Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury

Abstract

Microvascular endothelial cells in the kidney have been a neglected cell type in sepsis-induced acute kidney injury (sepsis-AKI) research; yet, they offer tremendous potential as pharmacological targets. As endothelial cells in distinct cortical microvascular segments are highly heterogeneous, this Review focuses on endothelial cells in their anatomical niche. In animal models of sepsis-AKI, reduced glomerular blood flow has been attributed to inhibition of endothelial nitric oxide synthase activation in arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion is associated with epithelial redox stress. Elevated systemic levels of vascular endothelial growth factor, reduced levels of circulating sphingosine 1-phosphate and loss of components of the glycocalyx from glomerular endothelial cells lead to increased microvascular permeability. Although coagulation disbalance occurs in all microvascular segments, the molecules involved differ between segments. Induction of the expression of adhesion molecules and leukocyte recruitment also occurs in a heterogeneous manner. Evidence of similar endothelial cell responses has been found in kidney and blood samples from patients with sepsis. Comprehensive studies are needed to investigate the relationships between segment-specific changes in the microvasculature and kidney function loss in sepsis-AKI. The application of omics technologies to kidney tissues from animals and patients will be key in identifying these relationships and in developing novel therapeutics for sepsis.

Key points

  • Microvascular endothelial cells in arterioles, glomeruli, peritubular capillaries and postcapillary venules in the kidney cortex have an intrinsic molecular and phenotypic heterogeneity and respond to sepsis-induced acute kidney injury (sepsis-AKI) conditions in a segment-specific manner.

  • Clinical data suggest endothelial engagement in sepsis-AKI, although the contribution of the renal microvasculature is not yet clear; changes in the levels of soluble markers in blood and urine represent endothelial responses that can originate from any organ involved in sepsis pathophysiology.

  • Not all molecules that control microvascular permeability and leukocyte recruitment in organs other than the kidney have a similar role in sepsis-AKI; this heterogeneity prevents extrapolation of mechanisms reported in other organs to the kidney.

  • As endothelial cells rapidly lose their behaviour in culture, molecular mechanisms or cell responses to sepsis-AKI conditions and pharmacological interventions that are identified in vitro must be validated in vivo.

  • Analysis of post-mortem kidney samples from patients with sepsis-AKI as well as serial plasma and urine samples and clinical data are required to effectively translate findings from animal models to the human disease.

  • Molecularly mapping endothelial responses in time in various organs will provide a rational basis for the selection of molecules that can potentially serve as (soluble) biomarkers of endothelial responses in sepsis-AKI following validation in clinical samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic and histology of mouse kidney cortex microvascular segments.
Fig. 2: Systemic and renal blood flow changes in mice with polymicrobial sepsis induced by CLP.
Fig. 3: Molecular pathways in endothelial cells that lead to phenotypic changes in response to sepsis conditions.
Fig. 4: Molecular mechanisms that could underlie renal microvascular endothelial cell heterogeneity in responses to sepsis-AKI.

Similar content being viewed by others

References

  1. Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Koeze, J. et al. Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol. 18, 1–9 (2017).

    Article  Google Scholar 

  3. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395, 200–211 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singer, M., Inada-Kim, M. & Shankar-Hari, M. Sepsis hysteria: excess hype and unrealistic expectations. Lancet 394, 1513–1514 (2019).

    Article  PubMed  Google Scholar 

  6. Bellomo, R. et al. Acute kidney injury in sepsis. Intensive Care Med. 43, 816–828 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Lankadeva, Y. R., Okazaki, N., Evans, R. G., Bellomo, R. & May, C. N. Renal medullary hypoxia: a new therapeutic target for septic acute kidney injury? Semin. Nephrol. 39, 543–553 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Rubio, I. et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect. Dis. 19, e422–e436 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Santacruz, C. A., Pereira, A. J., Celis, E. & Vincent, J. L. Which multicenter randomized controlled trials in critical care medicine have shown reduced mortality? A systematic review. Crit. Care Med. 47, 1680–1691 (2019).

    Article  PubMed  Google Scholar 

  10. Garofalo, A. M. et al. Histopathological changes of organ dysfunction in sepsis. Intensive Care Med. Exp. 7, 45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cummings, C. J. et al. Soluble E-selectin levels in sepsis and critical illness. Correlation with infection and hemodynamic dysfunction. Am. J. Respir. Crit. Care Med. 156, 431–437 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Knapp, S. et al. Prognostic value of MIP-1 alpha, TGF-beta 2, sELAM-1, and sVCAM-1 in patients with gram-positive sepsis. Clin. Immunol. Immunopathol. 87, 139–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Fang, Y. et al. Prognostic significance of the angiopoietin-2/angiopoietin-1 and angiopoietin-1/Tie-2 ratios for early sepsis in an emergency department. Crit. Care 19, 1–11 (2015).

    Article  Google Scholar 

  14. Hepokoski, M. et al. Ventilator-induced lung injury increases expression of endothelial inflammatory mediators in the kidney. Am. J. Physiol. Renal Physiol. 312, F654–F660 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Cleuren, A. C. A. et al. The in vivo endothelial cell translatome is highly heterogeneous across vascular beds. Proc. Natl Acad. Sci. USA 116, 23618–23624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Navar, L. et al. The renal microcirculation. Compr. Physiol. https://doi.org/10.1002/cphy.cp020413 (2011).

  17. Molema, G. & Aird, W. C. Vascular heterogeneity in the kidney. Semin. Nephrol. 32, 145–155 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Bonsib, S. M. in Hepintstall’s Pathology of the Kidney Vol. I (eds Jenette, J. C., Olson, J. L., Silva, F. G. & D’Agati, V. D.) 1–66 (Wolters Kluwer, 2015).

  19. Munoz, C. J., Lucas, A., Williams, A. T. & Cabrales, P. A review on microvascular hemodynamics: the control of blood flow distribution and tissue oxygenation. Crit. Care Clin. 36, 293–305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carrithers, M. et al. Enhanced susceptibility to endotoxic shock and impaired STAT3 signaling in CD31-deficient mice. Am. J. Pathol. 166, 185–196 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lampugnani, M. G., Dejana, E. & Giampietro, C. Vascular endothelial (VE)-cadherin, endothelial adherens junctions, and vascular disease. Cold Spring Harb. Perspect. Biol. 10, a029322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Claesson-Welsh, L., Dejana, E. & McDonald, D. M. Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol. Med. 27, 314–331 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Lay, A. J., Donahue, D., Tsai, M. J. & Castellino, F. J. Acute inflammation is exacerbated in mice genetically predisposed to a severe protein C deficiency. Blood 109, 1984–1991 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nozaki, Y. et al. Protective effects of recombinant human soluble thrombomodulin on lipopolysaccharide-induced acute kidney injury. Int. J. Mol. Sci. 21, 2519 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  25. Jedlicka, J., Becker, B. F. & Chappell, D. Endothelial glycocalyx. Crit. Care Clin. 36, 217–232 (2020).

    Article  PubMed  Google Scholar 

  26. Friden, V. et al. The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int. 79, 1322–1330 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Okada, H. et al. Three-dimensional ultrastructure of capillary endothelial glycocalyx under normal and experimental endotoxemic conditions. Crit. Care 21, 261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lemos, D. R. et al. Maintenance of vascular integrity by pericytes is essential for normal kidney function. Am. J. Physiol. Renal Physiol. 311, F1230–F1242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kwei, S. et al. Early adaptive responses of the vascular wall during venous arterialization in mice. Am. J. Pathol. 164, 81–89 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Devi, S. et al. Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat. Med 19, 107–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Minami, T. & Aird, W. C. Endothelial cell gene regulation. Trends Cardiovasc. Med. 15, 174–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Shirodkar, A. V. et al. A mechanistic role for DNA methylation in endothelial cell (EC)-enriched gene expression: relationship with DNA replication timing. Blood 121, 3531–3540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuan, L. et al. A role of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity. Nat. Commun. 7, 10160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sumpio, B. E. et al. MAPKs (ERK1/2, p38) and AKT can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (CD31) in vascular endothelial cells. J. Biol. Chem. 280, 11185–11191 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Dekker, R. J. et al. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am. J. Pathol. 167, 609–618 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mantilidewi, K. I. et al. Shear stress-induced redistribution of vascular endothelial-protein-tyrosine phosphatase (VE-PTP) in endothelial cells and its role in cell elongation. J. Biol. Chem. 289, 6451–6461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, M., Kluger, M. S., D’Alessio, A., Garcia-Cardena, G. & Pober, J. S. Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. Am. J. Pathol. 172, 1088–1099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuosmanen, S. M., Kansanen, E., Sihvola, V. & Levonen, A.-L. MicroRNA profiling reveals distinct profiles for tissue-derived and cultured endothelial cells. Sci. Rep. 7, 10943 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yan, R. et al. Early heterogenic response of renal microvasculature to hemorrhagic shock/resuscitation and the influence of NF-κB pathway blockade. Shock 51, 200–212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gomez, H. & Kellum, J. A. Sepsis-induced acute kidney injury. Curr. Opin. Crit. Care 22, 546–553 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tateda, K., Matsumoto, T., Miyazaki, S. & Yamaguchi, K. Lipopolysaccharide-induced lethality and cytokine production in aged mice. Infect. Immun. 64, 769–774 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tidjane, N. et al. A primary role for kinin B1 receptor in inflammation, organ damage, and lethal thrombosis in a rat model of septic shock in diabetes. Eur. J. Inflamm. 13, 40–52 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seemann, S., Zohles, F. & Lupp, A. Comprehensive comparison of three different animal models for systemic inflammation. J. Biomed. Sci. 24, 60 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kingsley, S. M. K. & Bhat, B. V. Differential paradigms in animal models of sepsis. Curr. Infect. Dis. Rep. 18, 26 (2016).

    Article  PubMed  Google Scholar 

  45. Lewis, A. J., Seymour, C. W. & Rosengart, M. R. Current murine models of sepsis. Surg. Infect. 17, 385–393 (2016).

    Article  Google Scholar 

  46. von Drygalski, A., Furlan-Freguia, C., Ruf, W., Griffin, J. H. & Mosnier, L. O. Organ-specific protection against lipopolysaccharide-induced vascular leak is dependent on the endothelial protein C receptor. Arterioscler. Thromb. Vasc. Biol. 33, 769–776 (2013).

    Article  Google Scholar 

  47. Post, E. H., Kellum, J. A., Bellomo, R. & Vincent, J. L. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int. 91, 45–60 (2017).

    Article  PubMed  Google Scholar 

  48. Song, T. et al. Survival advantage depends on cecal volume rather than cecal length in a mouse model of cecal ligation and puncture. J. Surg. Res. 203, 476–482 (2016).

    Article  PubMed  Google Scholar 

  49. Lewis, A. J. et al. Use of biotelemetry to define physiology-based deterioration thresholds in a murine cecal ligation and puncture model of sepsis. Crit. Care Med. 44, e420–e431 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Matejovic, M. et al. Molecular differences in susceptibility of the kidney to sepsis-induced kidney injury. BMC Nephrol. 18, 183 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Seymour, C. W. et al. Murine sepsis phenotypes and differential treatment effects in a randomized trial of prompt antibiotics and fluids. Crit. Care 23, 384 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Scicluna, B. P. et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir. Med. 5, 816–826 (2017).

    Article  PubMed  Google Scholar 

  53. van Lier, D., Geven, C., Leijte, G. P. & Pickkers, P. Experimental human endotoxemia as a model of systemic inflammation. Biochimie 159, 99–106 (2019).

    Article  PubMed  Google Scholar 

  54. Fijen, J. W. et al. Inhibition of p38 mitogen-activated protein kinase: dose-dependent suppression of leukocyte and endothelial response after endotoxin challenge in humans. Crit. Care Med. 30, 841–845 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Rodriguez-Rosales, Y. A. et al. Long-term effects of experimental human endotoxemia on immune cell function: similarities and differences with sepsis. Shock 51, 678–689 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Fijen, J. W. et al. Suppression of the clinical and cytokine response to endotoxin by RWJ-67657, a p38 mitogen-activated protein-kinase inhibitor, in healthy human volunteers. Clin. Exp. Immunol. 124, 16–20 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jilma, B. et al. The single nucleotide polymorphism Ser128Arg in the E-selectin gene is associated with enhanced coagulation during human endotoxemia. Blood 105, 2380–2383 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Zijlstra, J. G., Tulleken, J. E., Ligtenberg, J. J., de Boer, P. & van der Werf, T. S. p38-MAPK inhibition and endotoxin induced tubular dysfunction in men. J. Endotoxin Res. 10, 402–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Heemskerk, S. et al. Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule injury. Clin. J. Am. Soc. Nephrol. 1, 853–862 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Mera, S. et al. Multiplex cytokine profiling in patients with sepsis. APMIS 119, 155–163 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Tornblom, S. et al. Neutrophil activation in septic acute kidney injury: a post hoc analysis of the FINNAKI study. Acta Anaesthesiol. Scand. 63, 1390–1397 (2019).

    Article  PubMed  Google Scholar 

  62. Cavaillon, J.-M., Singer, M. & Skirecki, T. Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO Mol. Med. 12, e10128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aird, W. C. Endothelium as a therapeutic target in sepsis. Curr. Drug Targets 8, 501–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Fels, B. & Kusche-Vihrog, K. It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch. 472, 419–433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Khakpour, S., Wilhelmsen, K. & Hellman, J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun. 21, 827–846 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Chinnaiyan, A. M. et al. Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am. J. Pathol. 159, 1199–1209 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kiely, J. M., Hu, Y., Garcia-Cardena, G. & Gimbrone, M. A. Jr. Lipid raft localization of cell surface E-selectin is required for ligation-induced activation of phospholipase C gamma. J. Immunol. 171, 3216–3224 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Chase, S. D., Magnani, J. L. & Simon, S. I. E-selectin ligands as mechanosensitive receptors on neutrophils in health and disease. Ann. Biomed. Eng. 40, 849–859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, N. et al. Ligand-specific binding forces of LFA-1 and Mac-1 in neutrophil adhesion and crawling. Mol. Biol. Cell 29, 408–418 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Margraf, A. et al. The integrin-linked kinase is required for chemokine-triggered high-affinity conformation of the neutrophil beta2-integrin LFA-1. Blood 136, 2200–2205 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17, 611–625 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Vestweber, D. How leukocytes cross the vascular endothelium. Nat. Rev. Immunol. 15, 692–704 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Braun, L. J. et al. Platelets docking to VWF prevent leaks during leukocyte extravasation by stimulating Tie-2. Blood 136, 627–639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jourde-Chiche, N. et al. Endothelium structure and function in kidney health and disease. Nat. Rev. Nephrol. 15, 87–108 (2019).

    Article  PubMed  Google Scholar 

  77. Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100, 158–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Prowle, J. R. & Bellomo, R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin. Nephrol. 35, 64–74 (2015).

    Article  PubMed  Google Scholar 

  79. Langenberg, C., Wan, L., Egi, M., May, C. N. & Bellomo, R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 69, 1996–2002 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Mayeux, P. R. & MacMillan-Crow, L. A. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury. Pharmacol. Ther. 134, 139–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bellomo, R., Wan, L., Langenberg, C., Ishikawa, K. & May, C. N. Septic acute kidney injury: the glomerular arterioles. Contrib. Nephrol. 174, 98–107 (2011).

    Article  PubMed  Google Scholar 

  82. Mederle, K., Meurer, M., Castrop, H. & Hocherl, K. Inhibition of COX-1 attenuates the formation of thromboxane A2 and ameliorates the acute decrease in glomerular filtration rate in endotoxemic mice. Am. J. Physiol. Renal Physiol. 309, F332–F340 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Wu, L. et al. Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice. Am. J. Physiol. Renal Physiol. 292, F261–F268 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Meurer, M. & Hocherl, K. Deregulated renal magnesium transport during lipopolysaccharide-induced acute kidney injury in mice. Pflugers Arch. 471, 619–631 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Nakano, D. et al. Reduction of tubular flow rate as a mechanism of oliguria in the early phase of endotoxemia revealed by intravital imaging. J. Am. Soc. Nephrol. 26, 3035–3044 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakano, D. et al. Lipopolysaccharide induces filtrate leakage from renal tubular lumina into the interstitial space via a proximal tubular Toll-like receptor 4-dependent pathway and limits sensitivity to fluid therapy in mice. Kidney Int. 97, 904–912 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Boffa, J. J. & Arendshorst, W. J. Maintenance of renal vascular reactivity contributes to acute renal failure during endotoxemic shock. J. Am. Soc. Nephrol. 16, 117–124 (2005).

    Article  PubMed  Google Scholar 

  88. Leisman, D. E. et al. Impaired angiotensin II type 1 receptor signaling contributes to sepsis-induced acute kidney injury. Kidney Int. 99, 148–160 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Calianos, T. & Muntz, K. H. Autoradiographic quantification of adrenergic receptors in rat kidney. Kidney Int. 38, 39–46 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Canessa, L. M. et al. Alpha 1B-adrenergic receptors in rat renal microvessels. Kidney Int. 48, 1412–1419 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Jesmin, S. et al. Effects of protease activated receptor (PAR)2 blocking peptide on endothelin-1 levels in kidney tissues in endotoxemic rat model. Life Sci. 102, 127–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Wendel, M., Knels, L., Kummer, W. & Koch, T. Distribution of endothelin receptor subtypes ETA and ETB in the rat kidney. J. Histochem. Cytochem. 54, 1193–1203 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Dhaun, N., Webb, D. J. & Kluth, D. C. Endothelin-1 and the kidney–beyond BP. Br. J. Pharmacol. 167, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tiwari, M. M., Brock, R. W., Megyesi, J. K., Kaushal, G. P. & Mayeux, P. R. Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. Am. J. Physiol. Renal Physiol. 289, F1324–F1332 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Wu, L., Gokden, N. & Mayeux, P. R. Evidence for the role of reactive nitrogen species in polymicrobial sepsis-induced renal peritubular capillary dysfunction and tubular injury. J. Am. Soc. Nephrol. 18, 1807–1815 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Chou, D. E., Cai, H., Jayadevappa, D. & Porush, J. G. Regional expression of inducible nitric oxide synthase in the kidney stimulated by lipopolysaccharide in the rat. Exp. Physiol. 87, 153–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Bian, K., Davis, K., Kuret, J., Binder, L. & Murad, F. Nitrotyrosine formation with endotoxin-induced kidney injury detected by immunohistochemistry. Am. J. Physiol. 277, F33–F40 (1999).

    CAS  PubMed  Google Scholar 

  98. Hua, T. et al. Micro- and macrocirculatory changes during sepsis and septic shock in a rat model. Shock 49, 591–595 (2018).

    Article  PubMed  Google Scholar 

  99. Wang, Z., Sims, C. R., Patil, N. K., Gokden, N. & Mayeux, P. R. Pharmacologic targeting of sphingosine-1-phosphate receptor 1 improves the renal microcirculation during sepsis in the mouse. J. Pharmacol. Exp. Ther. 352, 61–66 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Shieh, P., Zhou, M., Ornan, D. A., Chaudry, I. H. & Wang, P. Upregulation of inducible nitric oxide synthase and nitric oxide occurs later than the onset of the hyperdynamic response during sepsis. Shock 13, 325–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Bachmann, S., Bosse, H. M. & Mundel, P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am. J. Physiol. 268, F885–F898 (1995).

    CAS  PubMed  Google Scholar 

  102. Saharinen, P. et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat. Cell Biol. 10, 527–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Di Lorenzo, A. et al. eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J. Cell Sci. 126, 5541–5552 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Heemskerk, S., Masereeuw, R., Russel, F. G. & Pickkers, P. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury. Nat. Rev. Nephrol. 5, 629–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Coletta, C. et al. Endothelial dysfunction is a potential contributor to multiple organ failure and mortality in aged mice subjected to septic shock: preclinical studies in a murine model of cecal ligation and puncture. Crit. Care 18, 511 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang, W. et al. Endothelial nitric oxide synthase-deficient mice exhibit increased susceptibility to endotoxin-induced acute renal failure. Am. J. Physiol. Renal Physiol. 287, F1044–F1048 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Schwartz, D. et al. Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J. Clin. Invest. 100, 439–448 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Condor, J. M. et al. Treatment with human Wharton’s Jelly-derived mesenchymal stem cells attenuates sepsis-induced kidney injury, liver injury, and endothelial dysfunction. Stem Cell Transl. Med. 5, 1048–1057 (2016).

    Article  CAS  Google Scholar 

  109. Xu, C. et al. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int. 85, 72–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Yano, K. et al. Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality. J. Exp. Med. 203, 1447–1458 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jeong, S. J., Han, S. H., Kim, C. O., Choi, J. Y. & Kim, J. M. Anti-vascular endothelial growth factor antibody attenuates inflammation and decreases mortality in an experimental model of severe sepsis. Crit. Care 17, R97 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kumpers, P. et al. Time course of angiopoietin-2 release during experimental human endotoxemia and sepsis. Crit. Care 13, R64 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Parikh, S. M. The angiopoietin-Tie2 signaling axis in systemic inflammation. J. Am. Soc. Nephrol. 28, 1973–1982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. van Meurs, M. et al. Shock induced stress induces loss of microvascular endothelial Tie2 in the kidney which is not associated with reduced glomerular barrier function. Am. J. Physiol. Renal Physiol. 297, F272–F281 (2009).

    Article  PubMed  Google Scholar 

  115. Aslan, A. et al. Organ-specific differences in endothelial permeability-regulating molecular responses in mouse and human sepsis. Shock 48, 69–77 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kurniati, N. F. et al. The flow dependency of Tie2 expression in endotoxemia. Intensive Care Med. 39, 1262–1271 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Bomsztyk, K. et al. Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. Crit. Care 19, 225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kumpers, P. et al. The synthetic Tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit. Care 15, R261 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. David, S. et al. Acute administration of recombinant angiopoietin-1 ameliorates multiple-organ dysfunction syndrome and improves survival in murine sepsis. Cytokine 55, 251–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Kim, D. H. et al. COMP-angiopoietin-1 decreases lipopolysaccharide-induced acute kidney injury. Kidney Int. 76, 1180–1191 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Kirby, R. J. et al. Dynamic regulation of sphingosine-1-phosphate homeostasis during development of mouse metanephric kidney. Am. J. Physiol. Renal Physiol. 296, F634–F641 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Sanchez, T. Sphingosine-1-phosphate signaling in endothelial disorders. Curr. Atheroscler. Rep. 18, 31 (2016).

    Article  PubMed  Google Scholar 

  123. Gaengel, K. et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev. Cell 23, 587–599 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Kurano, M. et al. Apolipoprotein M protects lipopolysaccharide-treated mice from death and organ injury. Thromb. Haemost. 118, 1021–1035 (2018).

    Article  PubMed  Google Scholar 

  125. Zhang, G. et al. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood 122, 443–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kuppers, V., Vockel, M., Nottebaum, A. F. & Vestweber, D. Phosphatases and kinases as regulators of the endothelial barrier function. Cell Tissue Res. 355, 577–586 (2014).

    Article  PubMed  Google Scholar 

  127. Conway, D. E. et al. VE-cadherin phosphorylation regulates endothelial fluid shear stress responses through the polarity protein LGN. Curr. Biol. 27, 2219–2225.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xi, C. et al. Effects of alterations of glomerular fibrin deposition on renal inflammation in rats at different age stages. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1099–1110 (2005).

    Article  PubMed  Google Scholar 

  129. Ruiz, S. et al. Kinin B1 receptor: a potential therapeutic target in sepsis-induced vascular hyperpermeability. J. Transl. Med. 18, 174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Garsen, M. et al. Heparanase is essential for the development of acute experimental glomerulonephritis. Am. J. Pathol. 186, 805–815 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Adembri, C. et al. Sepsis induces albuminuria and alterations in the glomerular filtration barrier: a morphofunctional study in the rat. Crit. Care 15, R277 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lygizos, M. I. et al. Heparanase mediates renal dysfunction during early sepsis in mice. Physiol. Rep. 1, e00153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Margraf, A. et al. 6% Hydroxyethyl starch (HES 130/0.4) diminishes glycocalyx degradation and decreases vascular permeability during systemic and pulmonary inflammation in mice. Crit. Care 22, 111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Madhusudhan, T., Kerlin, B. A. & Isermann, B. The emerging role of coagulation proteases in kidney disease. Nat. Rev. Nephrol. 12, 94–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Jesmin, S. et al. Protease-activated receptor 2 blocking peptide counteracts endotoxin-induced inflammation and coagulation and ameliorates renal fibrin deposition in a rat model of acute renal failure. Shock 32, 626–632 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Song, D., Ye, X., Xu, H. & Liu, S. F. Activation of endothelial intrinsic NF-{kappa}B pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood 114, 2521–2529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pendurthi, U. R. & Rao, L. V. M. Endothelial cell protein C receptor-dependent signaling. Curr. Opin. Hematol. 25, 219–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Opal, S. M., Dellinger, R. P., Vincent, J. L., Masur, H. & Angus, D. C. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? Crit. Care Med. 42, 1714–1721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kang, K. et al. Heme oxygenase 1 modulates thrombomodulin and endothelial protein C receptor levels to attenuate septic kidney injury. Shock 40, 136–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Laszik, Z., Mitro, A., Taylor, F. B. Jr., Ferrell, G. & Esmon, C. T. Human protein C receptor is present primarily on endothelium of large blood vessels: implications for the control of the protein C pathway. Circulation 96, 3633–3640 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Terada, Y. et al. Capillary endothelial thrombomodulin expression and fibrin deposition in rats with continuous and bolus lipopolysaccharide administration. Lab. Invest. 83, 1165–1173 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Erlich, J., Fearns, C., Mathison, J., Ulevitch, R. J. & Mackman, N. Lipopolysaccharide induction of tissue factor expression in rabbits. Infect. Immun. 67, 2540–2546 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Erlich, J. H. et al. Renal expression of tissue factor pathway inhibitor and evidence for a role in crescentic glomerulonephritis in rabbits. J. Clin. Invest. 98, 325–335 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shimokawa, T., Yamamoto, K., Kojima, T. & Saito, H. Down-regulation of murine tissue factor pathway inhibitor mRNA by endotoxin and tumor necrosis factor-alpha in vitro and in vivo. Thromb. Res. 100, 211–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Coughlan, A. F., Hau, H., Dunlop, L. C., Berndt, M. C. & Hancock, W. W. P-selectin and platelet-activating factor mediate initial endotoxin-induced neutropenia. J. Exp. Med. 179, 329–334 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Fries, J. W. et al. Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. Am. J. Pathol. 143, 725–737 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Dayang, E. Z. et al. Identification of LPS-activated endothelial subpopulations with distinct inflammatory phenotypes and regulatory signaling mechanisms. Front. Immunol. 10, 1169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wu, X., Guo, R., Wang, Y. & Cunningham, P. N. The role of ICAM-1 in endotoxin-induced acute renal failure. Am. J. Physiol. Renal Physiol. 293, F1262–F1271 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Redl, H. et al. Expression of endothelial leukocyte adhesion molecule-1 in septic but not traumatic/hypovolemic shock in the baboon. Am. J. Pathol. 139, 461–466 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Cunningham, P. N. et al. Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. J. Immunol. 168, 5817–5823 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Cunningham, P. N., Wang, Y., Guo, R., He, G. & Quigg, R. J. Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J. Immunol. 172, 2629–2635 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Jongman, R. M. et al. Partial deletion of Tie2 affects microvascular endothelial responses to critical illness in a vascular bed and organ-specific way. Shock 51, 757–769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Baran, D., Vendeville, B., Ogborn, M. & Katz, N. Cell adhesion molecule expression in murine lupus-like nephritis induced by lipopolysaccharide. Nephron 84, 167–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Granfeldt, A., Ebdrup, L., Tonnesen, E. & Wogensen, L. Renal cytokine profile in an endotoxemic porcine model. Acta Anaesthesiol. Scand. 52, 614–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Herter, J. M., Rossaint, J., Spieker, T. & Zarbock, A. Adhesion molecules involved in neutrophil recruitment during sepsis-induced acute kidney injury. J. Innate Immun. 6, 597–606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rossaint, J. et al. Hydroxyethyl starch 130/0.4 decreases inflammation, neutrophil recruitment, and neutrophil extracellular trap formation. Br. J. Anaesth. 114, 509–519 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. van Meurs, M. et al. Adiponectin diminishes organ specific microvascular endothelial cell activation associated with sepsis. Shock 37, 392–398 (2012).

    Article  PubMed  Google Scholar 

  158. Matsukawa, A. et al. Mice genetically lacking endothelial selectins are resistant to the lethality in septic peritonitis. Exp. Mol. Pathol. 72, 68–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Chousterman, B. G. et al. Ly6Chigh monocytes protect against kidney damage during sepsis via a CX3CR1-dependent adhesion mechanism. J. Am. Soc. Nephrol. 27, 792–803 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Zhang, J., Yang, W., Hu, B., Wu, W. & Fallon, M. B. Endothelin-1 activation of the endothelin B receptor modulates pulmonary endothelial CX3CL1 and contributes to pulmonary angiogenesis in experimental hepatopulmonary syndrome. Am. J. Pathol. 184, 1706–1714 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. David, S. et al. Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis. Crit. Care Med. 40, 3034–3041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ismail, H. et al. Angiopoietin-1 and vascular endothelial growth factor regulation of leukocyte adhesion to endothelial cells: role of nuclear receptor-77. Arterioscler. Thromb. Vasc. Biol. 32, 1707–1716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Schmidt, E. P. et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat. Med. 18, 1217–1223 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Rops, A. L. et al. Modulation of heparan sulfate in the glomerular endothelial glycocalyx decreases leukocyte influx during experimental glomerulonephritis. Kidney Int. 86, 932–942 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Cox, L. A. et al. Inflammation-induced increases in plasma endocan levels are associated with endothelial dysfunction in humans in vivo. Shock 43, 322–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. van Poelgeest, E. P. et al. Characterization of immune cell, endothelial, and renal responses upon experimental human endotoxemia. J. Pharmacol. Toxicol. Methods 89, 39–46 (2018).

    Article  PubMed  Google Scholar 

  167. Li, X. & Yan, B. Research on the effect of cytokine concentration on the immune level and survival conditions of elderly patients with sepsis. Exp. Ther. Med. 16, 842–846 (2018).

    PubMed  PubMed Central  Google Scholar 

  168. Shao, R. et al. The expression of thioredoxin-1 and inflammatory cytokines in patients with sepsis. Immunopharmacol. Immunotoxicol. 42, 280–285 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Martin, G. et al. Endothelial (NOS3 E298D) and inducible (NOS2 exon 22) nitric oxide synthase polymorphisms, as well as plasma NOx, influence sepsis development. Nitric Oxide 42, 79–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Hou, P. C. et al. Endothelial permeability and hemostasis in septic shock: results from the ProCESS Trial. Chest 152, 22–31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Mikacenic, C. et al. Biomarkers of endothelial activation are associated with poor outcome in critical Illness. PLoS ONE 10, e0141251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Fang, Y., Li, C., Shao, R., Yu, H. & Zhang, Q. The role of biomarkers of endothelial activation in predicting morbidity and mortality in patients with severe sepsis and septic shock in intensive care: a prospective observational study. Thromb. Res. 171, 149–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Bhatraju, P. K. et al. Identification of acute kidney injury subphenotypes with differing molecular signatures and responses to vasopressin therapy. Am. J. Respir. Crit. Care Med. 199, 863–872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Winkler, M. S. et al. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. Crit. Care 19, 372 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Skibsted, S. et al. Biomarkers of endothelial cell activation in early sepsis. Shock 39, 427–432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kjaergaard, A. G., Dige, A., Nielsen, J. S., Tonnesen, E. & Krog, J. The use of the soluble adhesion molecules sE-selectin, sICAM-1, sVCAM-1, sPECAM-1 and their ligands CD11a and CD49d as diagnostic and prognostic biomarkers in septic and critically ill non-septic ICU patients. APMIS 124, 846–855 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Yu, W.-K. et al. Vascular endothelial cadherin shedding is more severe in sepsis patients with severe acute kidney injury. Crit. Care 23, 18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Schmidt, E. P. et al. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 194, 439–449 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Puskarich, M. A., Cornelius, D. C., Tharp, J., Nandi, U. & Jones, A. E. Plasma syndecan-1 levels identify a cohort of patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. J. Crit. Care 36, 125–129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Uhel, F. et al. Mortality and host response aberrations associated with transient and persistent acute kidney injury in critically ill patients with sepsis: a prospective cohort study. Intensive Care Med. 46, 1576–1589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lerolle, N. et al. Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med. 36, 471–478 (2010).

    Article  PubMed  Google Scholar 

  182. Aslan, A. et al. Kidney histopathology in lethal human sepsis. Crit. Care 22, 359 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Bonavia, A. & Singbartl, K. A review of the role of immune cells in acute kidney injury. Pediatr. Nephrol. 33, 1629–1639 (2018).

    Article  PubMed  Google Scholar 

  184. Molitoris, B. A. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J. Clin. Invest. 124, 2355–2363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Franzin, R. et al. Inflammaging and complement system: a link between acute kidney injury and chronic graft damage. Front. Immunol. 11, 734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kalakeche, R. et al. Endotoxin uptake by S1 proximal tubular segment causes oxidative stress in the downstream S2 segment. J. Am. Soc. Nephrol. 22, 1505–1516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mansson, L. E. et al. Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol. 9, 413–424 (2007).

    Article  PubMed  Google Scholar 

  188. Melican, K. et al. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell. Microbiol. 10, 1987–1998 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Molema, G. Heterogeneity in endothelial responsiveness to cytokines, molecular causes and pharmacological consequences. Semin. Thromb. Hemost. 36, 246–264 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Kumar, S. & Molitoris, B. A. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin. Nephrol. 35, 96–107 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  191. Dauphinee, S. M. & Karsan, A. Lipopolysaccharide signaling in endothelial cells. Lab. Invest. 86, 9–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Abedi, F., Hayes, A. W., Reiter, R. & Karimi, G. Acute lung injury: the therapeutic role of Rho kinase inhibitors. Pharmacol. Res. 155, 104736 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Ye, X., Ding, J., Zhou, X., Chen, G. & Liu, S. F. Divergent roles of endothelial NF-kappaB in multiple organ injury and bacterial clearance in mouse models of sepsis. J. Exp. Med. 205, 1303–1315 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Meyer-Schwesinger, C. et al. Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling. Am. J. Physiol. Renal Physiol. 296, F1088–F1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Mussbacher, M. et al. Cell type-specific roles of NF-kappaB linking inflammation and thrombosis. Front. Immunol. 10, 85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Peng, Y. et al. Overexpression of toll-like receptor 2 in glomerular endothelial cells and podocytes in septic acute kidney injury mouse model. Ren. Fail. 37, 694–698 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. El-Achkar, T. M. et al. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am. J. Physiol. Renal Physiol. 290, F1034–F1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Jang, H. R. & Rabb, H. Immune cells in experimental acute kidney injury. Nat. Rev. Nephrol. 11, 88–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Gomez, H., Kellum, J. A. & Ronco, C. Metabolic reprogramming and tolerance during sepsis-induced AKI. Nat. Rev. Nephrol. 13, 143–151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sun, J. et al. Mitochondria in sepsis-induced AKI. J. Am. Soc. Nephrol. 30, 1151–1161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. van der Poll, T. & Parker, R. I. Platelet activation and endothelial cell dysfunction. Crit. Care Clin. 36, 233–253 (2020).

    Article  PubMed  Google Scholar 

  202. Kerchberger, V. E. & Ware, L. B. The role of circulating cell-free hemoglobin in sepsis-associated acute kidney injury. Semin. Nephrol. 40, 148–159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Leone, M. et al. Systemic endothelial activation is greater in septic than in traumatic-hemorrhagic shock but does not correlate with endothelial activation in skin biopsies. Crit. Care Med. 30, 808–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. Shapiro, N. I. et al. Skin biopsies demonstrate site-specific endothelial activation in mouse models of sepsis. J. Vasc. Res. 46, 495–502 (2009).

    Article  PubMed  Google Scholar 

  205. Stefanska, A. et al. Interstitial pericytes decrease in aged mouse kidneys. Aging 7, 370–382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wulfert, F. M. et al. Age-dependent role of microvascular endothelial and polymorphonuclear cells in lipopolysaccharide-induced acute kidney failure. Anesthesiology 117, 126–136 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e20 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31, 118–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. Toledo, A. G. et al. Proteomic atlas of organ vasculopathies triggered by Staphylococcus aureus sepsis. Nat. Commun. 10, 4656 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. de Graaf, I. A. et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat. Protoc. 5, 1540–1551 (2010).

    Article  PubMed  Google Scholar 

  211. Bigaeva, E. et al. Inhibition of tyrosine kinase receptor signaling attenuates fibrogenesis in an ex vivo model of human renal fibrosis. Am. J. Physiol. Renal Physiol. 318, F117–F134 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Langenkamp, E. et al. Innovations in studying in vivo cell behavior and pharmacology in complex tissues — microvascular endothelial cells in the spotlight. Cell Tissue Res. 354, 647–669 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Skalicky, S. et al. Combining laser microdissection and microRNA expression profiling to unmask microRNA signatures in complex tissues. Biotechniques 67, 276–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Hasson, D., Goldstein, S. L. & Standage, S. W. The application of omic technologies to research in sepsis-associated acute kidney injury. Pediatr. Nephrol. 36, 1075–1086 (2021).

    Article  PubMed  Google Scholar 

  215. Kellum, J. A. & Prowle, J. R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 14, 217–230 (2018).

    Article  PubMed  Google Scholar 

  216. Sarma, A., Calfee, C. S. & Ware, L. B. Biomarkers and precision medicine: state of the art biomarkers precision medicine prognostic enrichment predictive enrichment. Crit. Care Clin. 36, 155–165 (2020).

    Article  PubMed  Google Scholar 

  217. Nishinakamura, R. Human kidney organoids: progress and remaining challenges. Nat. Rev. Nephrol. 15, 613–624 (2019).

    Article  PubMed  Google Scholar 

  218. Koning, M., van den Berg, C. W. & Rabelink, T. J. Stem cell-derived kidney organoids: engineering the vasculature. Cell Mol. Life Sci. 77, 2257–2273 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Zhang, J. & Hill, C. E. Differential connexin expression in preglomerular and postglomerular vasculature: accentuation during diabetes. Kidney Int. 68, 1171–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Seul, K. H. & Beyer, E. C. Heterogeneous localization of connexin40 in the renal vasculature. Microvasc. Res. 59, 140–148 (2000).

    Article  CAS  Google Scholar 

  221. Arensbak, B., Mikkelsen, H. B., Gustafsson, F., Christensen, T. & Holstein-Rathlou, N. H. Expression of connexin 37, 40, and 43 mRNA and protein in renal preglomerular arterioles. Histochem. Biol. 115, 479–487 (2001).

    Article  CAS  Google Scholar 

  222. Hadley, T. J. et al. Postcapillary venule endothelial cells in kidney express a multispecific chemokine receptor that is structurally and functionally identical to the erythroid isoform, which is the Duffy blood group antigen. J. Clin. Invest. 94, 985–991 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Thiriot, A. et al. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol. 15, 45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Patrakka, J. et al. Expression and subcellular distribution of novel glomerulus-associated proteins dendrin, ehd3, sh2d4a, plekhh2, and 2310066E14Rik. J. Am. Soc. Nephrol. 18, 689–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  225. Samulowitz, U. et al. Human endomucin: distribution pattern, expression on high endothelial venules, and decoration with the MECA-79 epitope. Am. J. Pathol. 160, 1669–1681 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Gu, X. & Herrera, G. A. Expression of eNOS in kidneys from hypertensive patients. Int. J. Nephrol. Renovasc. Dis. 3, 11–19 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Karet, F. E. & Davenport, A. P. Localization of endothelin peptides in human kidney. Kidney Int. 49, 382–387 (1996).

    Article  CAS  PubMed  Google Scholar 

  228. Barry, D. M. et al. Molecular determinants of nephron vascular specialization in the kidney. Nat. Commun. 10, 5705 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Muczynski, K. A., Ekle, D. M., Coder, D. M. & Anderson, S. K. Normal human kidney HLA-DR-expressing renal microvascular endothelial cells: characterization, isolation, and regulation of MHC class II expression. J. Am. Soc. Nephrol. 14, 1336–1348 (2003).

    Article  CAS  PubMed  Google Scholar 

  230. Menzies, R. I. et al. Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats. Front. Physiol. 4, 305 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Akiyama, T., Sadahira, Y., Matsubara, K., Mori, M. & Igarashi, Y. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 in vascular and lymphatic endothelial cells. J. Mol. Histol. 39, 527–533 (2008).

    Article  CAS  PubMed  Google Scholar 

  232. Naumnik, B., Borawski, J., Chyczewski, L., Pawlak, K. & Mysliwiec, M. Tissue factor and its inhibitor in human non-crescentic glomerulonephritis–immunostaining vs plasma and urinary levels. Nephrol. Dial. Transplant. 21, 3450–3457 (2006).

    Article  CAS  PubMed  Google Scholar 

  233. Al Lamki, R. S. et al. Expression of tumor necrosis factor receptors in normal kidney and rejecting renal transplants. Lab. Invest. 81, 1503–1515 (2001).

    Article  CAS  PubMed  Google Scholar 

  234. Al-Lamki, R. S. et al. TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury. FASEB J. 19, 1637–1645 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Taubitz, A., Schwarz, M., Eltrich, N., Lindenmeyer, M. T. & Vielhauer, V. Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice. PLoS ONE 8, e68167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Boffa, M. C., Burke, B. & Haudenschild, C. C. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J. Histochem. Cytochem. 35, 1267–1276 (1987).

    Article  CAS  PubMed  Google Scholar 

  237. Simon, M. et al. Expression of vascular endothelial growth factor and its receptors in human renal ontogenesis and in adult kidney. Am. J. Physiol. 268, F240–F250 (1995).

    CAS  PubMed  Google Scholar 

  238. Marti, H. H. & Risau, W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc. Natl Acad. Sci. USA 95, 15809–15814 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Takahashi, K. et al. Expression of receptor-type protein tyrosine phosphatase in developing and adult renal vasculature. PLoS ONE 12, e0177192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Pusztaszeri, M. P., Seelentag, W. & Bosman, F. T. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem. 54, 385–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  241. Yamamoto, K., de V., W., Fearns, C. & Loskutoff, D. J. Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo. Blood 92, 2791–2801 (1998).

    Article  CAS  PubMed  Google Scholar 

  242. Pysher, T. J., Siegler, R. L., Tesh, V. L. & Taylor, F. B. Jr. von Willebrand Factor expression in a Shiga toxin-mediated primate model of hemolytic uremic syndrome. Pediatr. Dev. Pathol. 5, 472–479 (2002).

    Article  CAS  PubMed  Google Scholar 

  243. Chung, C. S. et al. Inhibition of Fas signaling prevents hepatic injury and improves organ blood flow during sepsis. Surgery 130, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  244. Seely, K. A. et al. Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 301, F209–F217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Holthoff, J. H., Wang, Z., Patil, N. K., Gokden, N. & Mayeux, P. R. Rolipram improves renal perfusion and function during sepsis in the mouse. J. Pharmacol. Exp. Ther. 347, 357–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Seymour, C. W. et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA 321, 2003–2017 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Yao, Z., Petschnigg, J., Ketteler, R. & Stagljar, I. Application guide for omics approaches to cell signaling. Nat. Chem. Biol. 11, 387–397 (2015).

    Article  CAS  PubMed  Google Scholar 

  248. Langeberg, L. K. & Scott, J. D. Signalling scaffolds and local organization of cellular behaviour. Nat. Rev. Mol. Cell Biol. 16, 232–244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Huang, J. et al. Endothelial scaffolding protein ENH (enigma homolog protein) promotes PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2)-mediated dephosphorylation of AKT1 and eNOS (endothelial NO synthase) promoting vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 40, 1705–1721 (2020).

    Article  CAS  PubMed  Google Scholar 

  250. Ku, K. H., Subramaniam, N. & Marsden, P. A. Epigenetic determinants of flow-mediated vascular endothelial gene expression. Hypertension 74, 467–476 (2019).

    Article  CAS  PubMed  Google Scholar 

  251. Ransohoff, J. D., Wei, Y. & Khavari, P. A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 19, 143–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Fernandez-Hernando, C. & Suarez, Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr. Opin. Hematol. 25, 227–236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Bludau, I. & Aebersold, R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol. 21, 327–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Round, J. L. et al. Scaffold protein Dlgh1 coordinates alternative p38 kinase activation, directing T cell receptor signals toward NFAT but not NF-kappaB transcription factors. Nat. Immunol. 8, 154–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  255. Asgeirsdottir, S. A. et al. MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation. Am. J. Physiol. Renal Physiol. 302, F1630–F1639 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.M., J.G.Z. and M.v.M. researched the data and wrote the article. G.M., J.G.Z. and J.A.A.M.K. made substantial contributions to discussion of the content. All authors reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Grietje Molema.

Ethics declarations

Competing interests

J.G.Z., M.v.M. and J.A.A.M.K. declare no competing interests. G.M. is co-founder and chief technology/science officer of Vivomicx, which provides tissue laser microdissection and omics analysis services.

Additional information

Peer review information

Nature Reviews Nephrology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Immune paralysis

A state in which immune cells show reduced responses to stimuli. Immune paralysis can occur in response to an overload of antigen and results in susceptibility to secondary infection. The cause of immune paralysis in sepsis is not known.

Vascular integrity

The homeostatic condition of blood vessels in which endothelial cells in their natural environment regulate tissue perfusion, anticoagulant–procoagulant balance, microvascular permeability and leukocyte recruitment for immune surveillance purposes.

Perm-selective barrier

The barrier formed by the glomerular endothelial cells that restricts the passage of proteins but enables passage of small molecules and water.

Dwell time

The time that leukocytes spend in a particular vascular segment in a tissue in vivo. Dwell time is assessed using intravital microscopy technology.

Epigenetic mechanisms

Mechanisms of control of cellular phenotype that do not involve the sequence of DNA nucleotides. Epigenetic mechanisms include chemical modifications such as methylation of DNA and histones that affect the accessibility of the DNA for transcription.

Kinases

Enzymes that phosphorylate target proteins in the signal transduction cascade, leading to activation of transcription factors and other molecular entities that can change the phenotype of a cell.

Signal transduction

The molecular mechanisms that are used by cells to relay an external stimulus into the nucleus to enable the necessary genes to be transcribed to mount a response.

Evans Blue Dye accumulation

An in vivo technique to assess organ microvascular permeability based on intravenous administration of this dye, which non-covalently associates with albumin.

Weibel–Palade bodies

Storage granules for P-selectin, angiopoietin 2 and von Willebrand factor proteins that are specifically located in endothelial cells.

Precision cut kidney slice (PCKS) technology

A technology that reproducibly cuts tissue slices of predetermined size from kidney biopsy samples or whole kidney tissues. This technique preserves tissue architecture and enables cellular responses to drugs and experimental conditions to be studied.

Laser microdissection

A technique that combines regular microscopy with laser-based release of selected parts of a tissue section for further molecular analyses.

Omics

The collective name for platform technologies that assess the molecular status of tissues and/or cells in an unbiased manner, that is, the analysis is not restricted to pre-selected molecules.

Pharmacolomics

The study of drug effects on target cells and surrounding tissues using omics platform technologies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molema, G., Zijlstra, J.G., van Meurs, M. et al. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol 18, 95–112 (2022). https://doi.org/10.1038/s41581-021-00489-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00489-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research