Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Key metalloproteinase-mediated pathways in the kidney

Abstract

Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) belong to the metzincin family of zinc-containing multidomain molecules, and can act as soluble or membrane-bound proteases. These enzymes inactivate or activate other soluble or membrane-expressed mediator molecules, which enables them to control developmental processes, tissue remodelling, inflammatory responses and proliferative signalling pathways. The dysregulation of MMPs and ADAMs has long been recognized in acute kidney injury and in chronic kidney disease, and genetic targeting of selected MMPs and ADAMs in different mouse models of kidney disease showed that they can have detrimental and protective roles. In particular, MMP-2, MMP-7, MMP-9, ADAM10 and ADAM17 have been shown to have a mainly profibrotic effect and might therefore represent therapeutic targets. Each of these proteases has been associated with a different profibrotic pathway that involves tissue remodelling, Wnt–β-catenin signalling, stem cell factor–c-kit signalling, IL-6 trans-signalling or epidermal growth factor receptor (EGFR) signalling. Broad-spectrum metalloproteinase inhibitors have been used to treat fibrotic kidney diseases experimentally but more targeted approaches have since been developed, including inhibitory antibodies, to avoid the toxic side effects initially observed with broad-spectrum inhibitors. These advances not only provide a solid foundation for additional preclinical studies but also encourage further translation into clinical research.

Key points

  • Expression and activity of the metalloproteinases matrix metalloproteinase 2 (MMP-2), MMP-7, MMP-9, a disintegrin and metalloproteinase 10 (ADAM10) and ADAM17 can be dysregulated in acute and in chronic kidney disease.

  • Murine knockout models indicate that these metalloproteinases preferentially have a profibrotic role in the kidney, in association with Wnt–β-catenin, stem cell factor–c-kit, IL-6, epidermal growth factor receptor or Notch signalling.

  • MMPs are endogenously regulated, not only at the transcriptional level but also by the activity of tissue inhibitors of metalloproteinases; ADAM10 and ADAM17 are further regulated by adapter molecules.

  • Novel metalloproteinase inhibitors with increased selectivity and reduced toxicity, such as monoclonal antibodies, have become available and their therapeutic potential should be explored in preclinical studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The metzincin family of zinc proteases.
Fig. 2: Overview of MMP-mediated pathways.
Fig. 3: Overview of pathways mediated by ADAM10 and ADAM17.
Fig. 4: Key mechanisms and therapeutic options for kidney metalloproteinase regulation.
Fig. 5: ADAM17 and the renin–angiotensin–aldosterone system.

Similar content being viewed by others

References

  1. Bikbov, B. et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  2. Garcia-Fernandez et al. Matrix metalloproteinases in diabetic kidney disease. J. Clin. Med. 9, 472 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  3. Fu, H. et al. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int. 95, 1167–1180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harskamp, L. R., Gansevoort, R. T., van Goor, H. & Meijer, E. The epidermal growth factor receptor pathway in chronic kidney diseases. Nat. Rev. Nephrol. 12, 496–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kato, T., Hagiyama, M. & Ito, A. Renal ADAM10 and 17: their physiological and medical meanings. Front. Cell Dev. Biol. 6, 1–8 (2018).

    Article  Google Scholar 

  6. Palau, V., Pascual, J., Soler, M. J. & Riera, M. Role of ADAM17 in kidney disease. Am. J. Physiol. Renal Physiol. 317, F333–F342 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Parrish, A. R. Matrix metalloproteinases in kidney disease: role in pathogenesis and potential as a therapeutic target. Prog. Mol. Biol. Transl. Sci. 148, 31–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Tan, R. J. & Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Renal Physiol. 302, F1351–F1361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zakiyanov, O., Kalousová, M., Zima, T. & Tesař, V. Matrix metalloproteinases in renal diseases: a critical appraisal. Kidney Blood Press. Res. 44, 298–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. He, W. et al. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/β-catenin activity in CKD. J. Am. Soc. Nephrol. 23, 294–304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kui Tan, T. et al. Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Lab. Investig. 93, 434–449 (2013).

    Article  CAS  Google Scholar 

  12. Braun, G. S. et al. IL-6 Trans-signaling drives murine crescentic GN. J. Am. Soc. Nephrol. 27, 132–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, W. et al. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation. Theranostics 9, 3980–3991 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, B. et al. ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. J. Pathol. 252, 274–289 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Kefaloyianni, E. et al. ADAM17 substrate release in proximal tubule drives kidney fibrosis. JCI Insight 1, 1–19 (2016).

    Article  Google Scholar 

  16. Nagase, H., Visse, R. & Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Edwards, D. R., Handsley, M. M. & Pennington, C. J. The ADAM metalloproteinases. Mol. Asp. Med. 29, 258–289 (2009).

    Article  CAS  Google Scholar 

  18. Cerdà-Costa, N. & Gomis-Rüth, F. X. Architecture and function of metallopeptidase catalytic domains. Protein Sci. 23, 123–144 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Pelmenschikov, V. & Siegbahn, P. E. M. Catalytic mechanism of matrix metalloproteinases: two-layered ONIOM study. Inorg. Chem. 41, 5659–5666 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Allan, J. A. et al. Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem. J. 309, 299–306 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dufour, A., Sampson, N. S., Zucker, S. & Cao, J. Role of the hemopexin domain of matrix metalloproteinases in cell migration. J. Cell. Physiol. 217, 643–651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huxley-Jones, J. et al. The evolution of the vertebrate metzincins; insights from Ciona intestinalis and Danio rerio. BMC Evol. Biol. 7, 63 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cathcart, J., Pulkoski-Gross, A. & Cao, J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis. 2, 26–34 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Giebeler, N. & Zigrino, P. A disintegrin and metalloprotease (ADAM): historical overview of their functions. Toxins 8, 122 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sommer, A. et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat. Commun. 7, 11523 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seegar, T. C. M. et al. Structural basis for regulated proteolysis by the α-secretase ADAM10. Cell 171, 1638–1648.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bax, D. V. et al. Integrin α5β1 and ADAM-17 interact in vitro and co-localize in migrating HeLa cells. J. Biol. Chem. 279, 22377–22386 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Schlomann, U. et al. ADAM8 as a drug target in pancreatic cancer. Nat. Commun. 6, 6175 (2015).

    Article  PubMed  Google Scholar 

  29. Arnould, C., Lelièvre-Pégorier, M., Ronco, P. & Lelongt, B. MMP9 limits apoptosis and stimulates branching morphogenesis during kidney development. J. Am. Soc. Nephrol. 20, 2171–2180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bengatta, S. et al. MMP9 and SCF protect from apoptosis in acute kidney injury. J. Am. Soc. Nephrol. 20, 787–797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alabi, R. O., Farber, G. & Blobel, C. P. Intriguing roles for endothelial ADAM10/Notch signaling in the development of organ-specific vascular beds. Physiol. Rev. 98, 2025–2061 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farber, G. et al. Glomerular endothelial cell maturation depends on ADAM10, a key regulator of Notch signaling. Angiogenesis 21, 335–347 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glomski, K. et al. Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood 118, 1163–1174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mukherjee, M., Fogarty, E., Janga, M. & Surendran, K. Notch signaling in kidney development, maintenance, and disease. Biomolecules 9, 1–23 (2019).

    Article  CAS  Google Scholar 

  35. McCright, B. Notch signaling in kidney development. Curr. Opin. Nephrol. Hypertens. 12, 5–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Sirin, Y. & Susztak, K. The role of notch in the kidney, development and beyond. J. Pathol. 226, 394–403 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Guo, Q. et al. Adam10 mediates the choice between principal cells and intercalated cells in the kidney. J. Am. Soc. Nephrol. 26, 149–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Mukherjee, M. et al. Endogenous notch signaling in adult kidneys maintains segment-specific epithelial cell types of the distal tubules and collecting ducts to ensure water homeostasis. J. Am. Soc. Nephrol. 30, 110–126 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Edeling, M., Ragi, G., Huang, S., Pavenstädt, H. & Susztak, K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 12, 426–439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schunk, S. J., Floege, J., Fliser, D. & Speer, T. WNT–β-catenin signalling — a versatile player in kidney injury and repair. Nat. Rev. Nephrol. 17, 172–184 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Nieuwdorp, M. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55, 1127–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Singh, A. et al. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J. Am. Soc. Nephrol. 18, 2885–2893 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Padberg, J.-S. et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 234, 335–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Hesse, B. et al. Symmetric dimethylarginine in dysfunctional high-density lipoprotein mediates endothelial glycocalyx breakdown in chronic kidney disease. Kidney Int. 97, 502–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Ramnath, R. D. et al. Blocking matrix metalloproteinase-mediated syndecan-4 shedding restores the endothelial glycocalyx and glomerular filtration barrier function in early diabetic kidney disease. Kidney Int. 97, 951–965 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, Z., Tan, R. J. & Liu, Y. The many faces of matrix metalloproteinase-7 in kidney diseases. Biomolecules 10, 960 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  47. Yang, X. et al. Urinary matrix metalloproteinase-7 predicts severe AKI and poor outcomes after cardiac surgery. J. Am. Soc. Nephrol. 28, 3373–3382 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou, D. et al. Matrix metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis. J. Am. Soc. Nephrol. 28, 598–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, X. et al. Urinary matrix metalloproteinase 7 and prediction of IgA nephropathy progression. Am. J. Kidney Dis. 75, 384–393 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, D. et al. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int. 82, 537–547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, D., Tan, R. J., Zhou, L., Li, Y. & Liu, Y. Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci. Rep. 3, 1878 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yilmaz, M. & Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28, 15–33 (2009).

    Article  PubMed  Google Scholar 

  54. Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Tan, R. J. et al. Tubular injury triggers podocyte dysfunction by β-catenin-driven release of MMP-7. JCI Insight 4, e122399 (2019).

    Article  PubMed Central  Google Scholar 

  56. Piedagnel, R., Murphy, G., Ronco, P. M. & Lelongt, B. Matrix metalloproteinase 2 (MMP2) and MMP9 are produced by kidney collecting duct principal cells but are differentially regulated by SV40 Large-T, arginine vasopressin, and epidermal growth factor. J. Biol. Chem. 274, 1614–1620 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Legallicier, B., Trugnan, G., Murphy, G., Lelongt, B. & Ronco, P. Expression of the type IV collagenase system during mouse kidney development and tubule segmentation. J. Am. Soc. Nephrol. 12, 2358–2369 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Holdsworth, S. R., Thomson, N. M., Glasgow, E. F. & Atkins, R. C. The effect of defibrination on macrophage participation in rabbit nephrotoxic nephritis: studies using glomerular culture and electronmicroscopy. Clin. Exp. Immunol. 37, 38–43 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lelongt, B. et al. Matrix metalloproteinase 9 protects mice from anti-glomerular basement membrane nephritis through its fibrinolytic activity. J. Exp. Med. 193, 793–802 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, S.-Y. et al. MMP-9 gene deletion mitigates microvascular loss in a model of ischemic acute kidney injury. Am. J. Physiol. Physiol. 301, F101–F109 (2011).

    Article  CAS  Google Scholar 

  61. Wang, H. et al. MMP-9-positive neutrophils are essential for establishing profibrotic microenvironment in the obstructed kidney of UUO mice. Acta Physiol. 227, 1–13 (2019).

    Article  CAS  Google Scholar 

  62. Wang, X. et al. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. Physiol. 299, F973–F982 (2010).

    Article  CAS  Google Scholar 

  63. Zhao, Y. et al. Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial–mesenchymal transition. Nephrol. Dial. Transplant. 32, gfw308 (2016).

    Article  CAS  Google Scholar 

  64. Kunugi, S. et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury. Lab. Invest. 91, 170–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Bergman, M. R. et al. Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am. J. Physiol. Circ. Physiol. 292, H1847–H1860 (2007).

    Article  CAS  Google Scholar 

  66. Lovett, D. H. et al. A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS One 7, e34177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wanga, S. et al. Two distinct isoforms of matrix metalloproteinase-2 are associated with human delayed kidney graft function. PLoS One 10, e0136276 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ceron, C. S. et al. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury. Am. J. Physiol. Renal Physiol. 312, F1166–F1183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng, S. & Lovett, D. H. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am. J. Pathol. 162, 1937–1949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheng, S. et al. Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEB J. 20, 1898–1900 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Du, X. et al. Involvement of matrix metalloproteinase-2 in the development of renal interstitial fibrosis in mouse obstructive nephropathy. Lab. Invest. 92, 1149–1160 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Tveitarås, M. K. et al. Matrix metalloproteinase-2 knockout and heterozygote mice are protected from hydronephrosis and kidney fibrosis after unilateral ureteral obstruction. PLoS One 10, e0143390 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Takamiya, Y. et al. Experimental diabetic nephropathy is accelerated in matrix metalloproteinase-2 knockout mice. Nephrol. Dial. Transplant. 28, 55–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Khan, M. I. et al. Comparative gene expression profiling of primary and metastatic renal cell carcinoma stem cell-like cancer cells. PLoS One 11, e0165718 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fritzsche, F. R. et al. ADAM9 is highly expressed in renal cell cancer and is associated with tumour progression. BMC Cancer 8, 179 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ruff, M. et al. The disintegrin and metalloprotease ADAM12 is associated with TGF-β-induced epithelial to mesenchymal transition. PLoS One 10, e0139179 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Dreymueller, D. & Ludwig, A. Considerations on inhibition approaches for proinflammatory functions of ADAM proteases. Platelets 28, 354–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Kang, S., Narazaki, M., Metwally, H. & Kishimoto, T. Historical overview of the interleukin-6 family cytokine. J. Exp. Med. 217, 1–10 (2020).

    CAS  Google Scholar 

  79. Su, H., Lei, C.-T. & Zhang, C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front. Immunol. 8, 1–10 (2017).

    Article  Google Scholar 

  80. Luig, M. et al. Inflammation-induced IL-6 functions as a natural brake on macrophages and limits GN. J. Am. Soc. Nephrol. 26, 1597–1607 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schumacher, N. & Rose-John, S. ADAM17 activity and IL-6 trans-signaling in inflammation and cancer. Cancers 11, 121–126 (2019).

    Article  CAS  Google Scholar 

  82. Tsantikos, E. et al. Interleukin-6 trans-signaling exacerbates inflammation and renal pathology in lupus-prone mice. Arthritis Rheum. 65, 2691–2702 (2013).

    CAS  PubMed  Google Scholar 

  83. Nechemia-Arbely, Y. et al. IL-6/IL-6R axis plays a critical role in acute kidney injury. J. Am. Soc. Nephrol. 19, 1106–1115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, Z., Chen, J.-K., Wang, S.-W., Moeckel, G. & Harris, R. C. Importance of functional EGF receptors in recovery from acute nephrotoxic injury. J. Am. Soc. Nephrol. 14, 3147–3154 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, N. et al. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J. Am. Soc. Nephrol. 23, 854–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, J. et al. EGFR signaling promotes TGF β -dependent renal fibrosis. J. Am. Soc. Nephrol. 23, 215–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang, J., Liu, N. & Zhuang, S. Role of epidermal growth factor receptor in acute and chronic kidney injury. Kidney Int. 83, 804–810 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, J., Chen, J.-K. & Harris, R. C. EGF receptor deletion in podocytes attenuates diabetic nephropathy. J. Am. Soc. Nephrol. 26, 1115–1125 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Blobel, C. P. ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 6, 32–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Sahin, U. et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769–779 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Melderis, S. et al. Amphiregulin aggravates glomerulonephritis via recruitment and activation of myeloid cells. J. Am. Soc. Nephrol. 31, 1996–2012 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kefaloyianni, E. et al. Proximal tubule-derived amphiregulin amplifies and integrates profibrotic EGF receptor signals in kidney fibrosis. J. Am. Soc. Nephrol. 30, 2370–2383 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beck Gooz, M. et al. ADAM17 promotes proliferation of collecting duct kidney epithelial cells through ERK activation and increased glycolysis in polycystic kidney disease. Am. J. Physiol. Renal Physiol. 307, F551–F559 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Forrester, S. J. et al. EGFR transactivation: mechanisms, pathophysiology and potential therapies in cardiovascular system. Annu. Rev. Pharmacol. Toxicol. 56, 627–653 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, H., Penninger, J. M., Li, Y., Zhong, N. & Slutsky, A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 46, 586–590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Loon, E. P. M. et al. Shedding of klotho by ADAMs in the kidney. Am. J. Physiol. Renal Physiol. 309, F359–F368 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Kuro-o, M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 15, 27–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Martín-Núñez, E. et al. Soluble levels and endogenous vascular gene expression of KLOTHO are related to inflammation in human atherosclerotic disease. Clin. Sci. 131, 2601–2609 (2017).

    Article  CAS  Google Scholar 

  99. Chen, T.-H. et al. The secreted Klotho protein restores phosphate retention and suppresses accelerated aging in Klotho mutant mice. Eur. J. Pharmacol. 698, 67–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Vervloet, M. Renal and extrarenal effects of fibroblast growth factor 23. Nat. Rev. Nephrol. 15, 109–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Garton, K. J. et al. Tumor necrosis Factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 276, 37993–38001 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Hundhausen, C. et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102, 1186–1195 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Hundhausen, C. et al. Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. J. Immunol. 178, 8064–8072 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Ludwig, A. et al. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb. Chem. High. Throughput Screen. 8, 161–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Abel, S. et al. The transmembrane CXC-chemokine ligand 16 is induced by IFN-γ and TNF-α and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J. Immunol. 172, 6362–6372 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Gough, P. J. et al. A disintegrin and metalloproteinase 10-mediated cleavage and shedding regulates the cell surface expression of CXC chemokine ligand 16. J. Immunol. 172, 3678–3685 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Xia, Y., Entman, M. L. & Wang, Y. Critical role of CXCL16 in hypertensive kidney injury and fibrosis. Hypertension 62, 1129–1137 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Zhuang, Q., Cheng, K. & Ming, Y. CX3CL1/CX3CR1 axis, as the therapeutic potential in renal diseases: friend or foe? Curr. Gene Ther. 17, 442–452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Palau, V. et al. Circulating ADAMs are associated with renal and cardiovascular outcomes in chronic kidney disease patients. Nephrol. Dial. Transplant. 35, 130–138 (2018).

    Google Scholar 

  110. Bollmann, M., Pap, T., Lohmann, C. H. & Bertrand, J. Matrix metalloproteinase mediated shedding of syndecan-4 under osteoarthritis conditions. Osteoarthritis Cartilage 27, S196–S197 (2019).

    Article  Google Scholar 

  111. Pruessmeyer, J. et al. A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells. J. Biol. Chem. 285, 555–564 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Brule, S. et al. The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16, 488–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Endo, K. et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J. Biol. Chem. 278, 40764–40770 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Lu, Z. et al. Syndecan-1 shedding inhibition to protect against ischemic acute kidney injury through HGF target signaling pathway. Transplantation 102, e331–e344 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, Q., Park, P. W., Wilson, C. L. & Parks, W. C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635–646 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Pasqualon, T. et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell. Mol. Life Sci. 72, 3783–3801 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, Z. et al. TIMP2 and TIMP3 have divergent roles in early renal tubulointerstitial injury. Kidney Int. 85, 82–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Kassiri, Z. et al. Loss of TIMP3 enhances interstitial nephritis and fibrosis. J. Am. Soc. Nephrol. 20, 1223–1235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Eddy, A. A. et al. Interstitial fibrosis in mice with overload proteinuria: deficiency of TIMP-1 is not protective. Kidney Int. 58, 618–628 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Oh, J. et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107, 789–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Muraguchi, T. et al. RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat. Neurosci. 10, 838–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Hong, K.-J., Wu, D.-C., Cheng, K.-H., Chen, L.-T. & Hung, W.-C. RECK inhibits stemness gene expression and tumorigenicity of gastric cancer cells by suppressing ADAM-mediated Notch1 activation. J. Cell. Physiol. 229, 191–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Aroor, A. R. et al. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc. Diabetol. 17, 108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Das, N. A. et al. Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition. Cell. Signal. 68, 109506 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Kang, A. & Jardine, M. J. SGLT2 inhibitors may offer benefit beyond diabetes. Nat. Rev. Nephrol. 17, 83–84 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Bernardo, M. M. & Fridman, R. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP. Biochem. J. 374, 739–745 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Herzog, C., Haun, R. S., Ludwig, A., Shah, S. V. & Kaushal, G. P. ADAM10 is the major sheddase responsible for the release of membrane-associated meprin A. J. Biol. Chem. 289, 13308–13322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Scharfenberg, F. et al. Degradome of soluble ADAM10 and ADAM17 metalloproteases. Cell. Mol. Life Sci. 77, 331–350 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Mahimkar, R. M., Visaya, O., Pollock, A. S. & Lovett, D. H. The disintegrin domain of ADAM9: a ligand for multiple β1 renal integrins. Biochem. J. 385, 461–468 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Matthews, A. L., Szyroka, J., Collier, R., Noy, P. J. & Tomlinson, M. G. Scissor sisters: regulation of ADAM10 by the TspanC8 tetraspanins. Biochem. Soc. Trans. 45, 719–730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, X. et al. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl. Acad. Sci. USA 112, 6080–6085 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Düsterhöft, S., Babendreyer, A., Giese, A. A., Flasshove, C. & Ludwig, A. Status update on iRhom and ADAM17: it’s still complicated. Biochim. Biophys. Acta Mol. Cell Res. 1866, 1567–1583 (2019).

    Article  PubMed  CAS  Google Scholar 

  133. Qing, X. et al. iRhom2 promotes lupus nephritis through TNF-α and EGFR signaling. J. Clin. Invest. 128, 1397–1412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Ajabshir, S., Asif, A. & Nayer, A. The effects of vitamin D on the renin-angiotensin system. J. Nephropathol. 3, 41–43 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Peti-Peterdi, J., Kang, J. J. & Toma, I. Activation of the renal renin-angiotensin system in diabetes — new concepts. Nephrol. Dial. Transplant. 23, 3047–3049 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Ritz, E. & Dikow, R. Hypertension and antihypertensive treatment of diabetic nephropathy. Nat. Clin. Pract. Nephrol. 2, 562–567 (2006).

    Article  PubMed  Google Scholar 

  139. Gurley, S. B. & Coffman, T. M. The renin-angiotensin system and diabetic nephropathy. Semin. Nephrol. 27, 144–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Hullett, D. A. et al. Prevention of chronic allograft nephropathy with vitamin D*. Transpl. Int. 18, 1175–1186 (2005).

    Article  PubMed  Google Scholar 

  141. Ersan, S. et al. Pretreatment with paricalcitol attenuates level and expression of matrix metalloproteinases in a rat model of renal ischemia-reperfusion injury. Clin. Nephrol. 88, 231–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Dusso, A., Arcidiacono, M. V., Yang, J. & Tokumoto, M. Vitamin D inhibition of TACE and prevention of renal osteodystrophy and cardiovascular mortality. J. Steroid Biochem. Mol. Biol. 121, 193–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Riera, M. et al. Paricalcitol modulates ACE2 shedding and renal ADAM17 in NOD mice beyond proteinuria. Am. J. Physiol. Renal Physiol. 310, F534–F546 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Lautrette, A. et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat. Med. 11, 867–874 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Arcidiacono, M. V., Yang, J., Fernandez, E. & Dusso, A. The induction of C/EBP contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease. Nephrol. Dial. Transplant. 30, 423–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Jia, H. P. et al. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L84–L96 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bae, E. H. et al. Murine recombinant angiotensin-converting enzyme 2 attenuates kidney injury in experimental Alport syndrome. Kidney Int. 91, 1347–1361 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Barhoumi, T. et al. Matrix metalloproteinase-2 knockout prevents angiotensin II-induced vascular injury. Cardiovasc. Res. 113, 1753–1762 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, C., Qian, X., Sun, X. & Chang, Q. Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2. Exp. Biol. Med. 240, 1564–1571 (2015).

    Article  CAS  Google Scholar 

  150. Wang, S. et al. Angiotensin II facilitates matrix metalloproteinase-9-mediated myosin light chain kinase degradation in pressure overload-induced cardiac hypertrophy. Cell. Physiol. Biochem. 44, 2281–2295 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Guo, Y.-S., Wu, Z.-G., Yang, J.-K. & Chen, X.-J. Impact of losartan and angiotensin II on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat vascular smooth muscle cells. Mol. Med. Rep. 11, 1587–1594 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Ghezel, A., Salekzamani, S., Mehralizadeh, H., Jafarabadi, M. A. & Gargari, B. P. Vitamin D supplementation has no effect on matrix metalloproteinases-2, -9, and tissue inhibitor matrix metalloproteinase-1 in subjects with metabolic syndrome: A pilot study. Int. J. Vitam. Nutr. Res. 89, 227–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Mora-Gutiérrez, J. M. et al. MMP-10 is increased in early stage diabetic kidney disease and can be reduced by renin-angiotensin system blockade. Sci. Rep. 10, 26 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Thadhani, R. et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA 307, 674–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Larsen, T., Mose, F. H., Bech, J. N. & Pedersen, E. B. Effect of paricalcitol on renin and albuminuria in non-diabetic stage III–IV chronic kidney disease: a randomized placebo-controlled trial. BMC Nephrol. 14, 1 (2013).

    Article  CAS  Google Scholar 

  156. Wang, A. Y.-M. et al. Effect of paricalcitol on left ventricular mass and function in CKD–the OPERA trial. J. Am. Soc. Nephrol. 25, 175–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Keyzer, C. A. et al. Effects of Vitamin D receptor activation and dietary sodium restriction on residual albuminuria in CKD: The ViRTUE-CKD trial. J. Am. Soc. Nephrol. 28, 1296–1305 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Erlichman, C. et al. Phase I study of the matrix metalloproteinase inhibitor, BAY 12-9566. Ann. Oncol. 12, 389–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Miller, K. D. et al. A randomized phase II pilot trial of adjuvant marimastat in patients with early-stage breast cancer. Ann. Oncol. 13, 1220–1224 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Novak, K. B. et al. Effects of metalloproteinase inhibition in a murine model of renal ischemia-reperfusion injury. Pediatr. Res. 67, 257–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ziswiler, R., Daniel, C., Franz, E. & Marti, H. P. Renal matrix metalloproteinase activity is unaffected by experimental ischemia-reperfusion injury and matrix metalloproteinase inhibition does not alter outcome of renal function. Exp. Nephrol. 9, 118–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Ermolli, M., Schumacher, M., Lods, N., Hammoud, M. & Marti, H. P. Differential expression of MMP-2/MMP-9 and potential benefit of an MMP inhibitor in experimental acute kidney allograft rejection. Transpl. Immunol. 11, 137–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Fields, G. B. The rebirth of matrix metalloproteinase inhibitors: moving beyond the dogma. Cells 8, 20–23 (2019).

    Article  CAS  Google Scholar 

  164. Veerendhar, A., Reich, R. & Breuer, E. Phosphorus based inhibitors of matrix metalloproteinases. Comptes Rendus Chim. 13, 1191–1202 (2010).

    Article  CAS  Google Scholar 

  165. Williams, J. M. et al. Evaluation of metalloprotease inhibitors on hypertension and diabetic nephropathy. Am. J. Physiol. Renal Physiol. 300, F983–F998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00312780 (2010).

  167. Jacobsen, J. A., Major Jourden, J. L., Miller, M. T. & Cohen, S. M. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim. Biophys. Acta 1803, 72–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Sutton, T. A. et al. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am. J. Physiol. Renal Physiol. 288, F91–F97 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Nakagawa, T. et al. Doxycycline attenuates cisplatin-induced acute kidney injury through pleiotropic effects. Am. J. Physiol. Renal Physiol. 315, F1347–F1357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Aggarwal, H. K. et al. Evaluation of role of doxycycline (a matrix metalloproteinase inhibitor) on renal functions in patients of diabetic nephropathy. Ren. Fail. 32, 941–946 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Shah, M. A. et al. Andecaliximab/GS-5745 alone and combined with mFOLFOX6 in advanced gastric and gastroesophageal junction adenocarcinoma: results from a phase I study. Clin. Cancer Res. 24, 3829–3837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Marshall, D. C. et al. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One 10, e0127063 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Atapattu, L. et al. Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. J. Cell Sci. 125, 6084–6093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tape, C. J. et al. Cross-domain inhibition of TACE ectodomain. Proc. Natl. Acad. Sci. USA 108, 5578–5583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Li, X., Yan, Y., Huang, W. & Yang, Y. The study of the inhibition of the recombinant TACE prodomain to endotoxemia in mice. Int. J. Mol. Sci. 10, 5442–5454 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wong, E. et al. Harnessing the natural inhibitory domain to control TNFα converting enzyme (TACE) activity in vivo. Sci. Rep. 6, 35598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Adrain, C., Zettl, M., Christova, Y., Taylor, N. & Freeman, M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Alabi, R. O. et al. ADAM10-dependent signaling through Notch1 and Notch4 controls development of organ-specific vascular beds. Circ. Res. 119, 519–531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Düsterhöft, S. et al. Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase. J. Am. Chem. Soc. 135, 5776–5781 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.W. researched data for the article. J.W., T.O. and A.L. wrote the manuscript. All authors made substantial contributions to discussions of the content, and reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Tammo Ostendorf or Andreas Ludwig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks G. Fields, Y. Liu, V. Palau and M. Riera for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wozniak, J., Floege, J., Ostendorf, T. et al. Key metalloproteinase-mediated pathways in the kidney. Nat Rev Nephrol 17, 513–527 (2021). https://doi.org/10.1038/s41581-021-00415-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00415-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing