Abstract
Intake of salt is a biological imperative, inextricably woven into physiological systems, human societies and global culture. However, excessive salt intake is associated with high blood pressure. As this effect likely drives cardiovascular morbidity and mortality, excessive salt intake is estimated to cause ~5 million deaths per annum worldwide. Animal research has identified various mechanisms by which high salt intake drives disease in the kidney, brain, vasculature and immune system. The potential for therapeutic interventions in many of these pathways has yet to be tested. Salt-reduction interventions lower blood pressure, but for most individuals, ‘hidden’ salt in processed foods disconnects salt intake from discretionary control. This problem is compounded by growing inequalities in food systems, which form another hurdle to sustaining individual dietary control of salt intake. The most effective salt-reduction interventions have been implemented at the population level and comprise multi-component approaches, involving government, education and the food industry.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Huang, L. et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ 368, m315 (2020).
Powles, J. et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3, e0003733 (2013).
Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).
McCarron, D. A., Kazaks, A. G., Geerling, J. C., Stern, J. S. & Graudal, N. A. Normal range of human dietary sodium intake: a perspective based on 24-hour urinary sodium excretion worldwide. Am. J. Hypertens. 26, 1218 (2013).
WHO. Effect of Reduced Sodium Intake on Blood Pressure, Renal Function, Blood Lipids and Other Potential Adverse Effects https://apps.who.int/iris/handle/10665/79325 (2012).
No Authors Listed. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297, 319 (1988).
Taubes, G. The (political) science of salt. Science 281, 898 (1998).
Campbell, N. R. C., Lackland, D. T., Niebylski, M. L. & Nilsson, P. M. Is reducing dietary sodium controversial? Is it the conduct of studies with flawed research methods that is controversial? A perspective from the World Hypertension League Executive Committee. J. Clin. Hypertens. 17, 85 (2015).
He, F. J., Tan, M., Ma, Y. & MacGregor, G. A. Salt reduction to prevent hypertension and cardiovascular disease. J. Am. Coll. Cardiol. 75, 632 (2020).
McCarron, D. A., Geerling, J. C. & Alderman, M. H. Urinary sodium excretion measures and health outcomes. Lancet 393, 1294 (2019).
Morimoto, A. et al. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 350, 1734 (1997).
Weinberger, M. H., Fineberg, N. S., Fineberg, S. E. & Weinberger, M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37, 429 (2001).
Titze, J. & Luft, F. C. Speculations on salt and the genesis of arterial hypertension. Kidney Int. 91, 1324–1335 (2017).
Rucker, A. J., Rudemiller, N. P. & Crowley, S. D. Salt, hypertension, and immunity. Annu. Rev. Physiol. 80, 283–307 (2018).
Mutchler, S. M., Kirabo, A. & Kleyman, T. R. Epithelial sodium channel and salt-sensitive hypertension. Hypertension 77, 759–767 (2021).
Kawarazaki, W. & Fujita, T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat. Rev. Nephrol. 17, 350–363 (2021).
Garfinkle, M. A. Salt and essential hypertension: pathophysiology and implications for treatment. J. Am. Soc. Hypertens. 11, 385–391 (2017).
Bovée, D. M. et al. Salt-sensitive hypertension in chronic kidney disease: distal tubular mechanisms. Am. J. Physiol. Renal Physiol. 319, F729–F745 (2020).
Cook, N. R., He, F. J., MacGregor, G. A. & Graudal, N. Sodium and health — concordance and controversy. BMJ 371, m2440 (2020).
Mente, A. et al. Association of urinary sodium and potassium excretion with blood pressure. N. Engl. J. Med. 371, 601 (2014).
Welsh, C. E. et al. Urinary sodium excretion, blood pressure, and risk of future cardiovascular disease and mortality in subjects without prior cardiovascular disease. Hypertension 73, 1202 (2019).
Mente, A. et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 388, 465 (2016).
Pazoki, R. et al. GWAS for urinary sodium and potassium excretion highlights pathways shared with cardiovascular traits. Nat. Commun. 10, 3653 (2019).
Zanetti, D. et al. Urinary albumin, sodium, and potassium and cardiovascular outcomes in the UK biobank: observational and mendelian randomization analyses. Hypertension 75, 714 (2020).
Li, C. et al. Genome-wide gene–sodium interaction analyses on blood pressure: the genetic epidemiology network of salt-sensitivity study. Hypertension 68, 348 (2016).
Jeong, S. et al. Genetically, dietary sodium intake is causally associated with salt-sensitive hypertension risk in a community-based cohort study: a mendelian randomization approach. Curr. Hypertens. Rep. 22, 45 (2020).
Estes, E. H. & Kerivan, L. An archaeologic dig: a rice-fruit diet reverses ECG changes in hypertension. J. Electrocardiol. 47, 59 (2014).
Denton, D. et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat. Med. 1, 1009 (1995).
The Blood Pressure Lowering Treatment Trialists’ Collaboration Effect of antihypertensive drug treatment on long-term blood pressure reduction: an individual patient-level data meta-analysis of 352,744 participants from 51 large-scale randomised clinical trials. medRxiv https://doi.org/10.1101/2021.02.19.21252066 (2021).
Filippini, T. et al. Blood pressure effects of sodium reduction. Circulation 143, 1542 (2021).
Neal, B. et al. Effect of salt substitution on cardiovascular events and death. N. Engl. J. Med. 22, 45 (2021).
Bernabe-Ortiz, A. et al. Effect of salt substitution on community-wide blood pressure and hypertension incidence. Nat. Med. 26, 374 (2020).
Forte, J. G., Miguel, J. M., Miguel, M. J., de Pádua, F. & Rose, G. Salt and blood pressure: a community trial. J. Hum. Hypertens. 3, 179 (1989).
Strazzullo, P., D’Elia, L., Kandala, N.-B. & Cappuccio, F. P. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 339, b4567 (2009).
Ma, Y. et al. 24-hour urinary sodium and potassium excretion and cardiovascular risk. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2109794 (2021).
Mente, A. et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet 392, 496 (2018).
O’Donnell, M. et al. Joint association of urinary sodium and potassium excretion with cardiovascular events and mortality: prospective cohort study. BMJ 364, 1772 (2019).
Mills, K. T. et al. Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. JAMA 315, 2200 (2016).
Kieneker, L. M. et al. Association of low urinary sodium excretion with increased risk of stroke. Mayo Clin. Proc. 93, 1803 (2018).
O’Donnell, M. et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl. J. Med. 371, 612 (2014).
Campbell, N. R. C. et al. A call for quality research on salt intake and health: from the World Hypertension League and supporting organizations. J. Clin. Hypertens. 16, 469 (2014).
Aburto, N. J. et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346, f1326 (2013).
Cook, N. R., Appel, L. J. & Whelton, P. K. Lower levels of sodium intake and reduced cardiovascular risk. Circulation 129, 981–989 (2014).
Elliott, P. et al. Estimated 24-hour urinary sodium excretion and incident cardiovascular disease and mortality among 398 628 individuals in UK Biobank. Hypertension 76, 683 (2020).
Taylor, R. S., Ashton, K. E., Moxham, T., Hooper, L. & Ebrahim, S. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane Review). Am. J. Hypertens. 24, 843 (2011).
Adler, A. J. et al. Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD009217.pub3 (2014).
He, F. J. & MacGregor, G. A. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet 378, 380 (2011).
National Academies of Sciences, Engineering, and Medicine et al. Dietary Reference Intakes for Sodium and Potassium (National Academies Press (US), 2019).
Newberry, S. J. et al. Sodium and Potassium Intake: Effects on Chronic Disease Outcomes and Risks (Agency for Healthcare Research and Quality (US), 2018).
Khan, S. U. et al. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes: an umbrella review and evidence map. Ann. Intern. Med. 171, 190 (2019).
Kivelä, J. M. et al. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes. Ann. Intern. Med. 172, 75 (2020).
Cook, N. R. et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ 334, 885–888 (2007).
Appel, L. J. et al. Effects of reduced sodium intake on hypertension control in older individuals: results from the Trial of Nonpharmacologic Interventions in the Elderly (TONE). Arch. Intern. Med. 161, 685 (2001).
Foti, K. et al. Evidence-based policy making for public health interventions in cardiovascular diseases: formally assessing the feasibility of clinical trials. Circ. Cardiovasc. Qual. Outcomes 13, e006378 (2020).
Chang, H.-Y. et al. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am. J. Clin. Nutr. 83, 1289 (2006).
Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957 (2016).
Rahimi, K. et al. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet 397, 1625 (2021).
Mozaffarian, D. et al. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 371, 624 (2014).
Coxson Pamela, G. et al. Mortality benefits from us population-wide reduction in sodium consumption. Hypertension 61, 564 (2013).
Webb, M. et al. Cost effectiveness of a government supported policy strategy to decrease sodium intake: global analysis across 183 nations. BMJ 356, i6699 (2017).
Yudkin, J. S., Lipska, K. J. & Montori, V. M. The idolatry of the surrogate. BMJ 343, d7995 (2011).
Center for Drug Evaluation and Research Surrogate endpoint resources for drug and biologic development. FDA, https://www.fda.gov/drugs/development-resources/surrogate-endpoint-resources-drug-and-biologic-development (2021).
Poorolajal, J., Moradi, L., Mohammadi, Y., Cheraghi, Z. & Gohari-Ensaf, F. Risk factors for stomach cancer: a systematic review and meta-analysis. Epidemiol. Health 42, e2020004 (2020).
Soltani, S., Kolahdouz Mohammadi, R., Shab-Bidar, S., Vafa, M. & Salehi-Abargouei, A. Sodium status and the metabolic syndrome: A systematic review and meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 59, 196 (2019).
Toussirot, E., Béreau, M., Vauchy, C. & Saas, P. Could sodium chloride be an environmental trigger for immune-mediated diseases? An Overview of the Experimental and Clinical Evidence. Front. Physiol. 9, 440 (2018).
Evans, R. D. R., Antonelou, M., Henderson, S., Walsh, S. B. & Salama, A. D. Emerging evidence of an effect of salt on innate and adaptive immunity. Nephrol. Dial. Transpl. 34, 2007 (2019).
Ticinesi, A., Nouvenne, A., Maalouf, N. M., Borghi, L. & Meschi, T. Salt and nephrolithiasis. Nephrol. Dial. Transpl. 31, 39–45 (2016).
Cirillo, M. et al. Salt intake, urinary sodium, and hypercalciuria. Min. Electrolyte Metab. 23, 265–268 (1997).
Friedman, P. A. Codependence of renal calcium and sodium transport. Annu. Rev. Physiol. 60, 179–197 (1998).
Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1257–1272 (2015).
Yatabe, M. S. et al. Effects of a high-sodium diet on renal tubule Ca2+ transporter and claudin expression in Wistar-Kyoto rats. BMC Nephrol. 13, 160 (2012).
Borghi, L. et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346, 77 (2002).
Clinton, S. K., Giovannucci, E. L. & Hursting, S. D. The World Cancer Research Fund/American Institute for Cancer Research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. J. Nutr. 150, 663–671 (2020).
Wang, X. Q., Terry, P. D. & Yan, H. Review of salt consumption and stomach cancer risk: epidemiological and biological evidence. World J. Gastroenterol. 15, 2204–2213 (2009).
Anderson, C. A. M. et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J. Am. Diet. Assoc. 110, 736 (2010).
Ruusunen, M. & Puolanne, E. Reducing sodium intake from meat products. Meat Sci. 70, 531 (2005).
Kho, M. et al. Genome-wide association meta-analysis of individuals of European ancestry identifies suggestive loci for sodium intake, potassium intake, and their ratio measured from 24-hour or half-day urine samples. J. Nutr. 150, 2635–2645 (2020).
Denton, D. A. & Sabine, J. R. The selective appetite for Na+ shown by Na+-deficient sheep. J. Physiol. 157, 97 (1961).
Bowell, R. J., Warren, A. & Redmond, I. Formation of cave salts and utilization by elephants in the Mount Elgon region, Kenya. Geol. Soc. Lon. Spec. Publ. 113, 63 (1996).
Yu, S., Rogers, Q. R. & Morris, J. G. Absence of a salt (NaCl) preference or appetite in sodium-replete or depleted kittens. Appetite 29, 1 (1997).
Braun, D. R. et al. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc. Natl Acad. Sci. USA 107, 10002 (2010).
Eaton, S. B. & Konner, M. Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 312, 283–289 (1985).
Mancilha-Carvalho, J. J., de Oliveira, R. & Esposito, R. J. Blood pressure and electrolyte excretion in the Yanomamo Indians, an isolated population. J. Hum. Hypertens. 3, 309 (1989).
Venable, E. M. et al. Wood and meat as complementary sources of sodium for Kanyawara chimpanzees (Pan troglodytes). Am. J. Phys. Anthropol. 172, 41–47 (2020).
Cruz, D. N. et al. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int. 59, 710 (2001).
Liamis, G., Milionis, H. J. & Elisaf, M. Endocrine disorders: causes of hyponatremia not to neglect. Ann. Med. 43, 179 (2011).
Wilkins, L. & Richter, C. P. A great craving for salt by a child with cortico-adrenal insufficiency. JAMA 114, 866 (1940).
Beauchamp, G. K., Bertino, M., Burke, D. & Engelman, K. Experimental sodium depletion and salt taste in normal human volunteers. Am. J. Clin. Nutr. 51, 881 (1990).
Hayes, J. E., Sullivan, B. S. & Duffy, V. B. Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking. Physiol. Behav. 100, 369 (2010).
Liedtke, W. B. et al. Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite. Proc. Natl Acad. Sci. USA 108, 12509 (2011).
DiNicolantonio, R., Teow, B. H. & Morgan, T. O. Sodium detection threshold and preference for sodium chloride in humans on high and low sodium diets. Clin. Exp. Pharmacol. Physiol. 11, 335 (1984).
Bertino, M., Beauchamp, G. K. & Engelman, K. Long-term reduction in dietary sodium alters the taste of salt. Am. J. Clin. Nutr. 36, 1134 (1982).
Beauchamp, G. K., Bertino, M. & Engelman, K. Modification of salt taste. Ann. Intern. Med. 98, 763 (1983).
Cohen, L. P., Hummel, S. L., Maurer, M. S., López-Pintado, S. & Wessler, J. D. Salt taste recognition in a heart failure cohort. J. Card. Fail. 23, 538 (2017).
Cohen, L. P., Wessler, J. D., Maurer, M. S. & Hummel, S. L. Salt taste sensitivity and heart failure outcomes following heart failure hospitalization. Am. J. Cardiol. 127, 58 (2020).
McMahon, E. J., Campbell, K. L. & Bauer, J. D. Taste perception in kidney disease and relationship to dietary sodium intake. Appetite 83, 236 (2014).
Chávez-Negrete, A. J., Rojas-Uribe, M., Gallardo-Montoya, J. M. & Intaglietta, M. Hemorrheologic effect of diuretics in the control of blood pressure in the hypertensive patient. Rev. Med. Inst. Mex. Seguro Soc. 55, S343 (2017).
Astbäck, J., Fernström, A., Hylander, B., Arvidson, K. & Johansson, O. Taste buds and neuronal markers in patients with chronic renal failure. Perit. Dial. Int. 19, S315 (1999).
Campbell, N. R. C. & Train, E. J. A systematic review of fatalities related to acute ingestion of salt. A need for warning labels? Nutrients 9, 648 (2017).
Oka, Y., Butnaru, M., von Buchholtz, L., Ryba, N. J. P. & Zuker, C. S. High salt recruits aversive taste pathways. Nature 494, 472 (2013).
Heck, G. L., Mierson, S. & DeSimone, J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223, 403 (1984).
Breza, J. M. & Contreras, R. J. Anion size modulates salt taste in rats. J. Neurophysiol. 107, 1632 (2012).
Chandrashekar, J. et al. The cells and peripheral representation of sodium taste in mice. Nature 464, 297 (2010).
Nomura, K., Nakanishi, M., Ishidate, F., Iwata, K. & Taruno, A. All-electrical Ca2+-independent signal transduction mediates attractive sodium taste in taste buds. Neuron 106, 816–829.e6 (2020).
Lyall, V. et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. 558, 147 (2004).
Ruiz, C., Gutknecht, S., Delay, E. & Kinnamon, S. Detection of NaCl and KCl in TRPV1 knockout mice. Chem. Senses 31, 813 (2006).
Delwiche, J. F., Halpern, B. P. & Desimone, J. A. Anion size of sodium salts and simple taste reaction times. Physiol. Behav. 66, 27 (1999).
Aguilera, J. M. The food matrix: implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 59, 3612 (2019).
Chamoun, E. et al. The relationship between single nucleotide polymorphisms in taste receptor genes, taste function and dietary intake in preschool-aged children and adults in the Guelph Family Health Study. Nutrients 10, 990 (2018).
Noh, H., Paik, H.-Y., Kim, J. & Chung, J. Salty taste acuity is affected by the joint action of αENaC A663T gene polymorphism and available zinc intake in young women. Nutrients 5, 4950 (2013).
Pilic, L. & Mavrommatis, Y. Genetic predisposition to salt-sensitive normotension and its effects on salt taste perception and intake. Br. J. Nutr. 120, 721 (2018).
Mansley, M. K., Ivy, J. R. & Bailey, M. A. ISN Forefronts Symposium 2015: the evolution of hypertension-old genes, new concepts. Kidney Int. Rep. 1, 197 (2016).
Chen, X., Gabitto, M., Peng, Y., Ryba, N. J. P. & Zuker, C. S. A gustotopic map of taste qualities in the mammalian brain. Science 333, 1262 (2011).
Cocores, J. A. & Gold, M. S. The salted food addiction hypothesis may explain overeating and the obesity epidemic. Med. Hypotheses 73, 892–899 (2009).
Jackson, L., Eldahshan, W., Fagan, S. C. & Ergul, A. Within the brain: the renin angiotensin system. Int. J. Mol. Sci. 19, 876 (2018).
Gomez-Sanchez, E. P., Ahmad, N., Romero, D. G. & Gomez-Sanchez, C. E. Is aldosterone synthesized within the rat brain? Am. J. Physiol. Endocrinol. Metab. 288, E342 (2005).
Sumners, C. et al. Brain angiotensin type-1 and type-2 receptors: cellular locations under normal and hypertensive conditions. Hypertens. Res. 43, 281 (2020).
Matsuda, T. et al. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 20, 230 (2017).
Resch, J. M. et al. Aldosterone-sensing neurons in the NTS exhibit state-dependent pacemaker activity and drive sodium appetite via synergy with angiotensin II signaling. Neuron 96, 190 (2017).
Jarvie, B. C. & Palmiter, R. D. HSD2 neurons in the hindbrain drive sodium appetite. Nat. Neurosci. 20, 167 (2017).
Hunter, R. W. & Bailey, M. A. Glucocorticoids and 11β-hydroxysteroid dehydrogenases: mechanisms for hypertension. Curr. Opin. Pharmacol. 21, 105 (2015).
Evans, L. C. et al. Conditional deletion of Hsd11b2 in the brain causes salt appetite and hypertension. Circulation 133, 1360 (2016).
Kawasaki, T., Delea, C. S., Bartter, F. C. & Smith, H. The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am. J. Med. 64, 193 (1978).
Weinberger, M. H., Miller, J. Z., Luft, F. C., Grim, C. E. & Fineberg, N. S. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8, II127–134 (1986).
Weinberger, M. H. & Fineberg, N. S. Sodium and volume sensitivity of blood pressure. Age and pressure change over time. Hypertension 18, 67 (1991).
Gu, D. et al. Reproducibility of blood pressure responses to dietary sodium and potassium interventions: the GenSalt study. Hypertension 62, 499 (2013).
Elijovich, F. et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68, e7 (2016).
Kurtz, T. W., DiCarlo, S. E., Pravenec, M. & Morris, R. C. An appraisal of methods recently recommended for testing salt sensitivity of blood pressure. J. Am. Heart Assoc. 6, e005653 (2017).
Guyton, A. C. Blood pressure control–special role of the kidneys and body fluids. Science 252, 1813 (1991).
Selkurt, E. E. Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation 4, 541–551 (1951).
Kaloyanides, G. J., DiBona, G. F. & Raskin, P. Pressure natriuresis in the isolated kidney. Am. J. Physiol. 220, 1660–1666 (1971).
Guyton, A. C., Coleman, T. G. & Granger, H. J. Circulation: overall regulation. Annu. Rev. Physiol. 34, 13–46 (1972).
Guyton, A. C. The surprising kidney-fluid mechanism for pressure control–its infinite gain! Hypertension 16, 725–730 (1990).
Roman, R. J. Abnormal renal hemodynamics and pressure-natriuresis relationship in Dahl salt-sensitive rats. Am. J. Physiol. 251, F57–F65 (1986).
Hall, J. E., Mizelle, H. L., Woods, L. L. & Montani, J. P. Pressure natriuresis and control of arterial pressure during chronic norepinephrine infusion. J. Hypertens. 6, 723–731 (1988).
Sipos, A. et al. Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis. J. Am. Soc. Nephrol. 20, 1724–1732 (2009).
Hall, J. E., Guyton, A. C., Smith, M. J. Jr & Coleman, T. G. Blood pressure and renal function during chronic changes in sodium intake: role of angiotensin. Am. J. Physiol. 239, F271–F280 (1980).
Fliser, D., Nowack, R., Wolf, G. & Ritz, E. Differential effects of ACE inhibitors and vasodilators on renal function curve in patients with primary hypertension. Blood Press. 2, 296–300 (1993).
DeClue, J. W. et al. Subpressor angiotensin infusion, renal sodium handling, and salt-induced hypertension in the dog. Circ. Res. 43, 503 (1978).
Kimura, G. et al. Renal function curve in patients with secondary forms of hypertension. Hypertension 10, 11–15 (1987).
Osborn, J. W., Averina, V. A. & Fink, G. D. Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure. Exp. Physiol. 94, 389 (2009).
Kurtz, T. W. et al. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int. 90, 965 (2016).
Beard, D. A. & Feigl, E. O. Understanding Guyton’s venous return curves. Am. J. Physiol. Heart Circ. Physiol. 301, H629 (2011).
Beard, D. A. Tautology vs. physiology in the etiology of hypertension. Physiology 28, 270 (2013).
Kurtz, T. W., DiCarlo, S. E. & Morris, R. C. Logical issues with the pressure natriuresis theory of chronic hypertension. Am. J. Hypertens. 29, 1325 (2016).
Kurtz, T. W. et al. Testing computer models predicting human responses to a high-salt diet. Hypertension 72, 1407 (2018).
Schmidlin, O., Forman, A., Leone, A., Sebastian, A. & Morris, R. C. Salt sensitivity in Blacks. Hypertension 58, 380 (2011).
Singer, D. R. et al. Angiotensin II suppression is a major factor permitting excretion of an acute sodium load in humans. Am. J. Physiol. Ren. Physiol. 266, F89–93 (1994).
Rodriguez-Iturbe, B., Romero, F. & Johnson, R. J. Pathophysiological mechanisms of salt-dependent hypertension. Am. J. Kidney Dis. 50, 655 (2007).
Ando, K. & Fujita, T. Pathophysiology of salt sensitivity hypertension. Ann. Med. 44, S119 (2012).
Carlström, M., Sällström, J., Skøtt, O., Larsson, E. & Persson, A. E. G. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats. Hypertension 49, 1342 (2007).
Basting, T. & Lazartigues, E. DOCA-salt hypertension: an update. Curr. Hypertens. Rep. 19, 32 (2017).
Campese, V. M. et al. Salt intake and plasma atrial natriuretic peptide and nitric oxide in hypertension. Hypertension 28, 335–340 (1996).
Morgan, D. A., DiBona, G. F. & Mark, A. L. Effects of interstrain renal transplantation on NaCl-induced hypertension in Dahl rats. Hypertension 15, 436 (1990).
Rossitto, G. et al. Tissue sodium excess is not hypertonic and reflects extracellular volume expansion. Nat. Commun. 11, 4222 (2020).
Laffer, C. L., Scott, R. C., Titze, J. M., Luft, F. C. & Elijovich, F. Hemodynamics and salt-and-water balance link sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension 68 (2016).
Iwamoto, T. et al. Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat. Med. 10, 1193 (2004).
Wu, J. et al. Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension. Cardiovasc. Res. 117, 308–319 (2021).
Lerman, L. O. et al. Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 73, e87 (2019).
Ralph, A. F. et al. Activation of the sympathetic nervous system promotes blood pressure salt-sensitivity in C57BL6/J mice. Hypertension 77, 158 (2021).
Nomura, K. et al. Na+ increases in body fluids sensed by central nax induce sympathetically mediated blood pressure elevations via H+-dependent activation of ASIC1a. Neuron 101, 60 (2019).
Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545 (2009).
Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518 (2013).
Wu, C. et al. Induction of pathogenic T H 17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513 (2013).
Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).
Norlander, A. E. et al. Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II-Induced Hypertension. Hypertension 68, 167–174 (2016).
Evans, R. D. R. et al. Inherited salt-losing tubulopathies are associated with immunodeficiency due to impaired IL-17 responses. Nat. Commun. https://doi.org/10.1038/s41467-020-18184-3 (2020).
Wilck, N. et al. Salt-responsive gut commensal modulates T H 17 axis and disease. Nature 551, 585 (2017).
Ferguson, J. F. et al. High dietary salt–induced DC activation underlies microbial dysbiosis-associated hypertension. JCI Insight https://doi.org/10.1172/jci.insight.126241 (2019).
Chakraborty, S. et al. Diurnal timing dependent alterations in gut microbial composition are synchronously linked to salt-sensitive hypertension and renal damage. Hypertension 76, 59 (2020).
Poch, E. et al. Molecular Basis of Salt Sensitivity in Human Hypertension. Hypertension 38, 1204 (2001).
He, J. et al. Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese. Circ. Cardiovasc. Genet. 6, 598 (2013).
Hachiya, T. et al. Genome-wide analysis of polymorphism × sodium interaction effect on blood pressure identifies a novel 3′-BCL11B gene desert locus. Sci. Rep. 8, 14162 (2018).
O’Donnell, M. et al. Salt and cardiovascular disease: insufficient evidence to recommend low sodium intake. Eur. Heart J. 41, 3363 (2020).
British Heart Foundation. High Blood Pressure: How Can We Do Better? https://www.bhf.org.uk/for-professionals/healthcare-professionals/data-and-statistics/bp-how-can-we-do-better (2018).
Hasan, M. M. et al. Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based cross-sectional study. BMJ Open 10, e037592 (2020).
Wall, H. K., Hannan, J. A. & Wright, J. S. Patients with undiagnosed hypertension. JAMA 312, 1973 (2014).
Barnett, K. et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380, 37 (2012).
Finegold, J. A. et al. Distribution of lifespan gain from primary prevention intervention. Open Heart 3, e000343 (2016).
The National Food Strategy. The Plan https://www.nationalfoodstrategy.org (2021).
Monsivais, P., Rehm, C. D. & Drewnowski, A. The DASH diet and diet costs among ethnic and racial groups in the United States. JAMA Intern. Med. 173, 1922–1924 (2013).
Santos, J. A. et al. A systematic review of salt reduction initiatives around the world: a midterm evaluation of progress towards the 2025 global non-communicable diseases salt reduction target. Adv. Nutr. 12, 1768–1780 (2021).
WHO. Impact of Salt Reduction in Finland and the United Kingdom, https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/news/news/2014/12/reducing-salt-consumption/impact-of-salt-reduction-in-finland-and-the-united-kingdom (2014).
He, F. J., Brinsden, H. C. & MacGregor, G. A. Salt reduction in the United Kingdom: a successful experiment in public health. J. Hum. Hypertens. 28, 345 (2014).
Queen Mary University of London. Finland World Action on Salt, Sugar & Health, http://www.worldactiononsalt.com/worldaction/europe/finland (2009).
Reinivuo, H., Valsta, L. M., Laatikainen, T., Tuomilehto, J. & Pietinen, P. Sodium in the Finnish diet: II Trends in dietary sodium intake and comparison between intake and 24-h excretion of sodium. Eur. J. Clin. Nutr. 60, 1160 (2006).
Laatikainen, T. et al. Sodium in the Finnish diet: 20-year trends in urinary sodium excretion among the adult population. Eur. J. Clin. Nutr. 60, 965 (2006).
He, F. J., Pombo-Rodrigues, S. & MacGregor, G. A. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4, e004549 (2014).
MacGregor, G. A., He, F. J. & Pombo-Rodrigues, S. Food and the responsibility deal: how the salt reduction strategy was derailed. BMJ 350, h1936 (2015).
Hyseni, L. et al. Systematic review of dietary salt reduction policies: evidence for an effectiveness hierarchy? PLoS One 12, e0177535 (2017).
McLaren, L. et al. Population-level interventions in government jurisdictions for dietary sodium reduction. Cochrane Database Syst. Rev. 46, 1551–1563 (2016).
Shangguan, S. et al. A meta-analysis of food labeling effects on consumer diet behaviors and industry practices. Am. J. Prev. Med. 56, 300 (2019).
Eren, O. C. et al. Multilayered interplay between fructose and salt in development of hypertension. Hypertension 73, 265 (2019).
Chen, J. et al. Salt-restriction-spoon improved the salt intake among residents in China. PLoS One 8, e78963 (2013).
Burgermaster, M., Rudel, R. & Seres, D. Dietary sodium restriction for heart failure: a systematic review of intervention outcomes and behavioral determinants. Am. J. Med. 133, 1391–1402 (2020).
Meuleman, Y. et al. Sodium restriction in patients With CKD: a randomized controlled trial of self-management support. Am. J. Kidney Dis. 69, 576 (2017).
Humalda, J. K. et al. A self-management approach for dietary sodium restriction in patients with CKD: a randomized controlled trial. Am. J. Kidney Dis. 75, 847 (2020).
Bovée, D. M. et al. A randomized trial of distal diuretics versus dietary sodium restriction for hypertension in chronic kidney disease. J. Am. Soc. Nephrol. 31, 650 (2020).
Mattes, R. D., Christensen, C. M. & Engelman, K. Effects of hydrochlorothiazide and amiloride on salt taste and excretion (intake). Am. J. Hypertens. 3, 436 (1990).
Huang, L. et al. Interim effects of salt substitution on urinary electrolytes and blood pressure in the China Salt Substitute and Stroke Study (SSaSS). Am. Heart J. 221, 136 (2020).
KDIGO 2021 Clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 99, S1 (2021).
Williams, B. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).
McDonough, A. A., Veiras, L. C., Guevara, C. A. & Ralph, D. L. Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am. J. Physiol. Endocrinol. Metab. 312, E348 (2017).
Elfassy, T. et al. Results of the CARDIA study suggest that higher dietary potassium may be kidney protective. Kidney Int. 98, 187 (2020).
Sacks, F. M. et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) Diet. N. Engl. J. Med. 344, 3 (2001).
Whelton, P. K. et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 277, 1624 (1997).
Filippini, T. et al. Potassium intake and blood pressure: a dose-response meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 9, e015719 (2020).
Murillo-de-Ozores, A. R., Gamba, G. & Castañeda-Bueno, M. Molecular mechanisms for the regulation of blood pressure by potassium. Curr. Top. Membr. 83, 285 (2019).
Palmer, B. F., Colbert, G. & Clegg, D. J. Potassium homeostasis, chronic kidney disease, and the plant-enriched diets. Kidney360 1, 65 (2020).
Goraya, N., Simoni, J., Jo, C.-H. & Wesson, D. E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 8, 371 (2013).
Ramos, C. I. et al. Does dietary potassium intake associate with hyperkalemia in patients with chronic kidney disease? Nephrol. Dial. Transpl. 36, 2049–2057 (2020).
Bernier-Jean, A. et al. Dietary potassium intake and all-cause mortality in adults undergoing hemodialysis: The DIET-HD Cohort Study (Conference Abstract). Clin. J. Am. Soc. Nephrol. https://doi.org/10.2215/CJN.08360621 (2021).
Heitmann, B. L. & Lissner, L. Dietary underreporting by obese individuals–is it specific or non-specific? BMJ 311, 986 (1995).
Garden, L., Clark, H., Whybrow, S. & Stubbs, R. J. Is misreporting of dietary intake by weighed food records or 24-hour recalls food specific? Eur. J. Clin. Nutr. 72, 1026 (2018).
McLean, R. M. et al. Twenty-four-hour diet recall and diet records compared with 24-hour urinary excretion to predict an individual’s sodium consumption: a systematic review. J. Clin. Hypertens. 20, 1360 (2018).
Birukov, A. et al. Ultra-long-term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion. Am. J. Clin. Nutr. 104, 49 (2016).
Olde Engberink, R. H. G. et al. Use of a single baseline versus multiyear 24-hour urine collection for estimation of long-term sodium intake and associated cardiovascular and renal risk. Circulation 136, 917 (2017).
Lerchl, K. et al. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension 66, 850 (2015).
Campbell, N. R. C. et al. The International Consortium for Quality Research on Dietary Sodium/Salt (TRUE) position statement on the use of 24-hour, spot, and short duration (<24 hours) timed urine collections to assess dietary sodium intake. J. Clin. Hypertens. 21, 700 (2019).
Campino, C. et al. Usefulness and pitfalls in sodium intake estimation: comparison of dietary assessment and urinary excretion in Chilean children and adults. Am. J. Hypertens. 29, 1212 (2016).
He, F. J. et al. Formulas to estimate dietary sodium intake from spot urine alter sodium-mortality relationship. Hypertension 74, 572 (2019).
Mente, A. et al. Validation and comparison of three formulae to estimate sodium and potassium excretion from a single morning fasting urine compared to 24-h measures in 11 countries. J. Hypertens. 32, 1005 (2014).
He, F. J. et al. Errors in estimating usual sodium intake by the Kawasaki formula alter its relationship with mortality: implications for public health†. Int. J. Epidemiol. 47, 1784 (2018).
Naser, A. M., He, F. J., Rahman, M. & Campbell, N. R. C. Spot urine formulas to estimate 24-hour urinary sodium excretion alter the dietary sodium and blood pressure relationship. Hypertension 77, 2127 (2021).
Mente, A., O’Donnell, M. J. & Yusuf, S. Measuring sodium intake in populations: simple is best? Am. J. Hypertens. 28, 1303 (2015).
Elliott, P., Peakman, T. C. & Biobank, U. K. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234 (2008).
Schroeder, H. A. Studies on congestive heart failure: I. The importance of restriction of salt as compared to water. Am. Heart J. 22, 141 (1941).
Retraction. Heart https://heart.bmj.com/content/99/11/820.2 (2014).
Expression of Concern. Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend? Clin. Sci. 134, 1841 (2020).
Aliti, G. B. et al. Aggressive fluid and sodium restriction in acute decompensated heart failure: a randomized clinical trial. JAMA Intern. Med. 173, 1058 (2013).
Hummel, S. L. et al. Home-delivered meals postdischarge from heart failure hospitalization. Circ. Heart Fail 11, e004886 (2018).
Licata, G. et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am. Heart J. 145, 459 (2003).
Griffin, M. et al. Real world use of hypertonic saline in refractory acute decompensated heart failure: A U.S. Center’s Experience. JACC Heart Fail 8, 199 (2020).
Ezekowitz, J. A. The Long Term Effects of Dietary Sodium Restriction on Clinical Outcomes in Patients With Heart Failure, https://clinicaltrials.gov/ct2/show/NCT02012179 (2021).
Koomans, H. A., Roos, J. C., Dorhout Mees, E. J. & Delawi, I. M. Sodium balance in renal failure. A comparison of patients with normal subjects under extremes of sodium intake. Hypertension 7, 714 (1985).
Konishi, Y. et al. Sodium sensitivity of blood pressure appearing before hypertension and related to histological damage in immunoglobulin a nephropathy. Hypertension 38, 81 (2001).
He, J. et al. Urinary sodium and potassium excretion and CKD progression. J. Am. Soc. Nephrol. 27, 1202 (2016).
Kang, M. et al. Measured sodium excretion is associated with CKD progression: results from the KNOW-CKD study. Nephrol. Dial. Transpl. 36, 512–519 (2020).
Kramers, B. J. et al. Salt, but not protein intake, is associated with accelerated disease progression in autosomal dominant polycystic kidney disease. Kidney Int. 98, 989–998 (2020).
Saran, R. et al. A randomized crossover trial of dietary sodium restriction in stage 34 CKD. Clin. J. Am. Soc. Nephrol. 12, 399 (2017).
McMahon, E. J., Campbell, K. L., Bauer, J. D. & Mudge, D. W. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD010070.pub2 (2015).
Palmer, S. C. et al. Dietary interventions for adults with chronic kidney disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD011998.pub2 (2017).
Lambers Heerspink, H. J. et al. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney Int. 82, 330 (2012).
D’Elia, L. et al. Meta-analysis of the effect of dietary sodium restriction with or without concomitant renin-angiotensin-aldosterone system-inhibiting treatment on albuminuria. Clin. J. Am. Soc. Nephrol. 10, 1542 (2015).
Burnier, M. Sodium intake and progression of chronic kidney disease-has the time finally come to do the impossible: a prospective randomized controlled trial? Nephrol. Dial. Transpl. 36, 381–384 (2021).
Blumberg, A., Nelp, W. B., Hegstrom, R. M. & Scribner, B. H. Extracellular volume in patients with chronic renal disease treated for hypertension by sodium restriction. Lancet 2, 69 (1967).
Dunlop, J. L., Vandal, A. C. & Marshall, M. R. Low dialysate sodium levels for chronic haemodialysis. Cochrane Database Syst. Rev. 1, CD011204 (2019).
Cole, N. I., Swift, P. A., He, F. J., MacGregor, G. A. & Suckling, R. J. The effect of dietary salt on blood pressure in individuals receiving chronic dialysis: a systematic review and meta-analysis of randomised controlled trials. J. Hum. Hypertens. 33, 319 (2019).
Marshall, M. R. et al. Effect of low-sodium versus conventional sodium dialysate on left ventricular mass in home and self-care satellite facility hemodialysis patients: a randomized clinical trial. J. Am. Soc. Nephrol. 31, 1078 (2020).
Park, J.-S., Kim, S., Jo, C. H., Oh, I. H. & Kim, G.-H. Effects of dietary salt restriction on renal progression and interstitial fibrosis in adriamycin nephrosis. Kidney Blood Press. Res. 39, 86 (2014).
Kempner, W. Effect of salt restriction on experimental nephrosis. JAMA 191, 51 (1965).
Acknowledgements
The authors have received research funding from The British Heart Foundation (PG/16/98/32568), The Chief Scientist’s Office (SCAF/19/02), Diabetes UK (17/0005685), Kidney Research UK (RP02/2019; IN001/2017), the Medical Research Council (MR/S01053X) and The Wellcome Trust (209562/Z/17/Z).
Author information
Authors and Affiliations
Contributions
All authors contributed to researching the data, discussing the content, writing the text and reviewing or editing the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Nephrology thanks Norman Campbell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Hunter, R.W., Dhaun, N. & Bailey, M.A. The impact of excessive salt intake on human health. Nat Rev Nephrol 18, 321–335 (2022). https://doi.org/10.1038/s41581-021-00533-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41581-021-00533-0
This article is cited by
-
Underrated aspects of a true Mediterranean diet: understanding traditional features for worldwide application of a “Planeterranean” diet
Journal of Translational Medicine (2024)
-
Relationship between socioeconomic status and hypertension incidence among adults in southwest China: a population-based cohort study
BMC Public Health (2024)
-
Australian brown seaweeds as a source of essential dietary minerals
Journal of Applied Phycology (2024)
-
Two-generation exposure to a high-fat diet induces the change of salty taste preference in rats
Scientific Reports (2023)
-
Production of Hydrolysates from Swordfish (Xiphias gladius) Head Muscle as New Protein Source: Evaluation of Nutritional, Antioxidant and Functional Properties
Waste and Biomass Valorization (2023)