Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The lymphatics in kidney health and disease

Abstract

The mammalian vascular system consists of two networks: the blood vascular system and the lymphatic vascular system. Throughout the body, the lymphatic system contributes to homeostatic mechanisms by draining extravasated interstitial fluid and facilitating the trafficking and activation of immune cells. In the kidney, lymphatic vessels exist mainly in the kidney cortex. In the medulla, the ascending vasa recta represent a hybrid lymphatic-like vessel that performs lymphatic-like roles in interstitial fluid reabsorption. Although the lymphatic network is mainly derived from the venous system, evidence supports the existence of lymphatic beds that are of non-venous origin. Following their development and maturation, lymphatic vessel density remains relatively stable; however, these vessels undergo dynamic functional changes to meet tissue demands. Additionally, new lymphatic growth, or lymphangiogenesis, can be induced by pathological conditions such as tissue injury, interstitial fluid overload, hyperglycaemia and inflammation. Lymphangiogenesis is also associated with conditions such as polycystic kidney disease, hypertension, ultrafiltration failure and transplant rejection. Although lymphangiogenesis has protective functions in clearing accumulated fluid and immune cells, the kidney lymphatics may also propagate an inflammatory feedback loop, exacerbating inflammation and fibrosis. Greater understanding of lymphatic biology, including the developmental origin and function of the lymphatics and their response to pathogenic stimuli, may aid the development of new therapeutic agents that target the lymphatic system.

Key points

  • Advances in imaging and genetics technologies have furthered our understanding of the role of lymphatic vascular systems in both homeostasis and disease.

  • Key advances include the discovery of hybrid lymphatic-like vessels in multiple tissues including in the kidney, where the ascending vasa recta express a combination of both blood and lymphatic endothelial markers and perform a lymphatic-like role in reabsorbing interstitial fluid in the medulla.

  • Kidney lymphangiogenesis is strongly associated with injury, inflammation and the progression of fibrosis.

  • Lymphangiogenesis can perform a protective role in clearing the accumulated fluid and immune cells associated with inflammation from the interstitial space; however, the kidney lymphatics also function to propagate an inflammatory feedback loop in coordination with the draining lymph nodes, which may exacerbate inflammation and fibrosis. In addition, chronic inflammation can result in the disorganized growth of leaky, poorly functioning lymphatic vessels, further contributing to tissue injury.

  • Targeting the lymphatic system is a potential future direction for new therapeutics for kidney disease, and several therapies are undergoing investigation in preclinical models.

  • Better understanding of the context-dependent consequences of kidney lymphangiogenesis, as well as the mechanisms of action and potential off-target consequences of targeting the proposed molecular pathways are needed prior to their clinical use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lymphatic structure and development.
Fig. 2: Structure and development of kidney lymphatics.
Fig. 3: Hybrid lymphatic structures.
Fig. 4: Lymphatic patterning and signalling in acute kidney injury.
Fig. 5: Peritoneal lymphatics and ultrafiltration failure.
Fig. 6: Lymphatic regulation of hypertension.

Similar content being viewed by others

References

  1. Escobedo, N. & Oliver, G. Lymphangiogenesis: origin, specification, and cell fate determination. Annu. Rev. Cell Dev. Biol. 32, 677–691 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Cifarelli, V. & Eichmann, A. The intestinal lymphatic system: functions and metabolic implications. Cell Mol. Gastroenterol. Hepatol. 7, 503–513 (2019).

    Article  PubMed  Google Scholar 

  3. Bernier-Latmani, J. & Petrova, T. V. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat. Rev. Gastroenterol. Hepatol. 14, 510–526 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Martinez-Corral, I. et al. Nonvenous origin of dermal lymphatic vasculature. Circ. Res. 116, 1649–1654 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Brakenhielm, E. & Alitalo, K. Cardiac lymphatics in health and disease. Nat. Rev. Cardiol. 16, 56–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aspelund, A. et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J. Clin. Invest. 124, 3975–3986 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pawlak, J. B. et al. Lymphatic mimicry in maternal endothelial cells promotes placental spiral artery remodeling. J. Clin. Invest. 129, 4912–4921 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kenig-Kozlovsky, Y. et al. Ascending vasa recta are angiopoietin/Tie2-dependent lymphatic-like vessels. J. Am. Soc. Nephrol. 29, 1097–1107 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, F., Zarkada, G., Yi, S. & Eichmann, A. Lymphatic endothelial cell junctions: molecular regulation in physiology and diseases. Front. Physiol. 11, 509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moore, J. E. Jr & Bertram, C. D. Lymphatic system flows. Annu. Rev. Fluid Mech. 50, 459–482 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reed, H. O. et al. Lymphatic impairment leads to pulmonary tertiary lymphoid organ formation and alveolar damage. J. Clin. Invest. 129, 2514–2526 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Drake, R. E., Weiss, D. & Gabel, J. C. Active lymphatic pumping and sheep lung lymph flow. J. Appl. Physiol. 71, 99–103 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Rouhani, S. J. et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat. Commun. 6, 6771 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Rantakari, P. et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat. Immunol. 16, 386–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Hons, M. & Sixt, M. The lymph node filter revealed. Nat. Immunol. 16, 338–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Telinius, N. et al. Human thoracic duct in vitro: diameter-tension properties, spontaneous and evoked contractile activity. Am. J. Physiol. Heart Circ. Physiol. 299, H811–H818 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Johnson, N. C. et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 22, 3282–3291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, H. W. et al. Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney. Cell Tissue Res. 343, 429–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Tanabe, M. et al. Development of lymphatic vasculature and morphological characterization in rat kidney. Clin. Exp. Nephrol. 16, 833–842 (2012).

    Article  PubMed  Google Scholar 

  23. Sosa-Pineda, B., Wigle, J. T. & Oliver, G. Hepatocyte migration during liver development requires Prox1. Nat. Genet. 25, 254–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Risebro, C. A. et al. Prox1 maintains muscle structure and growth in the developing heart. Development 136, 495–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Norden, P. R. et al. Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation. eLife 9, e53814 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Petrova, T. V. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med. 10, 974–981 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Fatima, A. et al. Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation. J. Clin. Invest. 126, 2437–2451 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dagenais, S. L. et al. Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome. Gene Expr. Patterns. 4, 611–619 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Irrthum, A. et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am. J. Hum. Genet. 72, 1470–1478 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Francois, M., Harvey, N. L. & Hogan, B. M. The transcriptional control of lymphatic vascular development. Physiology 26, 146–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. You, L. R. et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435, 98–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, S. et al. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113, 1856–1859 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamazaki, T., Yoshimatsu, Y., Morishita, Y., Miyazono, K. & Watabe, T. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells 14, 425–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, F. J. et al. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J. Clin. Invest. 120, 1694–1707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Mishima, K. et al. Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades. Mol. Biol. Cell 18, 1421–1429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Srinivasan, R. S. et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 28, 2175–2187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaipainen, A. et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl Acad. Sci. USA 92, 3566–3570 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Daniel, E. et al. Spatiotemporal heterogeneity and patterning of developing renal blood vessels. Angiogenesis 21, 617–634 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Foster, R. R. et al. Vascular endothelial growth factor-C, a potential paracrine regulator of glomerular permeability, increases glomerular endothelial cell monolayer integrity and intracellular calcium. Am. J. Pathol. 173, 938–948 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kukk, E. et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122, 3829–3837 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Haiko, P. et al. Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos. Mol. Cell Biol. 28, 4843–4850 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baeyens, N. et al. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. eLife 4, e04645 (2015).

    Article  PubMed Central  Google Scholar 

  44. Heinolainen, K. et al. VEGFR3 modulates vascular permeability by controlling VEGF/VEGFR2 signaling. Circ. Res. 120, 1414–1425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, A. S. et al. Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction. Kidney Int. 83, 50–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Foster, R. R. et al. VEGF-C promotes survival in podocytes. Am. J. Physiol. Renal Physiol. 291, F196–F207 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Onions, K. L. et al. VEGFC reduces glomerular albumin permeability and protects against alterations in VEGF receptor expression in diabetic nephropathy. Diabetes 68, 172–187 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Dellinger, M. T. & Brekken, R. A. Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium. PLoS ONE 6, e28947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dellinger, M. T., Meadows, S. M., Wynne, K., Cleaver, O. & Brekken, R. A. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS ONE 8, e74686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, W. et al. Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev. 28, 1592–1603 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gale, N. W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell 3, 411–423 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Kim, J. et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm’s canal integrity and induces glaucoma. J. Clin. Invest. 127, 3877–3896 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Leppänen, V.-M., Saharinen, P. & Alitalo, K. Structural basis of Tie2 activation and Tie2/Tie1 heterodimerization. Proc. Natl Acad. Sci. USA 114, 4376–4381 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Qu, X., Zhou, B. & Scott Baldwin, H. Tie1 is required for lymphatic valve and collecting vessel development. Dev. Biol. 399, 117–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Banerji, S. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144, 789–801 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gordon, E. J., Gale, N. W. & Harvey, N. L. Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels. Dev. Dyn. 237, 1901–1909 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Carreira, C. M. et al. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res. 61, 8079–8084 (2001).

    CAS  Google Scholar 

  58. Gale, N. W. et al. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol. Cell. Biol. 27, 595–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Johnson, L. A. et al. Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1. Nat. Immunol. 18, 762–770 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Schacht, V. et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 22, 3546–3556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pan, Y., Wang, W. D. & Yago, T. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvascular Res. 94, 96–102 (2014).

    Article  CAS  Google Scholar 

  62. Pan, Y. & Xia, L. Emerging roles of podoplanin in vascular development and homeostasis. Front. Med. 9, 421–430 (2015).

    Article  PubMed  Google Scholar 

  63. Xu, Y. et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J. Cell Biol. 188, 115–130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuan, L. et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129, 4797–4806 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Karpanen, T. et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J. 20, 1462–1472 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Karpanen, T. et al. An evolutionarily conserved role for polydom/Svep1 during lymphatic vessel formation. Circ. Res. 120, 1263–1275 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sato-Nishiuchi, R. et al. Polydom/SVEP1 is a ligand for integrin. α9β1. J. Biol. Chem. 287, 25615–25630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Souma, T. et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc. Natl Acad. Sci. USA 115, 1298–1303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bazigou, E. et al. Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev. Cell 17, 175–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huntington, G. S. & McClure, C. F. W. The anatomy and development of the jugular lymph sacs in the domestic cat (Felis domestica). Am. J. Anat. 10, 177–312 (1910).

    Article  Google Scholar 

  71. Sabin, F. R. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am. J. Anat. 1, 367–389 (1902).

    Article  Google Scholar 

  72. Yang, Y. & Oliver, G. Development of the mammalian lymphatic vasculature. J. Clin. Invest. 124, 888–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stanczuk, L. et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 10, 1708–1721 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Mahadevan, A. et al. The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev. Cell 31, 690–706 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, Y. et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 120, 2340–2348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Planas-Paz, L. et al. Mechanoinduction of lymph vessel expansion. EMBO J. 31, 788–804 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Zheng, W. et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood 118, 1154–1162 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, Y. et al. Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Nat. Commun. 9, 1296 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Stone, O. A. & Stainier, D. Y. R. Paraxial mesoderm is the major source of lymphatic endothelium. Dev. Cell 50, 247–255 e243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peirce, E. C. N. Renal lymphatics. Anat. Rec. 131, 315–335 (1944).

    Article  Google Scholar 

  81. Bell, R. D., Keyl, M. J., Shrader, F. R., Jones, E. W. & Henry, L. P. Renal lymphatics: the internal distribution. Nephron 5, 454–463 (1968).

    Article  CAS  PubMed  Google Scholar 

  82. Cuttino, J. T. Jr, Jennette, J. C., Clark, R. L. & Kwock, L. Renal medullary lymphatics: microradiographic, light, and electron microscopic studies in pigs. Lymphology 18, 24–30 (1985).

    PubMed  Google Scholar 

  83. Nordquist, R. E., Bell, R. D., Sinclair, R. J. & Keyl, M. J. The distribution and ultrastructural morphology of lymphatic vessels in the canine renal cortex. Lymphology 6, 13–19 (1973).

    CAS  PubMed  Google Scholar 

  84. Eliska, O. Topography of intrarenal lymphatics. Lymphology 17, 135–141 (1984).

    CAS  PubMed  Google Scholar 

  85. Tenstad, O., Heyeraas, K. J., Wiig, H. & Aukland, K. Drainage of plasma proteins from the renal medullary interstitium in rats. J. Physiol. 536, 533–539 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kriz, W. & Kaissling, B. in Seldin and Giebisch’s the Kidney (eds Alpern, R. J., Moe, O. W., & Caplan, M. J.) Ch. 20, 595–691 (Elsevier, 2013).

  87. Holmes, M. J., O’Morchoe, P. J. & O’Morchoe, C. C. Morphology of the intrarenal lymphatic system. Capsular and hilar communications. Am. J. Anat. 149, 333–351 (1977).

    Article  CAS  PubMed  Google Scholar 

  88. Niiro, G. K., Jarosz, H. M., O’Morchoe, P. J. & O’Morchoe, C. C. The renal cortical lymphatic system in the rat, hamster, and rabbit. Am. J. Anat. 177, 21–34 (1986).

    Article  CAS  PubMed  Google Scholar 

  89. O’Morchoe, C. C. & O’Morchoe, P. J. The renal lymphatic system: a brief review. Contrib. Nephrol. 68, 230–237 (1988).

    Article  PubMed  Google Scholar 

  90. McIntosh, G. H. & Morris, B. The lymphatics of the kidney and the formation of renal lymph. J. Physiol. 214, 365–376 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jafree, D. J. et al. Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease. eLife 8, e48183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Albertine, K. H. & O’Morchoe, C. C. Distribution and density of the canine renal cortical lymphatic system. Kidney Int. 16, 470–480 (1979).

    Article  CAS  PubMed  Google Scholar 

  93. Cuttino, J. T. Jr, Clark, R. L. & Jennette, J. C. Microradiographic demonstration of human intrarenal microlymphatic pathways. Urol. Radiol. 11, 83–87 (1989).

    Article  PubMed  Google Scholar 

  94. Ishikawa, Y. et al. The human renal lymphatics under normal and pathological conditions. Histopathology 49, 265–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Munro, D. A. D., Hohenstein, P., Coate, T. M. & Davies, J. A. Refuting the hypothesis that semaphorin-3f/neuropilin-2 exclude blood vessels from the cap mesenchyme in the developing kidney. Dev. Dyn. 246, 1047–1056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gancz, D. et al. Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. eLife 8, e44153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pallone, T. L., Turner, M. R., Edwards, A. & Jamison, R. L. Countercurrent exchange in the renal medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1153–R1175 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Kim, Y. M. et al. Role of Prox1 in the transforming ascending thin limb of Henle’s loop during mouse kidney development. PLoS ONE 10, e0127429 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Matsui, K. et al. Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase p and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J. Am. Soc. Nephrol. 14, 1981–1989 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Motojima, M., Kume, T. & Matsusaka, T. Foxc1 and Foxc2 are necessary to maintain glomerular podocytes. Exp. Cell Res. 352, 265–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Levick, J. R. & Michel, C. C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87, 198–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Olszewski, W. L. The lymphatic system in body homeostasis: physiological conditions. Lymphat. Res. Biol. 1, 11–21 discussion 21–24 (2003).

    Article  PubMed  Google Scholar 

  103. Schulte-Merker, S., Sabine, A. & Petrova, T. V. Lymphatic vascular morphogenesis in development, physiology, and disease. J. Cell Biol. 193, 607–618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Leak, L. V. & Burke, J. F. Ultrastructural studies on the lymphatic anchoring filaments. J. Cell Biol. 36, 129–149 (1968).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lemley, K. V. & Kriz, W. Anatomy of the renal interstitium. Kidney Int. 39, 370–381 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Shelton, E. L., Yang, H. C., Zhong, J., Salzman, M. M. & Kon, V. Renal lymphatic vessel dynamics. Am. J. Physiol. Renal Physiol. 319, F1027–F1036 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Russell, P. S., Hong, J., Windsor, J. A., Itkin, M. & Phillips, A. R. J. Renal lymphatics: anatomy, physiology, and clinical implications. Front. Physiol. 10, 251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ranghino, A., Segoloni, G. P., Lasaponara, F. & Biancone, L. Lymphatic disorders after renal transplantation: new insights for an old complication. Clin. Kidney J. 8, 615–622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pedersen, M. S. et al. Lymphangiogenesis in a mouse model of renal transplant rejection extends life span of the recipients. Kidney Int. 97, 89–94 (2019).

    Article  PubMed  CAS  Google Scholar 

  110. Schineis, P., Runge, P. & Halin, C. Cellular traffic through afferent lymphatic vessels. Vasc. Pharmacol. 112, 31–41 (2019).

    Article  CAS  Google Scholar 

  111. Card, C. M., Yu, S. S. & Swartz, M. A. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J. Clin. Invest. 124, 943–952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lane, R. S. et al. IFNgamma-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J. Exp. Med. 215, 3057–3074 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kedl, R. M. et al. Migratory dendritic cells acquire and present lymphatic endothelial cell-archived antigens during lymph node contraction. Nat. Commun. 8, 2034 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Brown, F. D. & Turley, S. J. Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. J. Immunol. 194, 1389–1394 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Thomas, S. N. et al. Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage. J. Immunol. 189, 2181–2190 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Lukacs-Kornek, V. et al. The kidney-renal lymph node-system contributes to cross-tolerance against innocuous circulating antigen. J. Immunol. 180, 706–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Vieira, J. M. et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J. Clin. Invest. 128, 3402–3412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Choi, S. Y. et al. Tonicity-responsive enhancer-binding protein mediates hyperglycemia-induced inflammation and vascular and renal injury. J. Am. Soc. Nephrol. 29, 492–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Sakamoto, I. et al. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int. 75, 828–838 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Hasegawa, S. et al. Vascular endothelial growth factor-C ameliorates renal interstitial fibrosis through lymphangiogenesis in mouse unilateral ureteral obstruction. Lab. Invest. 97, 1439–1452 (2017).

    Article  PubMed  CAS  Google Scholar 

  122. Hwang, S. D. et al. Inhibition of lymphatic proliferation by the selective VEGFR-3 inhibitor SAR131675 ameliorates diabetic nephropathy in db/db mice. Cell Death Dis. 10, 219 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Huang, J. L. et al. Vascular endothelial growth factor C for polycystic kidney diseases. J. Am. Soc. Nephrol. 27, 69–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Zarjou, A. et al. Dynamic signature of lymphangiogenesis during acute kidney injury and chronic kidney disease. Lab. Invest. 99, 1376–1388 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Abouelkheir, G. R., Upchurch, B. D. & Rutkowski, J. M. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation’s fire? Exp. Biol. Med. 242, 884–895 (2017).

    Article  CAS  Google Scholar 

  126. Rabb, H. et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J. Am. Soc. Nephrol. 27, 371–379 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, Y. et al. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-kappaB signaling and protects against endotoxin shock. Immunity 40, 501–514 (2014).

    Article  PubMed  CAS  Google Scholar 

  128. Guo, Y. C. et al. Macrophages regulate unilateral ureteral obstruction-induced renal lymphangiogenesis through C-C motif chemokine receptor 2-dependent phosphatidylinositol 3-kinase-AKT-mechanistic target of rapamycin signaling and hypoxia-inducible factor-1alpha/vascular endothelial growth factor-C expression. Am. J. Pathol. 187, 1736–1749 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Pei, G. et al. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci. Adv. 5, eaaw5075 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kajiya, K. & Detmar, M. An important role of lymphatic vessels in the control of UVB-induced edema formation and inflammation. J. Invest. Dermatol. 126, 919–921 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Guo, R. et al. Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis Rheum. 60, 2666–2676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, Y. et al. Lymphangiogenesis in renal fibrosis arises from macrophages via VEGF-C/VEGFR3-dependent autophagy and polarization. Cell Death Dis. 12, 109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kerjaschki, D. et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat. Med. 12, 230–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Mumprecht, V., Roudnicky, F. & Detmar, M. Inflammation-induced lymph node lymphangiogenesis is reversible. Am. J. Pathol. 180, 874–879 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Snelgrove, S. L. et al. Activated renal dendritic cells cross present intrarenal antigens after ischemia-reperfusion injury. Transplantation 101, 1013–1024 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Herzog, B. H. et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502, 105–109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kasinath, V. et al. Activation of fibroblastic reticular cells in kidney lymph node during crescentic glomerulonephritis. Kidney Int. 95, 310–320 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Kataru, R. P. et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113, 5650–5659 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Wang, N. et al. Fluid balance and mortality in critically ill patients with acute kidney injury: a multicenter prospective epidemiological study. Crit. Care 19, 371 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Firth, J. D., Raine, A. E. & Ledingham, J. G. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 1, 1033–1035 (1988).

    Article  CAS  PubMed  Google Scholar 

  141. Prowle, J. R., Echeverri, J. E., Ligabo, E. V., Ronco, C. & Bellomo, R. Fluid balance and acute kidney injury. Nat. Rev. Nephrol. 6, 107–115 (2010).

    Article  PubMed  Google Scholar 

  142. Boor, P., Ostendorf, T. & Floege, J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat. Rev. Nephrol. 6, 643–656 (2010).

    Article  PubMed  Google Scholar 

  143. Kinashi, H., Ito, Y., Sun, T., Katsuno, T. & Takei, Y. Roles of the TGF-beta(-)VEGF-C pathway in fibrosis-related lymphangiogenesis. Int. J. Mol. Sci. 19, 2487 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  144. Cheng, J. et al. Renal lymphatic ligation aggravates renal dysfunction through induction of tubular epithelial cell apoptosis in mononephrectomized rats. Clin. Nephrol. 79, 124–131 (2013).

    Article  PubMed  Google Scholar 

  145. Zhang, T. et al. Disturbance of lymph circulation develops renal fibrosis in rats with or without contralateral nephrectomy. Nephrology 13, 128–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Liu, X. et al. Lymphoangiocrine signals promote cardiac growth and repair. Nature 588, 705–711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yazdani, S. et al. Proteinuria triggers renal lymphangiogenesis prior to the development of interstitial fibrosis. PLoS ONE 7, e50209 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, Y. et al. Attenuated lymphatic proliferation ameliorates diabetic nephropathy and high-fat diet-induced renal lipotoxicity. Sci. Rep. 9, 1994 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Uchiyama, T., Takata, S., Ishikawa, H. & Sawa, Y. Altered dynamics in the renal lymphatic circulation of type 1 and type 2 diabetic mice. Acta Histochem. Cytochem. 46, 97–104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Maruyama, K. et al. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am. J. Pathol. 170, 1178–1191 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kajiya, K., Hirakawa, S. & Detmar, M. Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am. J. Pathol. 169, 1496–1503 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).

    Article  PubMed  Google Scholar 

  153. Outeda, P. et al. Polycystin signaling is required for directed endothelial cell migration and lymphatic development. Cell Rep. 7, 634–644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Coxam, B. et al. Pkd1 regulates lymphatic vascular morphogenesis during development. Cell Rep. 7, 623–633 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Abu-Hijleh, M. F., Habbal, O. A. & Moqattash, S. T. The role of the diaphragm in lymphatic absorption from the peritoneal cavity. J. Anat. 186, 453–467 (1995).

    PubMed  PubMed Central  Google Scholar 

  156. Mactier, R. A., Khanna, R., Twardowski, Z., Moore, H. & Nolph, K. D. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis. J. Clin. Invest. 80, 1311–1316 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Churchill, D. N. et al. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. J. Am. Soc. Nephrol. 9, 1285–1292 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Brimble, K. S., Walker, M., Margetts, P. J., Kundhal, K. K. & Rabbat, C. G. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J. Am. Soc. Nephrol. 17, 2591–2598 (2006).

    Article  PubMed  Google Scholar 

  159. Williams, J. D. et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13, 470–479 (2002).

    Article  PubMed  Google Scholar 

  160. Parikova, A., Smit, W., Struijk, D. G. & Krediet, R. T. Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int. 70, 1988–1994 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Kinashi, H. et al. TGF-beta1 promotes lymphangiogenesis during peritoneal fibrosis. J. Am. Soc. Nephrol. 24, 1627–1642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Coester, A. M., Smit, W., Struijk, D. G., Parikova, A. & Krediet, R. T. Longitudinal analysis of peritoneal fluid transport and its determinants in a cohort of incident peritoneal dialysis patients. Perit. Dial. Int. 34, 195–203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Yang, W. S. et al. Intraperitoneal vascular endothelial growth factor C level is related to peritoneal dialysis ultrafiltration. Blood Purif. 28, 69–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Terabayashi, T. et al. Vascular endothelial growth factor receptor-3 is a novel target to improve net ultrafiltration in methylglyoxal-induced peritoneal injury. Lab. Invest. 95, 1029–1043 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Kinashi, H. et al. Connective tissue growth factor is correlated with peritoneal lymphangiogenesis. Sci. Rep. 9, 12175 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Mizutani, M. et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am. J. Physiol. Renal Physiol 298, F721–F733 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Zarrinkalam, K. H., Stanley, J. M., Gray, J., Oliver, N. & Faull, R. J. Connective tissue growth factor and its regulation in the peritoneal cavity of peritoneal dialysis patients. Kidney Int. 64, 331–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Toda, N. et al. Deletion of connective tissue growth factor ameliorates peritoneal fibrosis by inhibiting angiogenesis and inflammation. Nephrol. Dial. Transpl. 33, 943–953 (2018).

    Article  CAS  Google Scholar 

  169. Kinashi, H. et al. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis. Kidney Int. 92, 850–863 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Sakai, N. et al. Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis. Sci. Rep. 7, 5392 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Pi, L. et al. CCN2/CTGF regulates neovessel formation via targeting structurally conserved cystine knot motifs in multiple angiogenic regulators. FASEB J. 26, 3365–3379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mekarski, J. E. Essential hypertension is lymphatic: a working hypothesis. Med. Hypotheses 51, 101–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Lopez Gelston, C. A. & Mitchell, B. M. Recent advances in immunity and hypertension. Am. J. Hypertens. 30, 643–652 (2017).

    Article  PubMed  CAS  Google Scholar 

  174. Lopez Gelston, C. A. et al. Enhancing renal lymphatic expansion prevents hypertension in mice. Circ. Res. 122, 1094–1101 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Adrogué, H. J. & Madias, N. E. Sodium and potassium in the pathogenesis of hypertension. N. Engl. J. Med. 356, 1966–1978 (2007).

    Article  PubMed  Google Scholar 

  176. Ziomber, A. et al. Sodium-, potassium-, chloride-, and bicarbonate-related effects on blood pressure and electrolyte homeostasis in deoxycorticosterone acetate-treated rats. Am. J. Physiol. Renal Physiol. 295, F1752–F1763 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Wiig, H. et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 123, 2803–2815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Machnik, A. et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension 55, 755–761 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Song, L. et al. Lymphangiogenic therapy prevents cardiac dysfunction by ameliorating inflammation and hypertension. eLife 9, e58376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yang, G. H. et al. VEGF-C-mediated cardiac lymphangiogenesis in high salt intake accelerated progression of left ventricular remodeling in spontaneously hypertensive rats. Clin. Exp. Hypertens. 39, 740–747 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Beaini, S. et al. VEGF-C attenuates renal damage in salt-sensitive hypertension. J. Cell Physiol. 234, 9616–9630 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Balasubbramanian, D. et al. Kidney-specific lymphangiogenesis increases sodium excretion and lowers blood pressure in mice. J. Hypertens. 38, 874–885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kneedler, S. C. et al. Renal inflammation and injury are associated with lymphangiogenesis in hypertension. Am. J. Physiol. Renal Physiol. 312, F861–F869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Balasubbramanian, D. et al. Augmenting renal lymphatic density prevents angiotensin II-induced hypertension in male and female mice. Am. J. Hypertens. 33, 61–69 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  185. Franco, M. et al. Impaired pressure natriuresis resulting in salt-sensitive hypertension is caused by tubulointerstitial immune cell infiltration in the kidney. Am. J. Physiol. Renal Physiol. 304, F982–F990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. De Miguel, C., Lund, H. & Mattson, D. L. High dietary protein exacerbates hypertension and renal damage in Dahl SS rats by increasing infiltrating immune cells in the kidney. Hypertension 57, 269–274 (2011).

    Article  PubMed  CAS  Google Scholar 

  187. Balasubbramanian, D., Lopez Gelston, C. A., Rutkowski, J. M. & Mitchell, B. M. Immune cell trafficking, lymphatics and hypertension. Br. J. Pharmacol. 176, 1978–1988 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Espinosa, J. R., Samy, K. P. & Kirk, A. D. Memory T cells in organ transplantation: progress and challenges. Nat. Rev. Nephrol. 12, 339–347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Stuht, S. et al. Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am. J. Transpl. 7, 377–384 (2007).

    Article  CAS  Google Scholar 

  190. Kerjaschki, D. et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J. Am. Soc. Nephrol. 15, 603–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. Phillips, S. et al. Endothelial activation, lymphangiogenesis, and humoral rejection of kidney transplants. Hum. Pathol. 51, 86–95 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Talsma, D. T. et al. Increased migration of antigen presenting cells to newly-formed lymphatic vessels in transplanted kidneys by glycol-split heparin. PLoS ONE 12, e0180206 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Palin, N. K., Savikko, J. & Koskinen, P. K. Sirolimus inhibits lymphangiogenesis in rat renal allografts, a novel mechanism to prevent chronic kidney allograft injury. Transpl. Int. 26, 195–205 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Tsuchimoto, A. et al. The potential role of perivascular lymphatic vessels in preservation of kidney allograft function. Clin. Exp. Nephrol. 21, 721–731 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Cui, Y., Liu, K., Lamattina, A. M., Visner, G. & El-Chemaly, S. Lymphatic vessels: the next frontier in lung transplant. Ann. Am. Thorac. Soc. 14, S226–S232 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Norrmen, C., Tammela, T., Petrova, T. V. & Alitalo, K. Biological basis of therapeutic lymphangiogenesis. Circulation 123, 1335–1351 (2011).

    Article  PubMed  Google Scholar 

  197. Yazdani, S. et al. Targeting tubulointerstitial remodeling in proteinuric nephropathy in rats. Dis. Model Mech. 8, 919–930 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Visuri, M. T. et al. VEGF-C and VEGF-C156S in the pro-lymphangiogenic growth factor therapy of lymphedema: a large animal study. Angiogenesis 18, 313–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Huggenberger, R. et al. Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J. Exp. Med. 207, 2255–2269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Raghu, G. et al. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur. Respir. J. 47, 1481–1491 (2016).

    Article  PubMed  Google Scholar 

  201. Payne, H., Ponomaryov, T., Watson, S. P. & Brill, A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood 129, 2013–2020 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Krishnan, H. et al. Podoplanin: an emerging cancer biomarker and therapeutic target. Cancer Sci. 109, 1292–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Matsui, K., Breiteneder-Geleff, S. & Kerjaschki, D. Epitope-specific antibodies to the 43-kD glomerular membrane protein podoplanin cause proteinuria and rapid flattening of podocytes. J. Am. Soc. Nephrol. 9, 2013 (1998).

    Article  CAS  PubMed  Google Scholar 

  204. Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Leppanen, V. M. et al. Characterization of ANGPT2 mutations associated with primary lymphedema. Sci. Transl. Med. 12, eaax8013 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Willimann, K. et al. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur. J. Immunol. 28, 2025–2034 (1998).

    Article  CAS  PubMed  Google Scholar 

  207. McKimmie, C. S. et al. An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood 121, 3768–3777 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Young, T. L. et al. SVEP1 as a genetic modifier of TEK-related primary congenital glaucoma. Invest. Ophthalmol. Vis. Sci. 61, 6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hoye, A. M., Couchman, J. R., Wewer, U. M., Fukami, K. & Yoneda, A. The newcomer in the integrin family: integrin alpha9 in biology and cancer. Adv. Biol. Regul. 52, 326–339 (2012).

    Article  PubMed  CAS  Google Scholar 

  210. Sarfarazi, A. et al. Therapeutic delivery to the peritoneal lymphatics: Current understanding, potential treatment benefits and future prospects. Int. J. Pharm. 567, 118456 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Dong, J. et al. Unipedal diagnostic lymphangiography followed by sequential CT examinations in patients with idiopathic chyluria: a retrospective study. AJR Am. J. Roentgenol. 210, 792–798 (2018).

    Article  PubMed  Google Scholar 

  212. Arrive, L., Monnier-Cholley, L. & El Mouhadi, S. Use of unenhanced MR lymphography to characterize idiopathic chyluria. AJR Am. J. Roentgenol, 211, W200 (2018).

    Article  Google Scholar 

  213. Yildirim, I. O. et al. A novel technique in the treatment of lymphoceles after renal transplantation: C-arm cone beam CT-guided percutaneous embolization of lymphatic leakage after lymphangiography. Transplantation 102, 1955–1960 (2018).

    Article  PubMed  Google Scholar 

  214. Iwai, T. et al. Experience of lymphangiography as a therapeutic tool for lymphatic leakage after kidney transplantation. Transplant. Proc. 50, 2526–2530 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Kuusk, T. et al. Lymphatic drainage from renal tumors in vivo: a prospective sentinel node study using SPECT/CT imaging. J. Urol. 199, 1426–1432 (2018).

    Article  PubMed  Google Scholar 

  216. Pawlak, J. B. & Caron, K. M. Lymphatic programing and specialization in hybrid vessels. Front. Physiol. 11, 114 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Thomson, B. R. et al. A lymphatic defect causes ocular hypertension and glaucoma in mice. J. Clin. Invest. 124, 4320–4324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Keyl, M. J. et al. Composition of canine renal hilar lymph. Am. J. Physiol. 209, 1031–1033 (1965).

    Article  CAS  PubMed  Google Scholar 

  219. Cockett, A. T., Roberts, A. P. & Moore, R. S. Renal lymphatic transport of fluid and solutes. Investig. Urol. 7, 10–14 (1969).

    CAS  Google Scholar 

  220. Cook, V. L., Reese, A. H., Wilson, P. D. & Pinter, G. G. Access of reabsorbed glucose to renal lymph. Experientia 38, 108–109 (1982).

    Article  CAS  PubMed  Google Scholar 

  221. Bell, R. D. Renal lymph flow and composition during acetazolamide and furosemide diuresis. Lymphology 17, 10–14 (1984).

    CAS  PubMed  Google Scholar 

  222. Wilcox, C. S. & Peart, W. S. Release of renin and angiotensin II into plasma and lymph during hyperchloremia. Am. J. Physiol. 253, F734–F741 (1987).

    CAS  PubMed  Google Scholar 

  223. Bivol, L. M. et al. Unilateral renal ischaemia in rats induces a rapid secretion of inflammatory markers to renal lymph and increased capillary permeability. J. Physiol. 594, 1709–1726 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.D.D. was supported by the National Institutes of Health (T32DK108738) and is currently supported by the American Society of Nephrology Ben J. Lipps Research Fellowship. S.E.Q is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (P30DK114857) and National Eye Institute (R01EY025799).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the drafting, researching and writing of this article. All authors reviewed and/or edited this manuscript prior to submission.

Corresponding author

Correspondence to Susan E. Quaggin.

Ethics declarations

Competing interests

S.E.Q. has applied for patents related to therapeutic targeting of the ANGPT–TEK pathway in ocular hypertension, glaucoma and kidney disease, receives research support, owns stocks in and is a director of Mannin Research, is an external advisory board member of AstraZeneca and receives consulting and advisory board fees from Roche, Janssen, Genentech and AstraZeneca. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks A. Phillips, who co-reviewed with P. Russell; J. Rutkowski; and J. Titze for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hypotrichosis–lymphoedema–telangiectasia

(HLT). A rare genetic syndrome characterized by lymphoedema in the lower limbs and eyelids, cutaneous telangiectasia and dilatations of superficial vasculature, and defects in hair follicle development.

Chylous ascites

The accumulation of lipid-rich lymph in the peritoneal cavity as a result of lymphatic vessel dysfunction.

Lymphocele

A post-surgical complication in which lymphatic fluid collects in the body.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donnan, M.D., Kenig-Kozlovsky, Y. & Quaggin, S.E. The lymphatics in kidney health and disease. Nat Rev Nephrol 17, 655–675 (2021). https://doi.org/10.1038/s41581-021-00438-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00438-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing