Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases

Abstract

Targeting the collecting duct water channel aquaporin 2 (AQP2) to the plasma membrane is essential for the maintenance of mammalian water homeostasis. The vasopressin V2 receptor (V2R), which is a GS protein-coupled receptor that increases intracellular cAMP levels, has a major role in this targeting process. Although a rise in cAMP levels and activation of protein kinase A are involved in facilitating the actions of V2R, studies in knockout mice and cell models have suggested that cAMP signalling pathways are not an absolute requirement for V2R-mediated AQP2 trafficking to the plasma membrane. In addition, although AQP2 phosphorylation is a known prerequisite for V2R-mediated plasma membrane targeting, none of the known AQP2 phosphorylation events appears to be rate-limiting in this process, which suggests the involvement of other factors; cytoskeletal remodelling has also been implicated. Notably, several regulatory processes and signalling pathways involved in AQP2 trafficking also have a role in the pathophysiology of autosomal dominant polycystic kidney disease, although the role of AQP2 in cyst progression is unknown. Here, we highlight advances in the field of AQP2 regulation that might be exploited for the treatment of water balance disorders and provide a rationale for targeting these pathways in autosomal dominant polycystic kidney disease.

Key points

  • Targeting of the collecting duct water channel aquaporin 2 (AQP2) to the plasma membrane is essential for the maintenance of mammalian water homeostasis.

  • Although vasopressin signalling via the GS protein-coupled vasopressin V2 receptor (V2R) is a major receptor-mediated pathway that modulates trafficking of AQP2 to the plasma membrane, this targeting can also occur independently of V2R.

  • The canonical V2R signalling pathway — increased cAMP levels, activation of protein kinase A (PKA) and AQP2 phosphorylation — cannot fully explain AQP2 plasma membrane targeting, and cAMP–PKA-independent pathways exist.

  • Novel regulators of AQP2 plasma membrane targeting that are independent of V2R and cAMP include A-kinase anchoring protein (AKAP)–PKA disruptors, Src inhibition, Wnt5a, fluconazole and epidermal growth factor receptor antagonists.

  • Research on the signalling networks and regulatory steps that govern AQP2 trafficking has identified promising pharmacological targets for water balance disorders.

  • Investigating plasma membrane targeting of AQP2 using agents that do not increase cellular proliferation and epithelial secretion is required to delineate the independent role of AQP2 in cyst progression in autosomal dominant polycystic kidney disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kidney aquaporins and transcellular water transport.
Fig. 2: AQP2 topology and structure.
Fig. 3: Main mechanisms underlying the regulation of AQP2 trafficking.
Fig. 4: Alternative regulators of AQP2 trafficking.
Fig. 5: Drug targets and novel treatment options for ADPKD.

Similar content being viewed by others

References

  1. Nawata, C. M. & Pannabecker, T. L. Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. J. Comp. Physiol. B 188, 899–918 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sohara, E., Rai, T., Sasaki, S. & Uchida, S. Physiological roles of AQP7 in the kidney: lessons from AQP7 knockout mice. Biochim. Biophys. Acta 1758, 1106–1110 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Fenton, R. A. & Knepper, M. A. Mouse models and the urinary concentrating mechanism in the new millennium. Physiol. Rev. 87, 1083–1112 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kortenoeven, M. L. & Fenton, R. A. Renal aquaporins and water balance disorders. Biochim. Biophys. Acta 1840, 1533–1549 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Cheung, P. W., Bouley, R. & Brown, D. Targeting the trafficking of kidney water channels for therapeutic benefit. Annu. Rev. Pharmacol. Toxicol. 60, 175–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Verbalis, J. G. Acquired forms of central diabetes insipidus: Mechanisms of disease. Best Pract. Res. Clin. Endocrinol. Metab. 34, 101449 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Torres, V. E. et al. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 Trial. Nephrol. Dial. Transpl. 33, 477–489 (2018).

    Article  CAS  Google Scholar 

  9. Torres, V. E. et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N. Engl. J. Med. 377, 1930–1942 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Valtin, H., Schroeder, H. A., Benirschke, K. & Sokol, H. W. Familial hypothalamic diabetes insipidus in rats. Nature 196, 1109–1110 (1962).

    Article  CAS  PubMed  Google Scholar 

  11. Li, J. H. et al. A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J. Clin. Invest. 119, 3115–3126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rieg, T. et al. Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am. J. Pathol. 182, 96–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mutig, K. et al. Demonstration of the functional impact of vasopressin signaling in the thick ascending limb by a targeted transgenic rat approach. Am. J. Physiol. Renal Physiol. 311, F411–F423 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Pedersen, N. B., Hofmeister, M. V., Rosenbaek, L. L., Nielsen, J. & Fenton, R. A. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule. Kidney Int. 78, 160–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Mutig, K. et al. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am. J. Physiol. Renal Physiol. 293, F1166–F1177 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Welker, P. et al. Renal Na+-K+-Cl cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am. J. Physiol. Renal Physiol. 295, F789–F802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakuma, Y. et al. Differential effects of hyperosmolality on Na-K-ATPase and vasopressin-dependent cAMP generation in the medullary thick ascending limb and outer medullary collecting duct. Hypertens. Res. 28, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Rieg, T. et al. Adenylate cyclase 6 determines cAMP formation and aquaporin-2 phosphorylation and trafficking in inner medulla. J. Am. Soc. Nephrol. 21, 2059–2068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Star, R. A., Nonoguchi, H., Balaban, R. & Knepper, M. A. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J. Clin. Invest. 81, 1879–1888 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marples, D., Christensen, B. M., Frokiaer, J., Knepper, M. A. & Nielsen, S. Dehydration reverses vasopressin antagonist-induced diuresis and aquaporin-2 downregulation in rats. Am. J. Physiol. 275, F400–F409 (1998).

    CAS  PubMed  Google Scholar 

  21. Su, W., Cao, R., Zhang, X. Y. & Guan, Y. Aquaporins in the kidney: physiology and pathophysiology. Am. J. Physiol. Renal. Physiol. 318, F193–F203 (2019).

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, X. Y., Wang, B. & Guan, Y. F. Nuclear receptor regulation of aquaporin-2 in the kidney. Int. J. Mol. Sci. 17, 1105 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  23. Li, S. et al. Bile acid G protein-coupled membrane receptor TGR5 modulates aquaporin 2-mediated water homeostasis. J. Am. Soc. Nephrol. 29, 2658–2670 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, C. et al. Molecular mechanisms of angiotensin II stimulation on aquaporin-2 expression and trafficking. Am. J. Physiol. Renal Physiol. 300, F1255–F1261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bouley, R. et al. Calcitonin has a vasopressin-like effect on aquaporin-2 trafficking and urinary concentration. J. Am. Soc. Nephrol. 22, 59–72 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yano, Y. et al. Aquaporin 2 expression increased by glucagon in normal rat inner medullary collecting ducts. Am. J. Physiol. Renal Physiol. 296, F54–F59 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Chu, J. Y. et al. Phenotypes developed in secretin receptor-null mice indicated a role for secretin in regulating renal water reabsorption. Mol. Cell Biol. 27, 2499–2511 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, Y. J. et al. Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor. Am. J. Physiol. Renal Physiol. 292, F340–F350 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Olesen, E. T., Rutzler, M. R., Moeller, H. B., Praetorius, H. A. & Fenton, R. A. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc. Natl Acad. Sci. USA 108, 12949–12954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jung, H. J. & Kwon, T. H. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am. J. Physiol. Renal Physiol. 311, F1318–F1328 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun, T. X. et al. Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am. J. Physiol. Renal Physiol. 282, F998–F1011 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Moeller, H. B., Knepper, M. A. & Fenton, R. A. Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney Int. 75, 295–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, W. L. et al. Rab7 involves Vps35 to mediate AQP2 sorting and apical trafficking in collecting duct cells. Am. J. Physiol. Renal Physiol. 318, F956–F970 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Vossenkamper, A. et al. Microtubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells. Am. J. Physiol. Cell Physiol. 293, C1129–C1138 (2007).

    Article  PubMed  CAS  Google Scholar 

  35. Tajika, Y. et al. Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 145, 4375–4383 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, M. S., Choi, H. J., Park, E. J., Park, H. J. & Kwon, T. H. Depletion of vacuolar protein sorting-associated protein 35 is associated with increased lysosomal degradation of aquaporin-2. Am. J. Physiol. Renal Physiol. 311, F1294–F1307 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Nedvetsky, P. I. et al. A role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic 8, 110–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Yui, N. et al. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am. J. Physiol. Cell Physiol. 304, C38–C48 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Bouley, R., Yui, N., Terlouw, A., Cheung, P. W. & Brown, D. Chlorpromazine induces basolateral aquaporin-2 accumulation via F-actin depolymerization and blockade of endocytosis in renal epithelial cells. Cells 9, 1057 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  40. Deshpande, V. et al. Phosphoproteomic identification of vasopressin V2 receptor-dependent signaling in the renal collecting duct. Am. J. Physiol. Renal Physiol. 317, F789–F804 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoffert, J. D., Pisitkun, T., Wang, G., Shen, R. F. & Knepper, M. A. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc. Natl Acad. Sci. USA 103, 7159–7164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoffert, J. D. et al. Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J. Biol. Chem. 283, 24617–24627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie, L. et al. Quantitative analysis of aquaporin-2 phosphorylation. Am. J. Physiol. Renal Physiol. 298, F1018–F1023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moeller, H. B., Praetorius, J., Rutzler, M. R. & Fenton, R. A. Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc. Natl Acad. Sci. USA 107, 424–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, P. J. et al. Vasopressin-induced serine 269 phosphorylation reduces Sipa1l1 (signal-induced proliferation-associated 1 like 1)-mediated aquaporin-2 endocytosis. J. Biol. Chem. 292, 7984–7993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roche, J. V., Nesverova, V., Olsson, C., Deen, P. M. & Tornroth-Horsefield, S. Structural insights into AQP2 targeting to multivesicular bodies. Int. J. Mol. Sci. 20, 5351 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  47. Roche, J. V. & Tornroth-Horsefield, S. Aquaporin protein-protein interactions. Int. J. Mol. Sci. 18, 2255 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  48. Roche, J. V. et al. Phosphorylation of human aquaporin 2 (AQP2) allosterically controls its interaction with the lysosomal trafficking protein LIP5. J. Biol. Chem. 292, 14636–14648 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choi, H. J. et al. Sorting nexin 27 regulates the lysosomal degradation of aquaporin-2 protein in the kidney collecting duct. Cells 9, 1208 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  50. Kamsteeg, E. J. et al. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc. Natl Acad. Sci. USA 103, 18344–18349 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trimpert, C. et al. NDFIP allows NEDD4/NEDD4L-induced AQP2 ubiquitination and degradation. PLoS ONE 12, e0183774 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lee, Y. J. et al. E3 ubiquitin-protein ligases in rat kidney collecting duct: response to vasopressin stimulation and withdrawal. Am. J. Physiol. Renal Physiol. 301, F883–F896 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Medvar, B., Raghuram, V., Pisitkun, T., Sarkar, A. & Knepper, M. A. Comprehensive database of human E3 ubiquitin ligases: application to aquaporin-2 regulation. Physiol. Genomics 48, 502–512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, Q. et al. CHIP regulates aquaporin-2 quality control and body water homeostasis. J. Am. Soc. Nephrol. 29, 936–948 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Centrone, M. et al. AQP2 abundance is regulated by the E3-ligase CHIP Via HSP70. Cell Physiol. Biochem. 44, 515–531 (2017).

    Article  PubMed  Google Scholar 

  56. Dema, A. et al. Cyclin-dependent kinase 18 controls trafficking of aquaporin-2 and its abundance through ubiquitin ligase STUB1, which functions as an AKAP. Cells 9, 673 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  57. Murali, S. K., Aroankins, T. S., Moeller, H. B. & Fenton, R. A. The deubiquitylase USP4 interacts with the water channel AQP2 to modulate its apical membrane accumulation and cellular abundance. Cells 8, 265 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  58. Moeller, H. B., Aroankins, T. S., Slengerik-Hansen, J., Pisitkun, T. & Fenton, R. A. Phosphorylation and ubiquitylation are opposing processes that regulate endocytosis of the water channel aquaporin-2. J. Cell Sci. 127, 3174–3183 (2014).

    CAS  PubMed  Google Scholar 

  59. Moeller, H. B. et al. Regulation of the water channel aquaporin-2 via 14-3-3theta and -zeta. J. Biol. Chem. 291, 2469–2484 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Vukicevic, T. et al. Fluconazole increases osmotic water transport in renal collecting duct through effects on aquaporin-2 trafficking. J. Am. Soc. Nephrol. 30, 795–810 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Loo, C. S. et al. Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proc. Natl Acad. Sci. USA 110, 17119–17124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simon, H., Gao, Y., Franki, N. & Hays, R. M. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am. J. Physiol. 265, C757–C762 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Chou, C. L. et al. Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J. Biol. Chem. 279, 49026–49035 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Klussmann, E. et al. An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J. Biol. Chem. 276, 20451–20457 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Ranieri, M. et al. The vasopressin receptor 2 mutant R137L linked to the nephrogenic syndrome of inappropriate antidiuresis (NSIAD) signals through an alternative pathway that increases AQP2 membrane targeting independently of S256 phosphorylation. Cells 9, 1354 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  66. Feldman, B. J. et al. Nephrogenic syndrome of inappropriate antidiuresis. N. Engl. J. Med. 352, 1884–1890 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lei, L. et al. Manganese promotes intracellular accumulation of AQP2 via modulating F-actin polymerization and reduces urinary concentration in mice. Am. J. Physiol. Renal Physiol. 314, F306–F316 (2018).

    Article  PubMed  CAS  Google Scholar 

  68. Li, W. et al. Ezrin directly interacts with AQP2 and promotes its endocytosis. J. Cell Sci. 130, 2914–2925 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neisch, A. L. & Fehon, R. G. Ezrin, radixin and moesin: key regulators of membrane-cortex interactions and signaling. Curr. Opin. Cell Biol. 23, 377–382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dransfield, D. T. et al. Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. EMBO J. 16, 35–43 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brunton, L. L., Hayes, J. S. & Mayer, S. E. Functional compartmentation of cyclic AMP and protein kinase in heart. Adv. Cyclic Nucleotide Res. 14, 391–397 (1981).

    CAS  PubMed  Google Scholar 

  72. Knepper, M. A., Kwon, T. H. & Nielsen, S. Molecular physiology of water balance. N. Engl. J. Med. 373, 196 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Nedvetsky, P. I. et al. in Aquaporins. Handbook of Experimental Pharmacology Vol. 190 (ed. Beitz, E.) (Springer, 2009).

  74. Noda, Y. & Sasaki, S. Trafficking mechanism of water channel aquaporin-2. Biol. Cell 97, 885–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Katsura, T., Gustafson, C. E., Ausiello, D. A. & Brown, D. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am. J. Physiol. 272, F817–F822 (1997).

    CAS  PubMed  Google Scholar 

  76. Limbutara, K., Kelleher, A., Yang, C. R., Raghuram, V. & Knepper, M. A. Phosphorylation changes in response to kinase inhibitor H89 in PKA-null cells. Sci. Rep. 9, 2814 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gilbert, M. L., Yang, L., Su, T. & McKnight, G. S. Expression of a dominant negative PKA mutation in the kidney elicits a diabetes insipidus phenotype. Am. J. Physiol. Renal Physiol. 308, F627–F638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Isobe, K. et al. Systems-level identification of PKA-dependent signaling in epithelial cells. Proc. Natl Acad. Sci. USA 114, E8875–E8884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Datta, A. et al. PKA-independent vasopressin signaling in renal collecting duct. FASEB J. 34, 6129–6146 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Bradford, D. et al. Use of LC-MS/MS and Bayes’ theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256. Am. J. Physiol. Cell Physiol. 307, C123–C139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liwang, J. K. et al. Role of PKC and AMPK in hypertonicity-stimulated water reabsorption in rat inner medullary collecting ducts. Am. J. Physiol. Renal Physiol. 316, F253–F262 (2019).

    Article  PubMed  Google Scholar 

  82. Al-Bataineh, M. M. et al. Activation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kidney principal cells. Am. J. Physiol. Renal Physiol. 311, F890–F900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Klein, J. D. et al. Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts. Am. J. Physiol. Renal Physiol. 310, F1008–F1012 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Efe, O., Klein, J. D., LaRocque, L. M., Ren, H. & Sands, J. M. Metformin improves urine concentration in rodents with nephrogenic diabetes insipidus. JCI Insight 1, e88409 (2016).

    Article  PubMed Central  Google Scholar 

  85. Bech, A. P., Wetzels, J. F. M. & Nijenhuis, T. Effects of sildenafil, metformin, and simvastatin on ADH-independent urine concentration in healthy volunteers. Physiol. Rep. 6, e13665 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Olesen, E. T. & Fenton, R. A. Aquaporin-2 membrane targeting: still a conundrum. Am. J. Physiol. Renal Physiol. 312, F744–F747 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, J. Z. et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 182, 1531–1544.e15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bock, A. et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 182, 1519–1530.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stefan, E. et al. Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J. Am. Soc. Nephrol. 18, 199–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, S. et al. Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts. Proc. Natl Acad. Sci. USA 109, 6578–6583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Omar, M. H. & Scott, J. D. AKAP signaling islands: venues for precision pharmacology. Trends Pharmacol. Sci. 41, 933–946 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wingler, L. M. & Lefkowitz, R. J. Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol. 30, 736–747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Olesen, E. T., Moeller, H. B., Assentoft, M., MacAulay, N. & Fenton, R. A. The vasopressin type 2 receptor and prostaglandin receptors EP2 and EP4 can increase aquaporin-2 plasma membrane targeting through a cAMP-independent pathway. Am. J. Physiol. Renal Physiol. 311, F935–F944 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Brunton, L. L., Hayes, J. S. & Mayer, S. E. Hormonally specific phosphorylation of cardiac troponin I and activation of glycogen phosphorylase. Nature 280, 78–80 (1979).

    Article  CAS  PubMed  Google Scholar 

  95. Hayes, J. S., Brunton, L. L. & Mayer, S. E. Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J. Biol. Chem. 255, 5113–5119 (1980).

    Article  CAS  PubMed  Google Scholar 

  96. Henn, V. et al. Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J. Biol. Chem. 279, 26654–26665 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Klussmann, E., Maric, K., Wiesner, B., Beyermann, M. & Rosenthal, W. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J. Biol. Chem. 274, 4934–4938 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Ando, F. et al. AKAPs-PKA disruptors increase AQP2 activity independently of vasopressin in a model of nephrogenic diabetes insipidus. Nat. Commun. 9, 1411 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Christian, F. et al. Small molecule AKAP-protein kinase A (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J. Biol. Chem. 286, 9079–9096 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Friedrich, M. W., Aramuni, G., Mank, M., Mackinnon, J. A. & Griesbeck, O. Imaging CREB activation in living cells. J. Biol. Chem. 285, 23285–23295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, Y., Chen, Y., Chen, M. & Xu, W. AKAPs competing peptide HT31 disrupts the inhibitory effect of PKA on RhoA activity. Oncol. Rep. 16, 755–761 (2006).

    CAS  PubMed  Google Scholar 

  102. Schrade, K. et al. An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells. PLoS ONE 13, e0191423 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Cheung, P. W., Terlouw, A., Janssen, S. A., Brown, D. & Bouley, R. Inhibition of non-receptor tyrosine kinase Src induces phosphoserine 256-independent aquaporin-2 membrane accumulation. J. Physiol. 597, 1627–1642 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Hill, J., Shields, J. & Passero, V. Tyrosine kinase inhibitor-associated syndrome of inappropriate secretion of anti-diuretic hormone. J. Oncol. Pharm. Pract. 22, 729–732 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Ando, F. et al. Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway. Nat. Commun. 7, 13636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bogum, J. et al. Small-molecule screening identifies modulators of aquaporin-2 trafficking. J. Am. Soc. Nephrol. 24, 744–758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mortensen, L. A., Bistrup, C., Jensen, B. L. & Hinrichs, G. R. A mini-review of pharmacological strategies used to ameliorate polyuria associated with X-linked nephrogenic diabetes insipidus. Am. J. Physiol. Renal Physiol. 319, F746–F753 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Nomura, N. et al. High-throughput chemical screening identifies AG-490 as a stimulator of aquaporin 2 membrane expression and urine concentration. Am. J. Physiol. Cell Physiol. 307, C597–C605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gow, C. B. & Phillips, P. A. Epidermal growth factor as a diuretic in sheep. J. Physiol. 477, 27–33 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheung, P. W. et al. EGF receptor inhibition by erlotinib increases aquaporin 2-mediated renal water reabsorption. J. Am. Soc. Nephrol. 27, 3105–3116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gabow, P. A. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 329, 332–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Hajji, M. et al. Clinical study on autosomal dominant polycystic kidney disease among North Tunisians. Saudi J. Kidney Dis. Transpl. 30, 175–184 (2019).

    Article  PubMed  Google Scholar 

  113. Chebib, F. T. et al. A practical guide for treatment of rapidly progressive ADPKD with tolvaptan. J. Am. Soc. Nephrol. 29, 2458–2470 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Douguet, D., Patel, A. & Honore, E. Structure and function of polycystins: insights into polycystic kidney disease. Nat. Rev. Nephrol. 15, 412–422 (2019).

    Article  PubMed  Google Scholar 

  116. Leipziger, J. & Praetorius, H. A. Renal autocrine and paracrine signaling: a story of self-protection. Physiol. Rev. 100, 1229–1289 (2020).

    Article  PubMed  Google Scholar 

  117. Svenningsen, P., Burford, J. L. & Peti-Peterdi, J. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct. Front. Physiol. 4, 292 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Xu, C. et al. Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am. J. Physiol. Renal Physiol. 292, F930–F945 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Shibazaki, S. et al. Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum. Mol. Genet. 17, 1505–1516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, B., Sonawane, N. D., Zhao, D., Somlo, S. & Verkman, A. S. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 19, 1300–1310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, Y. et al. Genetic deletion of P2Y2 receptor offers long-term (5 months) protection against lithium-induced polyuria, natriuresis, kaliuresis, and collecting duct remodeling and cell proliferation. Front. Physiol. 9, 1765 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sullivan, L. P., Wallace, D. P. & Grantham, J. J. Epithelial transport in polycystic kidney disease. Physiol. Rev. 78, 1165–1191 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Menezes, L. F. & Germino, G. G. The pathobiology of polycystic kidney disease from a metabolic viewpoint. Nat. Rev. Nephrol. 15, 735–749 (2019).

    Article  PubMed  Google Scholar 

  125. Cornec-Le Gall, E., Alam, A. & Perrone, R. D. Autosomal dominant polycystic kidney disease. Lancet 393, 919–935 (2019).

    Article  PubMed  Google Scholar 

  126. Cai, J. et al. A RhoA-YAP-c-Myc signaling axis promotes the development of polycystic kidney disease. Genes Dev. 32, 781–793 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shillingford, J. M., Piontek, K. B., Germino, G. G. & Weimbs, T. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J. Am. Soc. Nephrol. 21, 489–497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shillingford, J. M. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA 103, 5466–5471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Streets, A. J., Prosseda, P. P. & Ong, A. C. Polycystin-1 regulates ARHGAP35-dependent centrosomal RhoA activation and ROCK signaling. JCI Insight 5, e135385 (2020).

    Article  PubMed Central  Google Scholar 

  130. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Yanda, M. K., Cha, B., Cebotaru, C. V. & Cebotaru, L. Pharmacological reversal of renal cysts from secretion to absorption suggests a potential therapeutic strategy for managing autosomal dominant polycystic kidney disease. J. Biol. Chem. 294, 17090–17104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yanda, M. K., Liu, Q. & Cebotaru, L. A potential strategy for reducing cysts in autosomal dominant polycystic kidney disease with a CFTR corrector. J. Biol. Chem. 293, 11513–11526 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Graffe, C. C., Bech, J. N., Lauridsen, T. G. & Pedersen, E. B. Urinary excretion of AQP2 and ENaC in autosomal dominant polycystic kidney disease during basal conditions and after a hypertonic saline infusion. Am. J. Physiol. Renal Physiol. 302, F917–F927 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Chen, Y. et al. Aquaporin 2 promotes cell migration and epithelial morphogenesis. J. Am. Soc. Nephrol. 23, 1506–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Verschuren, E. H. J. et al. Polycystin-1 dysfunction impairs electrolyte and water handling in a renal precystic mouse model for ADPKD. Am. J. Physiol. Renal Physiol. 315, F537–F546 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Reif, G. A. et al. Tolvaptan inhibits ERK-dependent cell proliferation, Cl secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am. J. Physiol. Renal Physiol. 301, F1005–F1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, Q. et al. Adenylyl cyclase 5 deficiency reduces renal cyclic AMP and cyst growth in an orthologous mouse model of polycystic kidney disease. Kidney Int. 93, 403–415 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Rees, S. et al. Adenylyl cyclase 6 deficiency ameliorates polycystic kidney disease. J. Am. Soc. Nephrol. 25, 232–237 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Pinto, C. S., Reif, G. A., Nivens, E., White, C. & Wallace, D. P. Calmodulin-sensitive adenylyl cyclases mediate AVP-dependent cAMP production and Cl secretion by human autosomal dominant polycystic kidney cells. Am. J. Physiol. Renal Physiol. 303, F1412–F1424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sherpa, R. T. et al. Sensory primary cilium is a responsive cAMP microdomain in renal epithelia. Sci. Rep. 9, 6523 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Tesar, V. et al. Bosutinib versus placebo for autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 28, 3404–3413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cadnapaphornchai, M. A. et al. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 9, 889–896 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Leonhard, W. N. et al. Salsalate, but not metformin or canagliflozin, slows kidney cyst growth in an adult-onset mouse model of polycystic kidney disease. EBioMedicine 47, 436–445 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lian, X. et al. The combination of metformin and 2-deoxyglucose significantly inhibits cyst formation in miniature pigs with polycystic kidney disease. Br. J. Pharmacol. 176, 711–724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Takiar, V. et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl Acad. Sci. USA 108, 2462–2467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pisani, A., Riccio, E., Bruzzese, D. & Sabbatini, M. Metformin in autosomal dominant polycystic kidney disease: experimental hypothesis or clinical fact? BMC Nephrol. 19, 282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nikonova, A. S. et al. Opposing effects of inhibitors of aurora-A and EGFR in autosomal-dominant polycystic kidney disease. Front. Oncol. 5, 228 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Collins, L. M., Moore, R. & Sobel, J. D. Prognosis and long-term outcome of women with idiopathic recurrent vulvovaginal candidiasis caused by candida albicans. J. Low. Genit. Tract Dis. 24, 48–52 (2020).

    Article  PubMed  Google Scholar 

  150. Ye, H. et al. The regulatory 1alpha subunit of protein kinase A modulates renal cystogenesis. Am. J. Physiol. Renal Physiol. 313, F677–F686 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Huang, P., Trotter, K., Boucher, R. C., Milgram, S. L. & Stutts, M. J. PKA holoenzyme is functionally coupled to CFTR by AKAPs. Am. J. Physiol. Cell Physiol. 278, C417–C422 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Fenton, R. A., Murali, S. K. & Moeller, H. B. Advances in aquaporin-2 trafficking mechanisms and their implications for treatment of water balance disorders. Am. J. Physiol. Cell Physiol. 319, C1–C10 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by the Danish Medical Research Council, The Novo Nordisk Foundation, The Leducq Foundation and the Carlsberg Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the manuscript, and reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Emma T. B. Olesen or Robert A. Fenton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks T.-H. Kwon, V. Torres and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Single effect

The difference in osmotic pressure that is created by the active transport of sodium chloride out of the tubular fluid in the thick ascending limb into the interstitium; the hyperosmotic gradient in the interstitium drives the passive movement of water from the tubular fluid of the descending limbs and collecting ducts into the interstitium.

Recycling endosomes

Organelles in the endocytic pathway, in which plasma membrane proteins and lipids that are internalized by endocytosis are sorted and processed for export back to the cell surface for reuse.

Transcytosis

The transport of macromolecular cargo from one side of a cell to the other within a membrane-bounded carrier (or carriers); this mechanism is used by multicellular organisms to selectively move material between two environments without altering their unique compositions.

Multivesicular bodies

(MVBs). Specialized endosomes that contain membrane-bound intraluminal vesicles formed by budding of the membrane into the lumen of the MVB; MVBs can fuse with lysosomes, where their contents are degraded, or they can fuse with the plasma membrane for their contents to be released into the extracellular space.

K63-linked polyubiquitin chain

A chain of ubiquitin molecules that are linked to each other on Lys63 (one of seven lysine residues within ubiquitin) to form a long polyubiquitin chain; these chains can mark the ubiquitylated protein for endocytosis.

F-actin

A filamentous polymer composed of soluble G-actin monomers; it is the most abundant component of the cytoskeleton of eukaryotes.

CFTR corrector

A family of compounds that facilitate the transport of misfolded CFTR proteins (produced owing to mutations in CFTR) to the cell membrane without being degraded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olesen, E.T.B., Fenton, R.A. Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases. Nat Rev Nephrol 17, 765–781 (2021). https://doi.org/10.1038/s41581-021-00447-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00447-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing