Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue-resident memory T cells in the urogenital tract

Abstract

Our understanding of T cell memory responses changed drastically with the discovery that specialized T cell memory populations reside within peripheral tissues at key pathogen entry sites. These tissue-resident memory T (TRM) cells can respond promptly to an infection without the need for migration, proliferation or differentiation. This rapid and local deployment of effector functions maximizes the ability of TRM cells to eliminate pathogens. TRM cells do not circulate through peripheral tissues but instead form isolated populations in the skin, gut, liver, kidneys, the reproductive tract and other organs. This long-term retention in the periphery might allow TRM cells to fully adapt to the local conditions of their environment and mount customized responses to counter infection and tumour growth in a tissue-specific manner. In the urogenital tract, TRM cells must adapt to a unique microenvironment to confer protection against potential threats, including cancer and infection, while preventing the onset of auto-inflammatory disease. In this Review, we discuss insights into the diversification of TRM cells from other memory T cell lineages, the adaptations of TRM cells to their local environment, and their enhanced capacity to counter infection and tumour growth compared with other memory T cell populations, especially in the urogenital tract.

Key points

  • Memory T cells that reside in epithelial and mucosal tissues, and that possess superior protective capacities against infection compared with circulating memory T cells have been defined as tissue-resident memory T (TRM) cells.

  • Pathogen-specific TRM cells are present in urogenital tract tissues, including the reproductive tract, bladder and kidney, where they make essential contributions to protection against pathogens.

  • TRM cells also reside in carcinomas of the urogenital tract, where they counter tumour growth; however, their antitumour responses are inhibited by the engagement of inhibitory receptors, including programmed cell death protein 1.

  • The pro-inflammatory activities of TRM cells might have harmful consequences in host tissues as is evidenced by their pathogenic role in the kidneys of patients with autoimmune disorders such as systemic lupus erythematosus, or their contribution to rejection in kidney transplant recipients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptional regulation of TRM cell functions.
Fig. 2: The developmental pathway of TRM cells.
Fig. 3: TRM cell-mediated protection in the urogenital tract.
Fig. 4: The maintenance and re-activation of TRM cells in the female reproductive tract.
Fig. 5: TRM cell populations in kidney cancer.

Similar content being viewed by others

References

  1. Williams, M. A. & Bevan, M. J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    CAS  PubMed  Google Scholar 

  2. Butz, E. A. & Bevan, M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  4. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    CAS  PubMed  Google Scholar 

  5. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).

    CAS  PubMed  Google Scholar 

  8. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    CAS  PubMed  Google Scholar 

  11. Steinert, E. M. et al. Quantifying Memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, S. L. et al. Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 (2019).

    CAS  PubMed  Google Scholar 

  15. Beura, L. K. et al. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med. 216, 1214–1229 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    CAS  PubMed  Google Scholar 

  17. Carlson, C. M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006).

    CAS  PubMed  Google Scholar 

  18. Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shiow, L. R. et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).

    CAS  PubMed  Google Scholar 

  20. Bromley, S. K., Thomas, S. Y. & Luster, A. D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6, 895–901 (2005).

    CAS  PubMed  Google Scholar 

  21. Debes, G. F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6, 889–894 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    CAS  PubMed  Google Scholar 

  23. Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity 40, 747–757 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    CAS  PubMed  Google Scholar 

  25. McNamara, H. A. et al. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci. Immunol. 2, eaaj1996 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Ray, S. J. et al. The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    CAS  PubMed  Google Scholar 

  27. Bromley, S. K. et al. CD49a regulates cutaneous resident memory CD8+ T cell persistence and response. Cell Rep. 32, 108085 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ugur, M., Schulz, O., Menon, M. B., Krueger, A. & Pabst, O. Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure. Nat. Commun. 5, 4821 (2014).

    CAS  PubMed  Google Scholar 

  30. Schenkel, J. M. et al. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T Cells. J. Immunol. 196, 3920–3926 (2016).

    CAS  PubMed  Google Scholar 

  31. Adachi, T. et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat. Med. 21, 1272–1279 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, N. & Bevan, M. J. Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-beta. Nat. Immunol. 17, 414–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Frizzell, H. et al. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes. Sci. Immunol. 5, eaay9283 (2020).

    CAS  PubMed  Google Scholar 

  36. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Steinbach, K. et al. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J. Exp. Med. 213, 1571–1587 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kragten, N. A. M. et al. Blimp-1 induces and Hobit maintains the cytotoxic mediator granzyme B in CD8 T cells. Eur. J. Immunol. 48, 1644–1662 (2018).

    CAS  PubMed  Google Scholar 

  39. Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).

    CAS  PubMed  Google Scholar 

  40. Ariotti, S. et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014).

    CAS  PubMed  Google Scholar 

  41. Beura, L. K. et al. Intravital mucosal imaging of CD8(+) resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 19, 173–182 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018).

    CAS  PubMed  Google Scholar 

  43. Fonseca, R. et al. Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 21, 412–421 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Behr, F. M. et al. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol. 21, 1070–1081 (2020).

    CAS  PubMed  Google Scholar 

  45. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    CAS  PubMed  Google Scholar 

  46. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    CAS  PubMed  Google Scholar 

  48. Li, C. et al. The Transcription Factor Bhlhe40 programs mitochondrial regulation of resident CD8+ T cell fitness and functionality. Immunity 51, 491–507.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gaide, O. et al. Common clonal origin of central and resident memory T cells following skin immunization. Nat. Med. 21, 647–653 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kok, L. et al. A committed tissue-resident memory T cell precursor within the circulating CD8+ effector T cell pool. J. Exp. Med. 217, e20191711. (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fiege, J. K. et al. The impact of TCR signal strength on resident memory T cell formation during influenza virus infection. J. Immunol. 203, 936–945 (2019).

    CAS  PubMed  Google Scholar 

  52. Mani, V. et al. Migratory DCs activate TGF-beta to precondition naive CD8+ T cells for tissue-resident memory fate. Science 366, eaav5728 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Iborra, S. et al. Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells. Immunity 45, 847–860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    CAS  PubMed  Google Scholar 

  55. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bannard, O., Kraman, M. & Fearon, D. T. Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science 323, 505–509 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    CAS  PubMed  Google Scholar 

  58. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kurd, N. S. et al. Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 5, eaaz6894. (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Milner, J. J. et al. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. Immunity 52, 808–824.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Parga-Vidal, L. et al. Hobit identifies tissue-resident memory T cell precursors that are regulated by Eomes. Sci. Immunol. 6, eabg3533 (2021).

    CAS  PubMed  Google Scholar 

  62. Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 213, 951–966 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Djenidi, F. et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 194, 3475–3486 (2015).

    CAS  PubMed  Google Scholar 

  65. Menares, E. et al. Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells. Nat. Commun. 10, 4401 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. Richmond, J. M. et al. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aam7710 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Steinbach, K. et al. Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice. Sci. Transl. Med. 10, eaam7710 (2019).

    Google Scholar 

  68. Zundler, S. et al. Hobit- and Blimp-1-driven CD4+ tissue-resident memory T cells control chronic intestinal inflammation. Nat. Immunol. 20, 288–300 (2019).

    CAS  PubMed  Google Scholar 

  69. van der Putten, C. et al. CD8 and CD4 T cell populations in human kidneys. Cells 10, 288 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sennepin, A. et al. The human penis is a genuine immunological effector site. Front. Immunol. 8, 1732 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Radestad, E. et al. Characterization of infiltrating lymphocytes in human benign and malignant prostate tissue. Oncotarget 8, 60257–60269 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. Pudney, J., Quayle, A. J. & Anderson, D. J. Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone. Biol. Reprod. 73, 1253–1263 (2005).

    CAS  PubMed  Google Scholar 

  73. Woodward Davis, A. S. et al. The human memory T cell compartment changes across tissues of the female reproductive tract. Mucosal Immunol. 14, 862–872 (2021).

    CAS  PubMed  Google Scholar 

  74. Srivastava, R. et al. CXCL10/CXCR3-dependent mobilization of herpes simplex virus-specific CD8+ TEM and CD8+ TRM cells within infected tissues allows efficient protection against recurrent herpesvirus infection and disease. J. Virol. 91, e00278-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Stark, R. et al. TRM maintenance is regulated by tissue damage via P2RX7. Sci. Immunol. 3, eaau1022 (2018).

    PubMed  Google Scholar 

  76. Johansson, E. L., Rudin, A., Wassen, L. & Holmgren, J. Distribution of lymphocytes and adhesion molecules in human cervix and vagina. Immunology 96, 272–277 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Alexopoulos, E., Seron, D., Hartley, R. B. & Cameron, J. S. Lupus nephritis: correlation of interstitial cells with glomerular function. Kidney Int. 37, 100–109 (1990).

    CAS  PubMed  Google Scholar 

  78. Winchester, R. et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell β-chain clonotypes in progressive lupus nephritis. Arthritis Rheum. 64, 1589–1600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wolfe, A. J. et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 50, 1376–1383 (2012).

    PubMed  PubMed Central  Google Scholar 

  80. Price, T. K. et al. The urobiome of continent adult women: a cross-sectional study. BJOG 127, 193–201 (2020).

    CAS  PubMed  Google Scholar 

  81. Shrestha, E. et al. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. 199, 161–171 (2018).

    PubMed  Google Scholar 

  82. Thomas-White, K. et al. Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat. Commun. 9, 1557 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Ackerman, A. L. & Underhill, D. M. The mycobiome of the human urinary tract: potential roles for fungi in urology. Ann. Transl. Med. 5, 31 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Gardner, S. D., Field, A. M., Coleman, D. V. & Hulme, B. New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1, 1253–1257 (1971).

    CAS  PubMed  Google Scholar 

  85. Ashshi, A. M., Klapper, P. E. & Cooper, R. J. Detection of human cytomegalovirus, human herpesvirus type 6 and human herpesvirus type 7 in urine specimens by multiplex PCR. J. Infect. 47, 59–64 (2003).

    PubMed  Google Scholar 

  86. Ribeiro, L. C., Santos, C. & Benchimol, M. Is Trichomonas tenax a parasite or a commensal? Protist 166, 196–210 (2015).

    PubMed  Google Scholar 

  87. Zhu, J. et al. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497, 494–497 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Iwasaki, A. Antiviral immune responses in the genital tract: clues for vaccines. Nat. Rev. Immunol. 10, 699–711 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462, 510–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Brandtzaeg, P. Mucosal immunity in the female genital tract. J. Reprod. Immunol. 36, 23–50 (1997).

    CAS  PubMed  Google Scholar 

  92. Schiffer, J. T., Wald, A., Selke, S., Corey, L. & Magaret, A. The kinetics of mucosal herpes simplex virus-2 infection in humans: evidence for rapid viral-host interactions. J. Infect. Dis. 204, 554–561 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Posavad, C. M. et al. Persistence of mucosal T-cell responses to herpes simplex virus type 2 in the female genital tract. Mucosal Immunol. 8, 115–126 (2015).

    CAS  PubMed  Google Scholar 

  94. Zhu, J. et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 204, 595–603 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Overall, J. C. Jr., Kern, E. R., Schlitzer, R. L., Friedman, S. B. & Glasgow, L. A. Genital herpesvirus hominis infection in mice. I. Development of an experimental model. Infect. Immunol. 11, 476–480 (1975).

    Google Scholar 

  96. Parr, M. B. et al. A mouse model for studies of mucosal immunity to vaginal infection by herpes simplex virus type 2. Lab. Invest. 70, 369–380 (1994).

    CAS  PubMed  Google Scholar 

  97. Soerens, A. G., Da Costa, A. & Lund, J. M. Regulatory T cells are essential to promote proper CD4 T-cell priming upon mucosal infection. Mucosal Immunol. 9, 1395–1406 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Da Costa, A. S., Graham, J. B., Swarts, J. L. & Lund, J. M. Regulatory T cells limit unconventional memory to preserve the capacity to mount protective CD8 memory responses to pathogens. Proc. Natl Acad. Sci. USA 116, 9969–9978 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kiviat, N. B. et al. Endometrial histopathology in patients with culture-proved upper genital tract infection and laparoscopically diagnosed acute salpingitis. Am. J. Surg. Pathol. 14, 167–175 (1990).

    CAS  PubMed  Google Scholar 

  102. Bergsbaken, T. & Bevan, M. J. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection. Nat. Immunol. 16, 406–414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith, C. J., Caldeira-Dantas, S., Turula, H. & Snyder, C. M. Murine CMV infection induces the continuous production of mucosal resident T Cells. Cell Rep. 13, 1137–1148 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dornieden, T. et al. Signatures and specificity of tissue-resident lymphocytes identified in human renal peri-tumor and tumor tissue. J. Am. Soc. Nephrol. 32, 2223–2241 (2021).

    CAS  PubMed  Google Scholar 

  105. Woon, H. G. et al. Compartmentalization of total and virus-specific tissue-resident Memory CD8+ T cells in human lymphoid organs. PLoS Pathog. 12, e1005799 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Davé, V. A. et al. Cervicovaginal tissue residence confers a distinct differentiation program upon memory CD8 T cells. J. Immunol. https://doi.org/10.4049/jimmunol.2100166 (2021).

    Article  PubMed  Google Scholar 

  107. Piet, B. et al. CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J. Clin. Invest. 121, 2254–2263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shin, H., Kumamoto, Y., Gopinath, S. & Iwasaki, A. CD301b+ dendritic cells stimulate tissue-resident memory CD8+ T cells to protect against genital HSV-2. Nat. Commun. 7, 13346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    CAS  PubMed  Google Scholar 

  110. van Aalderen, M. C., Heutinck, K. M., Huisman, C. & ten Berge, I. J. BK virus infection in transplant recipients: clinical manifestations, treatment options and the immune response. Neth. J. Med. 70, 172–183 (2012).

    PubMed  Google Scholar 

  111. van Aalderen, M. C. et al. Phenotypic and functional characterization of circulating polyomavirus BK VP1-specific CD8+ T cells in healthy adults. J. Virol. 87, 10263–10272 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. van Aalderen, M. C. et al. Clinically relevant reactivation of polyomavirus BK (BKPyV) in HLA-A02-positive renal transplant recipients is associated with impaired effector-memory differentiation of BKPyV-Specific CD8+ T Cells. PLoS Pathog. 12, e1005903 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. Chen, Y. et al. Interplay of cellular and humoral immune responses against BK virus in kidney transplant recipients with polyomavirus nephropathy. J. Virol. 80, 3495–3505 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Schachtner, T., Stein, M., Babel, N. & Reinke, P. The Loss of BKV-specific immunity from pretransplantation to posttransplantation identifies kidney transplant recipients at increased risk of BKV Replication. Am. J. Transpl. 15, 2159–2169 (2015).

    CAS  Google Scholar 

  115. Klein, R. D. & Hultgren, S. J. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 18, 211–226 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Henley, S. J. et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer 126, 2225–2249 (2020).

    PubMed  Google Scholar 

  117. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 Inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Cresswell, J., Robertson, H., Neal, D. E., Griffiths, T. R. & Kirby, J. A. Distribution of lymphocytes of the αEβ7 phenotype and E-cadherin in normal human urothelium and bladder carcinomas. Clin. Exp. Immunol. 126, 397–402 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Komdeur, F. L. et al. CD103+ tumor-infiltrating lymphocytes are tumor-reactive intraepithelial CD8+ T cells associated with prognostic benefit and therapy response in cervical cancer. Oncoimmunology 6, e1338230 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749 e718 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    CAS  PubMed  Google Scholar 

  123. Geissler, K. et al. Immune signature of tumor infiltrating immune cells in renal cancer. Oncoimmunology 4, e985082 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Hartana, C. A. et al. Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin. Exp. Immunol. 194, 39–53 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, B. et al. CD103+ tumor infiltrating lymphocytes predict a favorable prognosis in urothelial cell carcinoma of the bladder. J. Urol. 194, 556–562 (2015).

    CAS  PubMed  Google Scholar 

  126. Webb, J. R., Milne, K., Watson, P., Deleeuw, R. J. & Nelson, B. H. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res. 20, 434–444 (2014).

    CAS  PubMed  Google Scholar 

  127. Kawashima, A. et al. Tumour grade significantly correlates with total dysfunction of tumour tissue-infiltrating lymphocytes in renal cell carcinoma. Sci. Rep. 10, 6220 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Webb, J. R., Milne, K. & Nelson, B. H. PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer. Cancer Immunol. Res. 3, 926–935 (2015).

    CAS  PubMed  Google Scholar 

  129. Oja, A. E. et al. Functional Heterogeneity of CD4+ tumor-infiltrating lymphocytes with a resident memory phenotype in NSCLC. Front. Immunol. 9, 2654 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).

    CAS  PubMed  Google Scholar 

  131. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Behr, F. M. et al. Circulating memory CD8+ T cells are limited in forming CD103+ tissue-resident memory T cells at mucosal sites after reinfection. Eur. J. Immunol. 51, 151–166 (2021).

    CAS  PubMed  Google Scholar 

  133. Mokrani, M., Klibi, J., Bluteau, D., Bismuth, G. & Mami-Chouaib, F. Smad and NFAT pathways cooperate to induce CD103 expression in human CD8 T lymphocytes. J. Immunol. 192, 2471–2479 (2014).

    CAS  PubMed  Google Scholar 

  134. Pickup, M., Novitskiy, S. & Moses, H. L. The roles of TGFbeta in the tumour microenvironment. Nat. Rev. Cancer 13, 788–799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhou, J., Liu, L., Yang, T. & Lu, B. Prognostic and therapeutic value of CD103+ cells in renal cell carcinoma. Exp. Ther. Med. 15, 4979–4986 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Workel, H. H. et al. CD103 defines intraepithelial CD8+ PD1+ tumour-infiltrating lymphocytes of prognostic significance in endometrial adenocarcinoma. Eur. J. Cancer 60, 1–11 (2016).

    CAS  PubMed  Google Scholar 

  137. Wang, J. et al. Role of immune checkpoint inhibitor-based therapies for metastatic renal cell carcinoma in the first-line setting: a Bayesian network analysis. EBioMedicine 47, 78–88 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Le Floc’h, A. et al. Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J. Exp. Med. 204, 559–570 (2007).

    PubMed  PubMed Central  Google Scholar 

  139. Couzi, L. et al. Predominance of CD8+ T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis. Arthritis Rheum. 56, 2362–2370 (2007).

    CAS  PubMed  Google Scholar 

  140. Tilstra, J. S. et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J. Clin. Invest. 128, 4884–4897 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Masutani, K. et al. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum. 44, 2097–2106 (2001).

    CAS  PubMed  Google Scholar 

  142. O’Sullivan, K. M. et al. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Int. 88, 1030–1046 (2015).

    PubMed  Google Scholar 

  143. Zhou, M. et al. JAK/STAT signaling controls the fate of CD8+CD103+ tissue-resident memory T cell in lupus nephritis. J. Autoimmun. 109, 102424 (2020).

    CAS  PubMed  Google Scholar 

  144. Christmas, T. J. Lymphocyte sub-populations in the bladder wall in normal bladder, bacterial cystitis and interstitial cystitis. Br. J. Urol. 73, 508–515 (1994).

    CAS  PubMed  Google Scholar 

  145. Krebs, C. F. et al. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45, 1078–1092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Krebs, C. F. et al. Pathogen-induced tissue-resident memory TH17 (TRM17) cells amplify autoimmune kidney disease. Sci. Immunol. 5, eaba4163 (2020).

    CAS  PubMed  Google Scholar 

  147. Dolff, S. et al. Urinary T cells in active lupus nephritis show an effector memory phenotype. Ann. Rheum. Dis. 69, 2034–2041 (2010).

    PubMed  Google Scholar 

  148. Enghard, P. et al. Urinary CD4 T cells identify SLE patients with proliferative lupus nephritis and can be used to monitor treatment response. Ann. Rheum. Dis. 73, 277–283 (2014).

    CAS  PubMed  Google Scholar 

  149. MacDermott, J. P., Miller, C. H., Levy, N. & Stone, A. R. Cellular immunity in interstitial cystitis. J. Urol. 145, 274–278 (1991).

    CAS  PubMed  Google Scholar 

  150. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bertolo, M. et al. Deep phenotyping of urinary leukocytes by mass cytometry reveals a leukocyte signature for early and non-invasive prediction of response to treatment in active lupus nephritis. Front. Immunol. 11, 256 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Matos, T. R. et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing alphabeta T cell clones. J. Clin. Invest. 127, 4031–4041 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. de Leur, K. et al. Characterization of donor and recipient CD8+ tissue-resident memory T cells in transplant nephrectomies. Sci. Rep. 9, 5984 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Ferrer, I. R., Hester, J., Bushell, A. & Wood, K. J. Induction of transplantation tolerance through regulatory cells: from mice to men. Immunol. Rev. 258, 102–116 (2014).

    CAS  PubMed  Google Scholar 

  156. Haas, M. et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transpl. 18, 293–307 (2018).

    CAS  Google Scholar 

  157. Reeve, J. et al. Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am. J. Transpl. 13, 645–655 (2013).

    CAS  Google Scholar 

  158. Venner, J. M. et al. Molecular landscape of T cell-mediated rejection in human kidney transplants: prominence of CTLA4 and PD ligands. Am. J. Transpl. 14, 2565–2576 (2014).

    CAS  Google Scholar 

  159. Abou-Daya, K. I. et al. Resident memory T cells form during persistent antigen exposure leading to allograft rejection. Sci. Immunol. 6, eabc8122. (2021).

    CAS  PubMed  Google Scholar 

  160. Heeger, P. S. et al. Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J. Immunol. 163, 2267–2275 (1999).

    CAS  PubMed  Google Scholar 

  161. Hricik, D. E. et al. Enzyme linked immunosorbent spot (ELISPOT) assay for interferon-gamma independently predicts renal function in kidney transplant recipients. Am. J. Transpl. 3, 878–884 (2003).

    CAS  Google Scholar 

  162. Amir, A. L. et al. Allo-HLA reactivity of virus-specific memory T cells is common. Blood 115, 3146–3157 (2010).

    CAS  PubMed  Google Scholar 

  163. Heutinck, K. M. et al. Virus-Specific CD8+ T cells cross-reactive to donor-alloantigen are transiently present in the circulation of kidney transplant recipients infected With CMV and/or EBV. Am. J. Transpl. 16, 1480–1491 (2016).

    CAS  Google Scholar 

  164. van den Heuvel, H. et al. Allo-HLA cross-reactivities of cytomegalovirus-, influenza-, and varicella zoster virus-specific memory T cells are shared by different healthy individuals. Am. J. Transpl. 17, 2033–2044 (2017).

    Google Scholar 

  165. Hondowicz, B. D. et al. Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 44, 155–166 (2016).

    CAS  PubMed  Google Scholar 

  166. Son, Y. M. et al. Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses. Sci. Immunol. 6, eabb6852 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Swarnalekha, N. et al. T resident helper cells promote humoral responses in the lung. Sci. Immunol. 6, eabb6808 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Bromley, S. K., Yan, S., Tomura, M., Kanagawa, O. & Luster, A. D. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J. Immunol. 190, 970–976 (2013).

    CAS  PubMed  Google Scholar 

  169. Collins, N. et al. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun. 7, 11514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    CAS  PubMed  Google Scholar 

  171. Oja, A. E. et al. Trigger-happy resident memory CD4+ T cells inhabit the human lungs. Mucosal Immunol. 11, 654–667 (2018).

    CAS  PubMed  Google Scholar 

  172. Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    CAS  PubMed  Google Scholar 

  173. Gibbs, A. et al. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 10, 35–45 (2017).

    CAS  PubMed  Google Scholar 

  174. Law, B. M. P. et al. Human tissue-resident mucosal-associated invariant T (MAIT) cells in renal fibrosis and CKD. J. Am. Soc. Nephrol. 30, 1322–1335 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Terpstra, M. L. et al. Tissue-resident mucosal-associated invariant T (MAIT) cells in the human kidney represent a functionally distinct subset. Eur. J. Immunol. 50, 1783–1797 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    CAS  PubMed  Google Scholar 

  177. Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    PubMed  Google Scholar 

  178. Terpstra, M. L. et al. Circulating mucosal-associated invariant T cells in subjects with recurrent urinary tract infections are functionally impaired. Immun. Inflamm. Dis. 8, 80–92 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Misiak, A., Wilk, M. M., Raverdeau, M. & Mills, K. H. IL-17-producing innate and pathogen-specific tissue resident memory γδ T cells expand in the lungs of Bordetella pertussis-infected mice. J. Immunol. 198, 363–374 (2017).

    CAS  PubMed  Google Scholar 

  180. Law, B. M. et al. Effector gammadelta T cells in human renal fibrosis and chronic kidney disease. Nephrol. Dial. Transpl. 34, 40–48 (2019).

    CAS  Google Scholar 

  181. Falk, M. C. et al. Infiltration of the kidney by alpha beta and gamma delta T cells: effect on progression in IgA nephropathy. Kidney Int. 47, 177–185 (1995).

    CAS  PubMed  Google Scholar 

  182. Alexandroff, A., Black, J., Bollina, P. & James, K. Differential production of gamma delta T cells in the urine of bladder cancer patients receiving Bacillus Calmette Guerin immunotherapy. Int. J. Oncol. 10, 387–393 (1997).

    CAS  PubMed  Google Scholar 

  183. Vella, M. et al. Characterization of human infiltrating and circulating gamma-delta T cells in prostate cancer. Invest. Clin. Urol. 60, 91–98 (2019).

    Google Scholar 

  184. Chen, X. et al. Distribution and functions of gammadelta T cells infiltrated in the ovarian cancer microenvironment. J. Transl. Med. 17, 144 (2019).

    PubMed  PubMed Central  Google Scholar 

  185. Constant, P. et al. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 264, 267–270 (1994).

    CAS  PubMed  Google Scholar 

  186. Shibata, K., Yamada, H., Hara, H., Kishihara, K. & Yoshikai, Y. Resident Vδ1+ γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178, 4466–4472 (2007).

    CAS  PubMed  Google Scholar 

  187. Tupin, E., Kinjo, Y. & Kronenberg, M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417 (2007).

    CAS  PubMed  Google Scholar 

  188. Thomas, S. Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 208, 1179–1188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Park, J. G. et al. Immune cell composition in normal human kidneys. Sci. Rep. 10, 15678 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Hu, T. et al. Accumulation of invariant NKT cells with increased IFN-γ production in persistent high-risk HPV-infected high-grade cervical intraepithelial neoplasia. Diagn. Pathol. 10, 20 (2015).

    PubMed  PubMed Central  Google Scholar 

  191. Minagawa, S. et al. Activation of natural killer T cells by alpha-galactosylceramide mediates clearance of bacteria in murine urinary tract infection. J. Urol. 173, 2171–2174 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.P.V. and K.P.J.M.vG. were supported by an LSBR Fellowship (# 1629) of The Landsteiner Foundation for Blood Transfusion Research, M.C.vA. was supported by The Dutch Kidney Foundation (# 18OKG22) and R.S. was supported by a Veni Fellowship (# 016.186.116) of The Dutch Research Council.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Klaas P. J. M. van Gisbergen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks N. Asada, K. Kotsch, U. Panzer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.’

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tertiary lymphoid structures

Organized aggregates of B and T lymphocytes that develop in peripheral tissues in response to infection, inflammation or cancer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parga-Vidal, L., van Aalderen, M.C., Stark, R. et al. Tissue-resident memory T cells in the urogenital tract. Nat Rev Nephrol 18, 209–223 (2022). https://doi.org/10.1038/s41581-021-00525-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00525-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing