Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unconventional T cells and kidney disease

Abstract

Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia–reperfusion injury and kidney transplantation.

Key points

  • Unconventional T cells, such as γδ T cells, mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells, are distinct from classical CD4+ and CD8+ T cells and can have either protective or pathogenic roles in a range of inflammatory and autoimmune conditions related to acute and chronic kidney disease.

  • Vγ9Vδ2 T cells and MAIT cells respond to metabolites shared by a wide range of microbial pathogens, which may have implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis.

  • Non-Vγ9Vδ2 γδ T cells expand during cytomegalovirus (CMV) infection in kidney transplant recipients and contribute to viral clearance, which suggests that they can be harnessed for immune monitoring and for adoptive immunotherapy in refractory CMV infections.

  • IgA nephropathy is accompanied by oligoclonal expansion of γδ T cells in blood and the kidneys; this expansion correlates with disease progression and may contribute to immunopathology.

  • In murine models of glomerulonephritis, kidney γδ T cells are an important source of IL-17A, which is necessary for the recruitment of macrophages, neutrophils and T cells, and contributes to the development of kidney fibrosis.

  • Murine type I and type II NKT cells have opposite roles in ischaemia–reperfusion injury and may be relevant for allograft tolerance, as well as kidney protection in lupus nephritis or crescentic glomerulonephritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recognition of unconventional ligands by unconventional human T cells.
Fig. 2: Involvement of unconventional T cells in glomerulonephritis.
Fig. 3: Unconventional T cells in patients receiving peritoneal dialysis.
Fig. 4: γδ T cells and cytomegalovirus infection in kidney transplant recipients.
Fig. 5: γδ T cells and transplant rejection.

Similar content being viewed by others

References

  1. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Mittrücker, H. W., Visekruna, A. & Huber, M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch. Immunol. Ther. Exp. 62, 449–458 (2014).

    Article  Google Scholar 

  3. Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Pellicci, D. G., Koay, H. F. & Berzins, S. P. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat. Rev. Immunol. 20, 756–770 (2020).

    Article  PubMed  CAS  Google Scholar 

  5. Rhodes, D. A., Reith, W. & Trowsdale, J. Regulation of immunity by butyrophilins. Annu. Rev. Immunol. 34, 151–172 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Hayday, A. C. & Vantourout, P. The innate biologies of adaptive antigen receptors. Annu. Rev. Immunol. 38, 487–510 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Godfrey, D. I., Koay, H. F., McCluskey, J. & Gherardin, N. A. The biology and functional importance of MAIT cells. Nat. Immunol. 20, 1110–1128 (2019).

    Article  PubMed  CAS  Google Scholar 

  8. Corbett, A. J., Awad, W., Wang, H. & Chen, Z. Antigen recognition by MR1-reactive T cells; MAIT cells, metabolites, and remaining mysteries. Front. Immunol. 11, 1961 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Adams, E. J. Lipid presentation by human CD1 molecules and the diverse T cell populations that respond to them. Curr. Opin. Immunol. 26, 1–6 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. Lepore, M., Mori, L. & De Libero, G. The conventional nature of non-MHC-restricted T cells. Front. Immunol. 9, 1365 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Willcox, C. R., Mohammed, F. & Willcox, B. E. The distinct MHC-unrestricted immunobiology of innate-like and adaptive-like human γδ T cell subsets-Nature’s CAR-T cells. Immunol. Rev. 298, 25–46 (2020).

    Article  PubMed  CAS  Google Scholar 

  12. Papadopoulou, M., Sanchez Sanchez, G. & Vermijlen, D. Innate and adaptive γδ T cells: How, when, and why. Immunol. Rev. 298, 99–116 (2020).

    Article  PubMed  CAS  Google Scholar 

  13. Godfrey, D. I., Le Nours, J., Andrews, D. M., Uldrich, A. P. & Rossjohn, J. Unconventional T cell targets for cancer immunotherapy. Immunity 48, 453–473 (2018).

    Article  PubMed  CAS  Google Scholar 

  14. Silva-Santos, B., Mensurado, S. & Coffelt, S. B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).

    Article  PubMed  CAS  Google Scholar 

  15. Turner, J. E. et al. IL-17A production by renal γδ T cells promotes kidney injury in crescentic GN. J. Am. Soc. Nephrol. 23, 1486–1495 (2012). This study shows that in the mouse, kidney-resident γδ T cells produce IL-17A, promote neutrophil recruitment and contribute to the immunopathogenesis of crescentic glomerulonephritis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Uchida, T. et al. Repeated administration of alpha-galactosylceramide ameliorates experimental lupus nephritis in mice. Sci. Rep. 8, 8225 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eberl, M., Friberg, I. M., Liuzzi, A. R., Morgan, M. P. & Topley, N. Pathogen-specific immune fingerprints during acute infection: The diagnostic potential of human γδ T-cells. Front. Immunol. 5, 572 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khairallah, C., Déchanet-Merville, J. & Capone, M. γδ T cell-mediated immunity to cytomegalovirus infection. Front. Immunol. 8, 105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lefranc, M. P. & Rabbitts, T. H. A nomenclature to fit the organization of the human T-cell receptor γ and δ genes. Res. Immunol. 141, 615–618 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. Heilig, J. S. & Tonegawa, S. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322, 836–840 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. Morita, C. T., Jin, C., Sarikonda, G. & Wang, H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev. 215, 59–76 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. Falk, M. C. et al. Infiltration of the kidney by αβ and γδ T cells: effect on progression in IgA nephropathy. Kidney Int. 47, 177–185 (1995). This pioneering study shows that αβ T cells are found in both stable and progressive IgA nephropathy, whereas γδ T cells are associated with progressive IgA nephropathy.

    Article  PubMed  CAS  Google Scholar 

  23. Turner, J. E., Becker, M., Mittrücker, H. W. & Panzer, U. Tissue-resident lymphocytes in the kidney. J. Am. Soc. Nephrol. 29, 389–399 (2018).

    Article  PubMed  CAS  Google Scholar 

  24. Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250–1259 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Nel, I., Bertrand, L., Toubal, A. & Lehuen, A. MAIT cells, guardians of skin and mucosa? Mucosal Immunol. 22, 1–12 (2021).

    Google Scholar 

  26. Terpstra, M. L. et al. Tissue-resident mucosal-associated invariant T (MAIT) cells in the human kidney represent a functionally distinct subset. Eur. J. Immunol. 50, 1783–1797 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gambón-Deza, F. & Olivieri, D. N. Immunoglobulin and T cell receptor genes in Chinese crocodile lizard Shinisaurus crocodilurus. Mol. Immunol. 101, 160–166 (2018).

    Article  PubMed  Google Scholar 

  28. La Gruta, N. L., Gras, S., Daley, S. R., Thomas, P. G. & Rossjohn, J. Understanding the drivers of MHC restriction of T cell receptors. Nat. Rev. Immunol. 18, 467–478 (2018).

    Article  PubMed  Google Scholar 

  29. Bonneville, M., O’Brien, R. L. & Born, W. K. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10, 467–478 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. Fichtner, A. S. et al. Alpaca (Vicugna pacos), the first nonprimate species with a phosphoantigen-reactive Vγ9Vδ2 T cell subset. Proc. Natl Acad. Sci. USA 117, 6697–6707 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Vermijlen, D., Gatti, D., Kouzeli, A., Rus, T. & Eberl, M. γδ T cell responses: how many ligands will it take till we know? Semin. Cell Dev. Biol. 84, 75–86 (2018).

    Article  PubMed  CAS  Google Scholar 

  32. Van Rhijn, I., Godfrey, D. I., Rossjohn, J. & Moody, D. B. Lipid and small-molecule display by CD1 and MR1. Nat. Rev. Immunol. 15, 643–654 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hintz, M. et al. Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett. 509, 317–322 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. Corbett, A. J. et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014). This study identifies simple adducts between microbial vitamin B2 precursors and small intracellular molecules such as methylglyoxal as the most potent ligands for MAIT cells that are stabilized by covalent binding to MR1.

    Article  PubMed  CAS  Google Scholar 

  35. Eberl, M. et al. Microbial isoprenoid biosynthesis and human γδ T cell activation. FEBS Lett. 544, 4–10 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Heuston, S., Begley, M., Gahan, C. G. M. & Hill, C. Isoprenoid biosynthesis in bacterial pathogens. Microbiology 158, 1389–1401 (2012).

    Article  PubMed  CAS  Google Scholar 

  37. Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120, 2269–2279 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity 40, 490–500 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Karunakaran, M. M. et al. Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and is essential for phosphoantigen sensing. Immunity 52, 487–498.e6 (2020). This is one of two seminal studies that identifies the butyrophilin BTN2A1 as the ligand for human Vγ9Vδ2 Tcells and proposes a model of how Vγ9Vδ2 T cells respond to phosphoantigens in the context of BTN2A1 and BTN3A1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rigau, M. et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science. 367, eaay5516 (2020). This is one of two seminal studies that identify the butyrophilin BTN2A1 as the ligand for human Vγ9Vδ2 Tcells and propose a model of how Vγ9Vδ2 T cells respond to phosphoantigens in the context of BTN2A1 and BTN3A1.

    Article  PubMed  CAS  Google Scholar 

  41. Sebestyen, Z., Prinz, I., Déchanet-Merville, J., Silva-Santos, B. & Kuball, J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug Discov. 19, 169–184 (2020).

    Article  PubMed  CAS  Google Scholar 

  42. Vyborova, A. et al. γ9δ2T cell diversity and the receptor interface with tumor cells. J. Clin. Invest. 130, 4637–4651 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liuzzi, A. R., McLaren, J. E., Price, D. A. & Eberl, M. Early innate responses to pathogens: pattern recognition by unconventional human T-cells. Curr. Opin. Immunol. 36, 31–37 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Davey, M. S. et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J. Immunol. 193, 3704–3716 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Howson, L. J. et al. Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1. Sci. Immunol. 5, eabc9492 (2020).

    Article  PubMed  CAS  Google Scholar 

  46. Koay, H. F. et al. Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 10, 2243 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lepore, M., Lewinsohn, D. A. & Lewinsohn, D. M. T cell receptor diversity, specificity and promiscuity of functionally heterogeneous human MR1-restricted T cells. Mol. Immunol. 130, 64–68 (2021).

    Article  PubMed  CAS  Google Scholar 

  48. Kinjo, Y. et al. Functions of CD1d-restricted invariant natural killer T cells in antimicrobial immunity and potential applications for infection control. Front. Immunol. 9, 1266 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Morita, M. et al. Structure-activity relationship of α-galactosylceramides against B16-bearing mice. J. Med. Chem. 38, 2176–2187 (1995).

    Article  PubMed  CAS  Google Scholar 

  50. Mori, L., Lepore, M. & De Libero, G. The Immunology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol. 34, 479–510 (2016).

    Article  PubMed  CAS  Google Scholar 

  51. Dhodapkar, M. V. & Kumar, V. Type II NKT cells and their emerging role in health and disease. J. Immunol. 198, 1015–1021 (2017).

    Article  PubMed  CAS  Google Scholar 

  52. Gras, S. et al. T cell receptor recognition of CD1b presenting a mycobacterial glycolipid. Nat. Commun. 7, 13257 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Roy, S. et al. Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells. Proc. Natl Acad. Sci. US A 111, E4648–E4657 (2014).

    Article  CAS  Google Scholar 

  54. Kasmar, A. G. et al. Cutting edge: CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. J. Immunol. 191, 4499–4503 (2013).

    Article  PubMed  CAS  Google Scholar 

  55. Déchanet, J. et al. Major expansion of γδ T lymphocytes following cytomegalovirus infection in kidney allograft recipients. J. Infect. Dis. 179, 1–8 (1999).

    Article  PubMed  Google Scholar 

  56. Déchanet, J. et al. Implication of γδ T cells in the human immune response to cytomegalovirus. J. Clin. Invest. 103, 1437–1449 (1999). The first study to show that human Vδ2neg γδ Tcells expand in the peripheral blood of kidney transplant recipients after CMV infection and have an important role in the immune response against this virus.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vermijlen, D. et al. Human cytomegalovirus elicits fetal γδ T cell responses in utero. J. Exp. Med. 207, 807–821 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Willcox, C. R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012).

    Article  PubMed  CAS  Google Scholar 

  59. Marlin, R. et al. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. Proc. Natl Acad. Sci. USA 114, 3163–3168 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Silva-Santos, B., Schamel, W. W., Fisch, P. & Eberl, M. γδ T-cell conference 2012: close encounters for the fifth time. Eur. J. Immunol. 42, 3101–3105 (2012).

    Article  PubMed  CAS  Google Scholar 

  61. Bonneville, M. et al. Chicago 2014 – 30 years of γδ T cells. Cell Immunol. 296, 3–9 (2015).

    Article  PubMed  CAS  Google Scholar 

  62. Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167, 203–218.e17 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mayassi, T. et al. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell 176, 967–981.e19 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tuffs, S. W., Haeryfar, S. M. M. & McCormick, J. K. Manipulation of innate and adaptive immunity by staphylococcal superantigens. Pathogens 7, 53 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  65. Shepherd, F. R. & McLaren, J. E. T cell immunity to bacterial pathogens: mechanisms of immune control and bacterial evasion. Int. J. Mol. Sci. 21, 6144 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  66. Simões, A. E., Di Lorenzo, B. & Silva-Santos, B. Molecular determinants of target cell recognition by human γδ T cells. Front. Immunol. 9, 929 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rudak, P. T., Choi, J. & Haeryfar, S. M. M. MAIT cell-mediated cytotoxicity: roles in host defense and therapeutic potentials in infectious diseases and cancer. J. Leukoc. Biol. 104, 473–486 (2018).

    Article  PubMed  CAS  Google Scholar 

  68. Djaoud, Z. & Parham, P. HLAs, TCRs, and KIRs, a triumvirate of human cell-mediated immunity. Annu. Rev. Biochem. 89, 717–739 (2020).

    Article  PubMed  CAS  Google Scholar 

  69. Wesch, D., Peters, C., Oberg, H. H., Pietschmann, K. & Kabelitz, D. Modulation of γδ T cell responses by TLR ligands. Cell Mol. Life Sci. 68, 2357–2370 (2011).

    Article  PubMed  CAS  Google Scholar 

  70. Garner, L. C., Klenerman, P. & Provine, N. M. Insights into mucosal-associated invariant T cell biology from studies of invariant natural killer T cells. Front. Immunol. 9, 1478 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Provine, N. M. & Klenerman, P. MAIT cells in health and disease. Annu. Rev. Immunol. 38, 203–228 (2020).

    Article  PubMed  CAS  Google Scholar 

  72. Tyler, C. J., Doherty, D. G., Moser, B. & Eberl, M. Human Vγ9/Vδ2 T cells: innate adaptors of the immune system. Cell Immunol. 296, 10–21 (2015).

    Article  PubMed  CAS  Google Scholar 

  73. Papotto, P. H., Reinhardt, A., Prinz, I. & Silva-Santos, B. Innately versatile: γδ17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 87, 26–37 (2018).

    Article  PubMed  CAS  Google Scholar 

  74. Pisarska, M. M., Dunne, M. R., O’Shea, D. & Hogan, A. E. Interleukin-17 producing mucosal associated invariant T cells - emerging players in chronic inflammatory diseases? Eur. J. Immunol. 50, 1098–1108 (2020).

    Article  PubMed  CAS  Google Scholar 

  75. Houot, R., Kohrt, H. E., Marabelle, A. & Levy, R. Targeting immune effector cells to promote antibody-induced cytotoxicity in cancer immunotherapy. Trends Immunol. 32, 510–516 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Kyaw, T. et al. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br. J. Pharmacol. 174, 3956–3972 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. Barisa, M. et al. E. coli promotes human Vγ9Vδ2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner. Sci. Rep. 7, 2805 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Junqueira, C. et al. γδ T cells suppress Plasmodium falciparum blood-stage infection by direct killing and phagocytosis. Nat. Immunol. 22, 347–357 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Johnson, M. D., Witherden, D. A. & Havran, W. L. The role of tissue-resident T cells in stress surveillance and tissue maintenance. Cells 9, 686 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  81. Kohlgruber, A. C. et al. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464–474 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).

    Article  PubMed  CAS  Google Scholar 

  83. Carico, Z. & Krangel, M. S. Chromatin dynamics and the development of the TCRα and TCRδ repertoires. Adv. Immunol. 128, 307–361 (2015).

    Article  PubMed  CAS  Google Scholar 

  84. Pauza, C. D. & Cairo, C. Evolution and function of the TCR Vγ9 chain repertoire: it’s good to be public. Cell Immunol. 296, 22–30 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Davey, M. S. et al. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9 subsets. Nat. Commun. 9, 1760 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Papadopoulou, M. et al. Fetal public Vγ9Vδ2 T cells expand and gain potent cytotoxic functions early after birth. Proc. Natl Acad. Sci. USA 117, 18638–18648 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ravens, S. et al. Microbial exposure drives polyclonal expansion of innate γδ T cells immediately after birth. Proc. Natl Acad. Sci. USA 117, 18649–18660 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Davey, M. S. et al. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ravens, S. et al. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18, 393–401 (2017). The first study to show rapid expansion of CMV-reactive γδ TCR clonotypes in patients receiving haematopoietic stem cell transplants, which is strong evidence of an adaptive γδ T cell response.

    Article  PubMed  CAS  Google Scholar 

  90. Kumar, V. & Delovitch, T. L. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 142, 321–336 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kezić, A., Stajic, N. & Thaiss, F. Innate immune response in kidney ischemia/reperfusion injury: potential target for therapy. J. Immunol. Res. 2017, 6305439 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Göcze, I. et al. Postoperative cellular stress in the kidney is associated with an early systemic γδ T-cell immune cell response. Crit. Care 22, 168 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhu, C. et al. Kidney injury in response to crystallization of calcium oxalate leads to rearrangement of the intrarenal T cell receptor delta immune repertoire. J. Transl. Med. 17, 278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Savransky, V. et al. Role of the T-cell receptor in kidney ischemia-reperfusion injury. Kidney Int. 69, 233–238 (2006). This study suggests that murine γδ T cells can facilitate and amplify kidney lesions after IRI by recruiting adaptive αβ T cells.

    Article  PubMed  CAS  Google Scholar 

  95. Hochegger, K. et al. Role of α/β and γ/δ T cells in renal ischemia-reperfusion injury. Am. J. Physiol. Ren. Physiol 293, F741–F747 (2007).

    Article  CAS  Google Scholar 

  96. Bauerle, J. D., Grenz, A., Kim, J. H., Lee, H. T. & Eltzschig, H. K. Adenosine generation and signaling during acute kidney injury. J. Am. Soc. Nephrol. 22, 14–20 (2011).

    Article  PubMed  CAS  Google Scholar 

  97. Lappas, C. M., Day, Y. J., Marshall, M. A., Engelhard, V. H. & Linden, J. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J. Exp. Med. 203, 2639–2648 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Zhang, J. et al. Hypoxia-inducible factor-2α limits natural killer T cell cytotoxicity in fenal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 27, 92–106 (2016). This study shows that HIF2α is induced in iNKT cells during hypoxia and enhances the protective effect of adenosine by suppressing iNKT cell activation during IRI.

    Article  PubMed  Google Scholar 

  99. Li, L. et al. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J. Clin. Invest. 122, 3931–3942 (2012). This study shows that during ischaemia–reperfusion, DCs loaded with α-GalCer and tolerized by adenosine receptor agonists inhibit IFNγ production by iNKT, and thereby limit IRI in the kidney.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Yang, S. H. et al. Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury. J. Am. Soc. Nephrol. 22, 1305–1314 (2011). This study shows that type II NKT cells protect mouse kidneys from experimental IRI lesions and attenuated the apoptosis of kidney tubule cells via IL-10 in vitro.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Zhang, C. et al. Rapamycin protects kidney against ischemia reperfusion injury through recruitment of NKT cells. J. Transl. Med. 12, 224 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yu, A., et al. Brenner and Rector’s The Kidney, 2-Volume Set 11th edn (Elsevier, 2019).

  103. Wyatt, R. J. & Julian, B. A. IgA nephropathy. N. Engl. J. Med. 368, 2402–2414 (2013).

    Article  PubMed  CAS  Google Scholar 

  104. Olive, C. et al. Expression of the mucosal γδ T cell receptor V region repertoire in patients with IgA nephropathy. Kidney Int. 52, 1047–1053 (1997).

    Article  PubMed  CAS  Google Scholar 

  105. Buck, K. S. et al. Expression of T cell receptor variable region families by bone marrow γδ T cells in patients with IgA nephropathy. Clin. Exp. Immunol. 127, 527–532 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Toyabe, S., Harada, W. & Uchiyama, M. Oligoclonally expanding γδ T lymphocytes induce IgA switching in IgA nephropathy. Clin. Exp. Immunol. 124, 110–117 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wu, H., Clarkson, A. R. & Knight, J. F. Restricted γδ T-cell receptor repertoire in IgA nephropathy renal biopsies. Kidney Int. 60, 1324–1331 (2001).

    Article  PubMed  CAS  Google Scholar 

  108. Nakazawa, D., Masuda, S., Tomaru, U. & Ishizu, A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat. Rev. Rheumatol. 15, 91–101 (2019).

    Article  PubMed  CAS  Google Scholar 

  109. Paust, H. J. et al. The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis. J. Am. Soc. Nephrol. 20, 969–979 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Fazekas, B. et al. Alterations in circulating lymphoid cell populations in systemic small vessel vasculitis are non-specific manifestations of renal injury. Clin. Exp. Immunol. 191, 180–188 (2018).

    Article  PubMed  CAS  Google Scholar 

  111. Holmén, C. et al. Anti endothelial cell autoantibodies selectively activate SAPK/JNK signalling in Wegener’s granulomatosis. J. Am. Soc. Nephrol. 18, 2497–2508 (2007).

    Article  PubMed  Google Scholar 

  112. Rosenkranz, A. R. et al. Regulatory interactions of αβ and γδ T cells in glomerulonephritis. Kidney Int. 58, 1055–1066 (2000). This pioneering study shows that γδ T cell-deficient mice display fewer CD8+ T cells and macrophages in the kidneys than wild-type mice, suggesting that γδ T cells have the ability to recruit these cells into the kidney interstitium.

    Article  PubMed  CAS  Google Scholar 

  113. Krebs, C. F. et al. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45, 1078–1092 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Gan, P. Y. et al. Pathogenic role for γδ T cells in autoimmune anti-myeloperoxidase glomerulonephritis. J. Immunol. 199, 3042–3050 (2017).

    Article  PubMed  CAS  Google Scholar 

  115. Yang, S. H. et al. NKT cells inhibit the development of experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. 19, 1663–1671 (2008). This study shows that murine type II NKT cells ameliorate glomerular lesions in experimental crescentic glomerulonephritis, and inhibit lipopolysaccharide-induced proliferation of mesangial cells in vitro.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Mesnard, L. et al. Invariant natural killer T cells and TGF-β attenuate anti-GBM glomerulonephritis. J. Am. Soc. Nephrol. 20, 1282–1292 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Riedel, J. H. et al. Immature renal dendritic cells recruit regulatory CXCR6+ invariant natural killer T cells to attenuate crescentic GN. J. Am. Soc. Nephrol. 23, 1987–2000 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Gatto, M. et al. Emerging and critical issues in the pathogenesis of lupus. Autoimmun. Rev. 12, 523–536 (2013).

    Article  PubMed  CAS  Google Scholar 

  119. Wang, L. et al. Downregulation of CD94/NKG2A inhibitory receptor on decreased γδ T cells in patients with systemic lupus erythematosus. Scand. J. Immunol. 76, 62–69 (2012).

    Article  PubMed  CAS  Google Scholar 

  120. Li, X. et al. Generation of human regulatory γδ T cells by TCRγδ stimulation in the presence of TGF-β and their involvement in the pathogenesis of systemic lupus erythematosus. J. Immunol. 186, 6693–6700 (2011).

    Article  PubMed  CAS  Google Scholar 

  121. Peng, S. L., Madaio, M. P., Hayday, A. C. & Craft, J. Propagation and regulation of systemic autoimmunity by γδ T cells. J. Immunol. 157, 5689–5698 (1996).

    Article  PubMed  CAS  Google Scholar 

  122. Rajagopalan, S., Zordan, T., Tsokos, G. C. & Datta, S. K. Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patients with active lupus nephritis: isolation of CD4-8- T helper cell lines that express the γδ T-cell antigen receptor. Proc. Natl Acad. Sci. USA 87, 7020–7024 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Rezende, R. M. et al. γδ T cells control humoral immune response by inducing T follicular helper cell differentiation. Nat. Commun. 9, 3151 (2018). In this study, CXCR5+ murine γδ T cells are shown to induce TFH cell differentiation, enhance autoantibody production and thereby promote the development of lupus nephritis.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Riedel, J. H. et al. IL-17F promotes tissue injury in autoimmune kidney diseases. J. Am. Soc. Nephrol. 27, 3666–3677 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yang, J. Q., Kim, P. J. & Singh, R. R. Brief treatment with iNKT cell ligand α-galactosylceramide confers a long-term protection against lupus. J. Clin. Immunol. 32, 106–113 (2012).

    Article  PubMed  CAS  Google Scholar 

  126. Yang, J. Q. et al. Examining the role of CD1d and natural killer T cells in the development of nephritis in a genetically susceptible lupus model. Arthritis Rheum. 56, 1219–1233 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Esteban, L. M. et al. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J. Immunol. 171, 2873–2878 (2003).

    Article  PubMed  CAS  Google Scholar 

  128. Ando, T. et al. Infiltration of canonical Vγ4/Vδ1 γδ T cells in an adriamycin-induced progressive renal failure model. J. Immunol. 167, 3740–3745 (2001).

    Article  PubMed  CAS  Google Scholar 

  129. Wu, H. et al. Depletion of γδ T cells exacerbates murine adriamycin nephropathy. J. Am. Soc. Nephrol. 18, 1180–1189 (2007).

    Article  PubMed  CAS  Google Scholar 

  130. Koenecke, C. et al. In vivo application of mAb directed against the γδ TCR does not deplete but generates “invisible” γδ T cells. Eur. J. Immunol. 39, 372–379 (2009).

    Article  PubMed  CAS  Google Scholar 

  131. Wu, H., Knight, J. F. & Alexander, S. I. Regulatory γδ T cells in Heymann nephritis express an invariant Vγ6/Vδ1 with a canonical CDR3 sequence. Eur. J. Immunol. 34, 2322–2330 (2004).

    Article  PubMed  CAS  Google Scholar 

  132. Kawakami, T., Mimura, I., Shoji, K., Tanaka, T. & Nangaku, M. Hypoxia and fibrosis in chronic kidney disease: crossing at pericytes. Kidney Int. Suppl. 4, 107–112 (2014).

    Article  CAS  Google Scholar 

  133. Peng, X. et al. IL-17A produced by both γδ T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. J. Pathol. 235, 79–89 (2015).

    Article  PubMed  CAS  Google Scholar 

  134. Law, B. M. et al. Effector γδ T cells in human renal fibrosis and chronic kidney disease. Nephrol. Dial. Transpl. 34, 40–48 (2019).

    Article  CAS  Google Scholar 

  135. Law, B. M. P. et al. Human tissue-resident mucosal-associated invariant T (MAIT) cells in renal fibrosis and CKD. J. Am. Soc. Nephrol. 30, 1322–1335 (2019). This study shows that human MAIT cells infiltrate kidney tissue with tubulo-interstitial fibrosis and induce proximal tubule epithelial cell necrosis via perforin and granzyme B in vitro.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ullah, M. M. & Basile, D. P. Role of renal hypoxia in the progression from acute kidney injury to chronic kidney disease. Semin. Nephrol. 39, 567–580 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Locatelli, F., Carfagna, F., Del Vecchio, L. & La Milia, V. Haemodialysis or haemodiafiltration: that is the question. Nephrol. Dial. Transpl. 33, 1896–1904 (2018).

    Article  CAS  Google Scholar 

  138. Kumbar, L. & Yee, J. Current concepts in hemodialysis vascular access infections. Adv. Chronic Kidney Dis. 26, 16–22 (2019).

    Article  PubMed  Google Scholar 

  139. Crépin, T. et al. Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. Nephrol. Dial. Transpl. 35, 624–632 (2020).

    Article  Google Scholar 

  140. Goldblum, S. E. & Reed, W. P. Host defenses and immunologic alterations associated with chronic hemodialysis. Ann. Intern. Med. 93, 597–613 (1980).

    Article  PubMed  CAS  Google Scholar 

  141. Yoon, J. W., Gollapudi, S., Pahl, M. V. & Vaziri, N. D. Naïve and central memory T-cell lymphopenia in end-stage renal disease. Kidney Int. 70, 371–376 (2006).

    Article  PubMed  CAS  Google Scholar 

  142. Matsumoto, Y. et al. Peripheral deletion of γδ T cells in haemodialysis patients. Nephrol. Dial. Transpl. 13, 2861–2866 (1998).

    Article  CAS  Google Scholar 

  143. Szczepánska, M., Szprynger, K., Mazur, B. & Szczepánski, T. αβ and γδ T cell subsets in chronic renal failure in children on dialysis treatment. Pediatr. Int. 44, 32–36 (2002).

    Article  PubMed  Google Scholar 

  144. Juno, J. A. et al. γδ T-cell function is inhibited in end-stage renal disease and impacted by latent tuberculosis infection. Kidney Int. 92, 1003–1014 (2017).

    Article  PubMed  CAS  Google Scholar 

  145. Baron, M. et al. Innate-like and conventional T cell populations from hemodialyzed and kidney transplanted patients are equally compromised. PLoS ONE 9, e105422 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Juno, J. A. et al. Mucosal-associated invariant T cells are depleted and exhibit altered chemokine receptor expression and elevated granulocyte macrophage-colony stimulating factor production during end-stage renal disease. Front. Immunol. 9, 1076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Peukert, K. et al. Invariant natural killer T cells are depleted in renal impairment and recover after kidney transplantation. Nephrol. Dial. Transpl. 29, 1020–1028 (2014).

    Article  CAS  Google Scholar 

  148. Schaefer, F. & Warady, B. A. Peritoneal dialysis in children with end-stage renal disease. Nat. Rev. Nephrol. 7, 659–668 (2011).

    Article  PubMed  Google Scholar 

  149. Li, P. K. et al. Changes in the worldwide epidemiology of peritoneal dialysis. Nat. Rev. Nephrol. 13, 90–103 (2017).

    Article  PubMed  CAS  Google Scholar 

  150. Aufricht, C. et al. Biomarker research to improve clinical outcomes of peritoneal dialysis: consensus of the European Training and Research in Peritoneal Dialysis (EuTRiPD) network. Kidney Int. 92, 824–835 (2017).

    Article  PubMed  CAS  Google Scholar 

  151. Betjes, M. G. et al. Intraperitoneal interleukin-8 and neutrophil influx in the initial phase of a CAPD peritonitis. Perit. Dial. Int. 16, 385–392 (1996).

    Article  PubMed  CAS  Google Scholar 

  152. Liuzzi, A. R. et al. Unconventional human T cells accumulate at the site of infection in response to microbial ligands and induce local tissue remodeling. J. Immunol. 197, 2195–2207 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Liao, C. T. et al. Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes. Kidney Int. 91, 1088–1103 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Burton, R. J., Ahmed, R., Cuff, S. M., Artemiou, A. & Eberl, M. CytoPy: an autonomous cytometry analysis framework. PLoS Comput. Biol. 17, e1009071 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Fricke, H. et al. Continuous ambulatory peritoneal dialysis impairs T lymphocyte selection in the peritoneum. Kidney Int. 49, 1386–1395 (1996).

    Article  PubMed  CAS  Google Scholar 

  156. Eberl, M. et al. A rapid crosstalk of human γδ T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog. 5, e1000308 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Davey, M. S. et al. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. PLoS Pathog. 7, e1002040 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Rodrigues-Díez, R. et al. IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney Int. 86, 303–315 (2014).

    Article  PubMed  Google Scholar 

  159. Ibidapo-Obe, O. et al. Mucosal-associated invariant T cells redistribute to the peritoneal cavity during spontaneous bacterial peritonitis and contribute to peritoneal inflammation. Cell Mol. Gastroenterol. Hepatol. 9, 661–677 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Niehaus, C. E. et al. MAIT cells are enriched and highly functional in ascites of patients with decompensated liver cirrhosis. Hepatology 72, 1378–1393 (2020).

    Article  PubMed  CAS  Google Scholar 

  161. Lin, C. Y., Kift-Morgan, A., Moser, B., Topley, N. & Eberl, M. Suppression of pro-inflammatory T-cell responses by human mesothelial cells. Nephrol. Dial. Transpl. 28, 1743–1750 (2013).

    Article  CAS  Google Scholar 

  162. Wolfe, R. A. et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 1725–1730 (1999).

    Article  PubMed  CAS  Google Scholar 

  163. Sellarés, J. et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am. J. Transpl. 12, 388–399 (2012).

    Article  Google Scholar 

  164. Humar, A. et al. The efficacy and safety of 200 days valganciclovir cytomegalovirus prophylaxis in high-risk kidney transplant recipients. Am. J. Transpl. 10, 1228–1237 (2010).

    Article  CAS  Google Scholar 

  165. Witzke, O. et al. Valganciclovir prophylaxis versus preemptive therapy in cytomegalovirus-positive renal allograft recipients: 1-year results of a randomized clinical trial. Transplantation 93, 61–68 (2012).

    Article  PubMed  CAS  Google Scholar 

  166. Crough, T. & Khanna, R. Immunobiology of human cytomegalovirus: from bench to bedside. Clin. Microbiol. Rev. 22, 76–98 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Couzi, L. et al. Common features of γδ T cells and CD8+ αβ T cells responding to human cytomegalovirus infection in kidney transplant recipients. J. Infect. Dis. 200, 1415–1424 (2009).

    Article  PubMed  CAS  Google Scholar 

  168. Scheper, W. et al. γδT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 27, 1328–1338 (2013).

    Article  PubMed  CAS  Google Scholar 

  169. Couzi, L. et al. Gamma-delta T cell expansion is closely associated with cytomegalovirus infection in all solid organ transplant recipients. Transpl. Int. 24, e40–e42 (2011).

    Article  PubMed  Google Scholar 

  170. Pitard, V. et al. Long-term expansion of effector/memory Vδ2γδ T cells is a specific blood signature of CMV infection. Blood 112, 1317–1324 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Kaminski, H. et al. Characterization of a unique γδ T cell subset as a specific marker of CMV infection severity. J. Infect. Dis. 5, jiaa400 (2020).

    Google Scholar 

  172. Pistillo, M. et al. The effects of age and viral serology on γδ T-cell numbers and exercise responsiveness in humans. Cell Immunol. 284, 91–97 (2013).

    Article  PubMed  CAS  Google Scholar 

  173. Couzi, L. et al. Antibody-dependent anti-cytomegalovirus activity of human γδ T cells expressing CD16 (FcγRIIIa). Blood 119, 1418–1427 (2012). This study identifies a new antiviral function for CMV-induced CD16+ human γδ T cells through cooperation with anti-CMV IgG that contributes to surveillance of CMV reactivation in solid organ transplant recipients.

    Article  PubMed  CAS  Google Scholar 

  174. Halary, F. et al. Shared reactivity of Vδ2neg γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 201, 1567–1578 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Khairallah, C. et al. γδ T cells confer protection against murine cytomegalovirus (MCMV). PLoS Pathog. 11, e1004702 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sell, S. et al. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 11, e1004481 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kaminski, H. et al. Surveillance of γδ T cells predicts cytomegalovirus infection resolution in kidney transplants. J. Am. Soc. Nephrol. 27, 637–645 (2016).

    Article  PubMed  CAS  Google Scholar 

  178. Renneson, J. et al. IL-12 and type I IFN response of neonatal myeloid DC to human CMV infection. Eur. J. Immunol. 39, 2789–2799 (2009).

    Article  PubMed  CAS  Google Scholar 

  179. Guerville, F. et al. TCR-dependent sensitization of human γδ T cells to non-myeloid IL-18 in cytomegalovirus and tumor stress surveillance. Oncoimmunology 4, e1003011 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Marino, J., Paster, J. & Benichou, G. Allorecognition by T lymphocytes and allograft rejection. Front. Immunol. 7, 582 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Chen, C. C. et al. T cell help is mandatory for naive and memory donor-specific antibody responses: Impact of therapeutic immunosuppression. Front. Immunol. 9, 275 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Zhang, X. & Reed, E. F. Effect of antibodies on endothelium. Am. J. Transpl. 9, 2459–2465 (2009).

    Article  CAS  Google Scholar 

  183. Sicard, A. et al. Detection of C3d-binding donor-specific anti-HLA antibodies at diagnosis of humoral rejection predicts renal graft loss. J. Am. Soc. Nephrol. 26, 457–467 (2015).

    Article  PubMed  Google Scholar 

  184. Hidalgo, L. G. et al. NK cell transcripts and NK cells in kidney biopsies from patients with donor-specific antibodies: evidence for NK cell involvement in antibody-mediated rejection. Am. J. Transpl. 10, 1812–1822 (2010).

    Article  CAS  Google Scholar 

  185. Drobyski, W. R., Majewski, D. & Hanson, G. Graft-facilitating doses of ex vivo activated γδ T cells do not cause lethal murine graft-vs.-host disease. Biol. Blood Marrow Transpl. 5, 222–230 (1999).

    Article  CAS  Google Scholar 

  186. Zhang, Z. et al. Identifying 4 Novel lncRNAs as potential biomarkers for acute rejection and graft loss of renal allograft. J. Immunol. Res. 2020, 2415374 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Benveniste, P. M. et al. Generation and molecular recognition of melanoma-associated antigen-specific human γδ T cells. Sci. Immunol. 3, eaav4036 (2018).

    Article  PubMed  Google Scholar 

  188. Itoh, S. et al. Interleukin-17 accelerates allograft rejection by suppressing regulatory T cell expansion. Circulation 124, S187–S196 (2011). The first study to show that in the mouse, γδ T cells are a potential source of IL-17, which is crucial for promoting acute allograft rejection by inhibiting the expansion of Treg cells.

    Article  PubMed  CAS  Google Scholar 

  189. Li, Y. et al. Vγ4 γδ T cells provide an early source of IL-17a and accelerate skin graft rejection. J. Invest. Dermatol. 137, 2513–2522 (2017).

    Article  PubMed  CAS  Google Scholar 

  190. Rahimpour, A. et al. γδ T cells augment rejection of skin grafts by enhancing cross-priming of CD8 T cells to skin-derived antigen. J. Invest. Dermatol. 132, 1656–1664 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Loupy, A. et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transpl. 20, 2318–2331 (2020).

    Article  CAS  Google Scholar 

  192. Bachelet, T. et al. Cytomegalovirus-responsive γδ T cells: novel effector cells in antibody-mediated kidney allograft microcirculation lesions. J. Am. Soc. Nephrol. 25, 2471–2482 (2014). An important study showing that CMV-induced CD16+ human γδ T cells can perform antibody-dependent cellular cytotoxicity against donor cells coated with donor-specific antibodies, supporting the notion that these cells are involved in antibody-mediated injury of kidney transplants.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Martínez-Llordella, M. et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am. J. Transpl. 7, 309–319 (2007).

    Article  Google Scholar 

  194. Zhao, X. et al. Intragraft Vδ1 γδ T cells with a unique T-cell receptor are closely associated with pediatric semiallogeneic liver transplant tolerance. Transplantation 95, 192–202 (2013).

    Article  PubMed  CAS  Google Scholar 

  195. Puig-Pey, I. et al. Characterization of γδ T cell subsets in organ transplantation. Transpl. Int. 23, 1045–1055 (2010).

    Article  PubMed  CAS  Google Scholar 

  196. Pillai, A. B., George, T. I., Dutt, S. & Strober, S. Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 113, 4458–4467 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Hongo, D., Tang, X., Dutt, S., Nador, R. G. & Strober, S. Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants. Blood 119, 1581–1589 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Hongo, D., Tang, X., Zhang, X., Engleman, E. G. & Strober, S. Tolerogenic interactions between CD8+ dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts. Blood 129, 1718–1728 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Vajdic, C. M. et al. Cancer incidence before and after kidney transplantation. JAMA 296, 2823–2831 (2006).

    Article  PubMed  CAS  Google Scholar 

  200. Matinfar, M., Shahidi, S. & Feizi, A. Incidence of nonmelanoma skin cancer in renal transplant recipients: a systematic review and meta-analysis. J. Res. Med. Sci. 23, 14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Fisher, J. P., Heuijerjans, J., Yan, M., Gustafsson, K. & Anderson, J. γδ T cells for cancer immunotherapy: a systematic review of clinical trials. Oncoimmunology 3, e27572 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Billon, E. et al. Soluble BTN2A1 is a potential prognosis biomarker in pre-treated advanced renal cell carcinoma. Front. Immunol. 12, 670827 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Krone, B. et al. Impact of vaccinations and infectious diseases on the risk of melanoma–evaluation of an EORTC case-control study. Eur. J. Cancer 39, 2372–2378 (2003).

    Article  PubMed  CAS  Google Scholar 

  204. Devaud, C. et al. Antitumor activity of γδ T cells reactive against cytomegalovirus-infected cells in a mouse xenograft tumor model. Cancer Res. 69, 3971–3978 (2009).

    Article  PubMed  CAS  Google Scholar 

  205. Couzi, L. et al. Cytomegalovirus-induced γδ T cells associate with reduced cancer risk after kidney transplantation. J. Am. Soc. Nephrol. 21, 181–188 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Godder, K. T. et al. Long term disease-free survival in acute leukemia patients recovering with increased γδ T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transpl. 39, 751–757 (2007).

    Article  CAS  Google Scholar 

  207. Elmaagacli, A. H. et al. Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 118, 1402–1412 (2011).

    Article  PubMed  CAS  Google Scholar 

  208. Lin, C. Y. et al. Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients. J. Am. Soc. Nephrol. 24, 2002–2009 (2013). The first study to demonstrate that different types of bacterial peritonitis can be distinguished based on local pathogen-specific biomarker signatures on the day of presentation with acute symptoms, implicating human Vγ9Vδ2 T cells in the response.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Zhang, J. et al. Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections. Kidney Int. 92, 179–191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03339661 (2017).

  211. Gold, M. C. et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 8, e1000407 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Eberl, M., Oldfield, E. & Herrmann, T. Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. Immunother. Adv. 1, ltab005 (2021).

    Article  Google Scholar 

  213. Singh, K. S. et al. IspH inhibitors kill Gram-negative bacteria and mobilize immune clearance. Nature 589, 597–602 (2020). A study demonstrating the dual action of inhibitors of HMB-PP reductase as ‘immuno-antibiotics’ with direct antimicrobial activity against multidrug-resistant bacteria and at the same time harnessing Vγ9Vδ2 T cells against those bacteria.

    Article  PubMed  Google Scholar 

  214. Blazquez, J. L., Benyamine, A., Pasero, C. & Olive, D. New insights into the regulation of γδ T cells by BTN3A and other BTN/BTNL in tumor immunity. Front. Immunol. 9, 1601 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Raffray, L., Burton, R. J., Baker, S. E., Morgan, M. P. & Eberl, M. Zoledronate rescues immunosuppressed monocytes in sepsis patients. Immunology 159, 88–95 (2020).

    Article  PubMed  CAS  Google Scholar 

  216. Smith, C. et al. Autologous adoptive T-cell therapy for recurrent or drug-resistant cytomegalovirus complications in solid organ transplant recipients: a single-arm open-label phase I clinical trial. Clin. Infect. Dis. 68, 632–640 (2019).

    Article  PubMed  CAS  Google Scholar 

  217. Almeida, A. R. et al. Delta One T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof of concept. Clin. Cancer Res. 22, 5795–5804 (2016). A pioneering study that develops a robust and highly reproducible clinical grade method for selective and large-scale expansion and differentiation of cytotoxic human Vδ1+ T cells, ready to use for adoptive immunotherapy.

    Article  PubMed  CAS  Google Scholar 

  218. Gadola, S. D. et al. Structure and binding kinetics of three different human CD1d-α-galactosylceramide-specific T cell receptors. J. Exp. Med. 203, 699–710 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Le Nours, J. et al. Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat. Commun. 7, 10570 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Van Rhijn, I. et al. A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat. Immunol. 14, 706–713 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Harriff, M. J. et al. MR1 displays the microbial metabolome driving selective MR1-restricted T cell receptor usage. Sci. Immunol. 3, eaao2556 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Cotton, R. N. et al. Human skin is colonized by T cells that recognize CD1a independently of lipid. J. Clin. Invest. 131, 140706 (2021).

    Article  PubMed  Google Scholar 

  223. Reijneveld, J. F. et al. Human γδ T cells recognize CD1b by two distinct mechanisms. Proc. Natl Acad. Sci. USA 117, 22944–22952 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Wun, K. S. et al. T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nat. Immunol. 19, 397–406 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Lafarge, X. et al. Cytomegalovirus infection in transplant recipients resolves when circulating γδ T lymphocytes expand, suggesting a protective antiviral role. J. Infect. Dis. 184, 533–541 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to all colleagues in the field whose work was not cited owing to space limitations or unintended oversight. H.K. and L.C. were supported by Fondation pour la Recherche Médicale, Fondation du Rein and Fondation Bordeaux Université; M.E. was supported by the Medical Research Council, Kidney Research UK, the National Institute for Health Research and the Welsh European Funding Office’s Accelerate programme. The authors thank the members of their research teams and J. McLaren for critical comments on the manuscript before submission. H.K. and L.C. are deeply grateful to J. Déchanet-Merville and P. Merville for their thoughtful advice, mentoring and unwavering support.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Matthias Eberl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks D. Doherty, M. Dunne, I. Prinz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Memory T cells

Long-lived antigen-specific T cells that remain in the body after the initial immune response has resolved and confer protection against a subsequent challenge with the same stimulus; effector memory T cells and tissue-resident memory T cells mount rapid recall responses at local sites, whereas central memory T cells patrol secondary lymphoid tissues.

Adaptive immunity

Selective clonal expansion of individual T and B cells that are specific for non-self (for example, microbes, viruses or allergens) or self-antigens (autoimmunity or tumour antigens) and mount highly antigen-specific cellular and/or antibody responses. The expansion and differentiation of these antigen-specific cells increases the speed and efficiency of future memory responses to the same antigen.

TCR repertoires

Summary of unique genetic rearrangements of the T cell receptor (TCR) in each T cell within an anatomical or functional compartment, which for classical T cells are typically polyclonal and ‘private’, whereas unconventional T cells are often oligoclonal and can carry invariant, ‘public’ TCR sequences shared between people.

Cytomegalovirus

(CMV). A virus that causes an infection that is almost asymptomatic in immunocompetent individuals but is associated with considerable morbidity and mortality in immunocompromised individuals; despite prevention strategies based on the use of antivirals, CMV-seronegative recipients who receive an organ from CMV-seropositive donors have the highest risk (20%) of developing CMV disease.

Innate immunity

Nonspecific defence mechanism that is deployed within hours of encountering non-self structures (for example, a pathogen or a foreign object) or danger signals (triggered, for example, by tissue injury or stress); mediated by innate immune cells such as natural killer cells, mast cells, granulocytes (eosinophils, basophils or neutrophils), monocytes, macrophages and dendritic cells.

Antigen presentation

Cellular process whereby antigenic epitopes are displayed on the surface of a cell for recognition by the T cell receptor (TCR) of a neighbouring T cell, typically as short peptides in the context of major histocompatibility complex (MHC) class I and class II molecules in the case of classical CD8+ and CD4+ T cells, respectively, or as non-peptide antigens in association with MHC-related molecules such as CD1 or MR1 in the case of unconventional T cells.

Antibody-dependent cellular cytotoxicity

(ADCC). Immune mechanism through which effector cells carrying receptors for the crystallizable fragment (Fc) region of antibodies can recognize and lyse antibody-coated (that is, opsonized) target cells.

Ischaemia–reperfusion injury

(IRI). Tissue damage that occurs after a period of oxygen deprivation due to ischaemia (that is, disrupted blood supply), which can be caused by sepsis, thrombosis, organ transplantation or trauma, and leads to inflammation, oxidative stress and necrosis following restoration of the normal blood supply.

IgA nephropathy

The most prevalent form of glomerulonephritis in the world and a common cause of kidney failure; it seems to be a systemic disease in which the kidneys are the targets of galactose-deficient IgA1, which stimulates mesangial cells to proliferate, secrete pro-inflammatory and profibrotic cytokines, components of the extracellular matrix and growth factors, activate complement and release reactive oxygen species.

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis

A severe autoimmune disease that mainly affects small vessels in various organs (including the kidney in up to 80% of patients) and is characterized by the presence of ANCA antibodies in serum, excessive neutrophil activation and release of pro-inflammatory cytokines, reactive oxygen species and lytic enzymes.

T cell-mediated rejection

(TCMR). Recognition of mismatched donor antigens (mainly represented by highly polymorphic major histocompatibility complex molecules), which results in priming of effector T cells against these alloantigens and ultimately leads to allograft rejection.

Antibody-mediated rejection

(ABMR). Allograft rejection due to the recognition of mismatched donor major histocompatibility complex molecules by recipient B cells; effective treatments that can halt donor-specific antibody-mediated rejection are currently not available and this type of graft rejection is thus associated with poor prognosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminski, H., Couzi, L. & Eberl, M. Unconventional T cells and kidney disease. Nat Rev Nephrol 17, 795–813 (2021). https://doi.org/10.1038/s41581-021-00466-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00466-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing