. et al. Errors in estimating usual sodium intake by the Kawasaki formula alter its relationship with mortality: implications for public health†. Int. J. Epidemiol. 47, 1784 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Naser, A. M., He, F. J., Rahman, M. & Campbell, N. R. C. Spot urine formulas to estimate 24-hour urinary sodium excretion alter the dietary sodium and blood pressure relationship. Hypertension 77, 2127 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Mente, A., O’Donnell, M. J. & Yusuf, S. Measuring sodium intake in populations: simple is best? Am. J. Hypertens. 28, 1303 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. Elliott, P., Peakman, T. C. & Biobank, U. K. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234 (2008).

    Article  PubMed  Google Scholar 

  227. Schroeder, H. A. Studies on congestive heart failure: I. The importance of restriction of salt as compared to water. Am. Heart J. 22, 141 (1941).

    Article  CAS  Google Scholar 

  228. Retraction. Heart https://heart.bmj.com/content/99/11/820.2 (2014).

  229. Expression of Concern. Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend? Clin. Sci. 134, 1841 (2020).

  230. Aliti, G. B. et al. Aggressive fluid and sodium restriction in acute decompensated heart failure: a randomized clinical trial. JAMA Intern. Med. 173, 1058 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Hummel, S. L. et al. Home-delivered meals postdischarge from heart failure hospitalization. Circ. Heart Fail 11, e004886 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Licata, G. et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am. Heart J. 145, 459 (2003).

    Article  CAS  PubMed  Google Scholar 

  233. Griffin, M. et al. Real world use of hypertonic saline in refractory acute decompensated heart failure: A U.S. Center’s Experience. JACC Heart Fail 8, 199 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Ezekowitz, J. A. The Long Term Effects of Dietary Sodium Restriction on Clinical Outcomes in Patients With Heart Failure, https://clinicaltrials.gov/ct2/show/NCT02012179 (2021).

  235. Koomans, H. A., Roos, J. C., Dorhout Mees, E. J. & Delawi, I. M. Sodium balance in renal failure. A comparison of patients with normal subjects under extremes of sodium intake. Hypertension 7, 714 (1985).

    Article  CAS  PubMed  Google Scholar 

  236. Konishi, Y. et al. Sodium sensitivity of blood pressure appearing before hypertension and related to histological damage in immunoglobulin a nephropathy. Hypertension 38, 81 (2001).

    Article  CAS  PubMed  Google Scholar 

  237. He, J. et al. Urinary sodium and potassium excretion and CKD progression. J. Am. Soc. Nephrol. 27, 1202 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Kang, M. et al. Measured sodium excretion is associated with CKD progression: results from the KNOW-CKD study. Nephrol. Dial. Transpl. 36, 512–519 (2020).

    Article  CAS  Google Scholar 

  239. Kramers, B. J. et al. Salt, but not protein intake, is associated with accelerated disease progression in autosomal dominant polycystic kidney disease. Kidney Int. 98, 989–998 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Saran, R. et al. A randomized crossover trial of dietary sodium restriction in stage 34 CKD. Clin. J. Am. Soc. Nephrol. 12, 399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. McMahon, E. J., Campbell, K. L., Bauer, J. D. & Mudge, D. W. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD010070.pub2 (2015).

    Article  PubMed  Google Scholar 

  242. Palmer, S. C. et al. Dietary interventions for adults with chronic kidney disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD011998.pub2 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Lambers Heerspink, H. J. et al. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney Int. 82, 330 (2012).

    Article  CAS  PubMed  Google Scholar 

  244. D’Elia, L. et al. Meta-analysis of the effect of dietary sodium restriction with or without concomitant renin-angiotensin-aldosterone system-inhibiting treatment on albuminuria. Clin. J. Am. Soc. Nephrol. 10, 1542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Burnier, M. Sodium intake and progression of chronic kidney disease-has the time finally come to do the impossible: a prospective randomized controlled trial? Nephrol. Dial. Transpl. 36, 381–384 (2021).

    Article  CAS  Google Scholar 

  246. Blumberg, A., Nelp, W. B., Hegstrom, R. M. & Scribner, B. H. Extracellular volume in patients with chronic renal disease treated for hypertension by sodium restriction. Lancet 2, 69 (1967).

    Article  CAS  PubMed  Google Scholar 

  247. Dunlop, J. L., Vandal, A. C. & Marshall, M. R. Low dialysate sodium levels for chronic haemodialysis. Cochrane Database Syst. Rev. 1, CD011204 (2019).

    PubMed  Google Scholar 

  248. Cole, N. I., Swift, P. A., He, F. J., MacGregor, G. A. & Suckling, R. J. The effect of dietary salt on blood pressure in individuals receiving chronic dialysis: a systematic review and meta-analysis of randomised controlled trials. J. Hum. Hypertens. 33, 319 (2019).

    Article  CAS  PubMed  Google Scholar 

  249. Marshall, M. R. et al. Effect of low-sodium versus conventional sodium dialysate on left ventricular mass in home and self-care satellite facility hemodialysis patients: a randomized clinical trial. J. Am. Soc. Nephrol. 31, 1078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Park, J.-S., Kim, S., Jo, C. H., Oh, I. H. & Kim, G.-H. Effects of dietary salt restriction on renal progression and interstitial fibrosis in adriamycin nephrosis. Kidney Blood Press. Res. 39, 86 (2014).

    Article  CAS  PubMed  Google Scholar 

  251. Kempner, W. Effect of salt restriction on experimental nephrosis. JAMA 191, 51 (1965).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have received research funding from The British Heart Foundation (PG/16/98/32568), The Chief Scientist’s Office (SCAF/19/02), Diabetes UK (17/0005685), Kidney Research UK (RP02/2019; IN001/2017), the Medical Research Council (MR/S01053X) and The Wellcome Trust (209562/Z/17/Z).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the data, discussing the content, writing the text and reviewing or editing the manuscript before submission.

Corresponding author

Correspondence to Matthew A. Bailey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks Norman Campbell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, R.W., Dhaun, N. & Bailey, M.A. The impact of excessive salt intake on human health. Nat Rev Nephrol 18, 321–335 (2022). https://doi.org/10.1038/s41581-021-00533-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00533-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing