Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Planar cell polarity pathway in kidney development, function and disease

Abstract

Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.

Key points

  • Planar cell polarity (PCP) refers to the coordinated organization of cells or cell components across a tissue plane as exemplified by the uniform patterns of scales on fish, trichomes (small hairs) on Drosophila wings or stereocilia in the mammalian inner ear.

  • Evolutionarily conserved PCP proteins function in specialized signalling pathways to coordinate changes in cell shape and behaviour through processes that commonly involve actomyosin activation; these PCP-dependent changes in cell morphology control tissue morphogenesis.

  • PCP proteins exhibit asymmetric subcellular localization along the tissue plane.

  • Functions of vertebrate homologues of Drosophila PCP components in PCP signalling are often unclear owing to gene redundancy and/or their involvement in non-PCP-related processes.

  • Given the essential roles of PCP proteins in morphogenetic processes, mutations in genes that encode PCP components can cause congenital malformations in multiple organs and tissues, including the kidney. Defective PCP signalling influences ureteric bud outgrowth and branching, nephron progenitor cell renewal and differentiation, and podocyte development. In mouse PCP mutants, renal tubules are dilated but no cysts form.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Planar cell polarity in Drosophila wing.
Fig. 2: Cell behaviours during morphogenesis.
Fig. 3: PCP signalling in kidney development.
Fig. 4: The relationship between PCP and cystogenesis.
Fig. 5: Cues for establishing PCP during kidney development.

Similar content being viewed by others

References

  1. Lawrence, P. A. Gradients in the insect segment: the orientation of hairs in the milkweed bug Oncopeltus fasciatus. J. Exp. Biol. 44, 607–620 (1966).

    Article  Google Scholar 

  2. Wong, L. L. & Adler, P. N. Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells. J. Cell Biol. 123, 209–221 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Gubb, D. & Garcia-Bellido, A. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J. Embryol. Exp. Morphol. 68, 37–57 (1982).

    CAS  PubMed  Google Scholar 

  4. Adler, P. N. The frizzled/stan pathway and planar cell polarity in the Drosophila wing. Curr. Top. Dev. Biol. 101, 1–31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vladar, E. K., Antic, D. & Axelrod, J. D. Planar cell polarity signaling: the developing cell’s compass. Cold Spring Harb. Perspect. Biol. 1, a002964 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goodrich, L. V. & Strutt, D. Principles of planar polarity in animal development. Development 138, 1877–1892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bastock, R., Strutt, H. & Strutt, D. Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 130, 3007–3014 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Jenny, A., Reynolds-Kenneally, J., Das, G., Burnett, M. & Mlodzik, M. Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding. Nat. Cell Biol. 7, 691–697 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, W. S. et al. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 133, 1093–1105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma, D., Yang, C. H., McNeill, H., Simon, M. A. & Axelrod, J. D. Fidelity in planar cell polarity signalling. Nature 421, 543–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Harumoto, T. et al. Atypical cadherins Dachsous and Fat control dynamics of noncentrosomal microtubules in planar cell polarity. Dev. Cell 19, 389–401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matakatsu, H. & Blair, S. S. Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development 131, 3785–3794 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Fulford, A. D. & McNeill, H. Fat/Dachsous family cadherins in cell and tissue organisation. Curr. Opin. Cell Biol. 62, 96–103 (2019).

    Article  PubMed  Google Scholar 

  15. Lawrence, P. A. & Casal, J. Planar cell polarity: two genetic systems use one mechanism to read gradients. Development 145, dev168229 (2018).

    Article  PubMed  Google Scholar 

  16. Collier, S. & Gubb, D. Drosophila tissue polarity requires the cell-autonomous activity of the fuzzy gene, which encodes a novel transmembrane protein. Development 124, 4029–4037 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Adler, P. N., Zhu, C. & Stone, D. Inturned localizes to the proximal side of wing cells under the instruction of upstream planar polarity proteins. Curr. Biol. 14, 2046–2051 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Collier, S., Lee, H., Burgess, R. & Adler, P. The WD40 repeat protein fritz links cytoskeletal planar polarity to frizzled subcellular localization in the Drosophila epidermis. Genetics 169, 2035–2045 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, H. & Adler, P. N. The function of the frizzled pathway in the Drosophila wing is dependent on inturned and fuzzy. Genetics 160, 1535–1547 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Winter, C. G. et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105, 81–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Strutt, D. I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–295 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Ossipova, O. et al. Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure. Nat. Commun. 5, 3734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y., Yan, J., Lee, H., Lu, Q. & Adler, P. N. The proteins encoded by the Drosophila planar polarity effector genes inturned, fuzzy and fritz interact physically and can re-pattern the accumulation of “upstream” planar cell polarity proteins. Dev. Biol. 394, 156–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ossipova, O., Kim, K. & Sokol, S. Y. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling. Biol. Open 4, 722–730 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Murdoch, J. N., Doudney, K., Paternotte, C., Copp, A. J. & Stanier, P. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum. Mol. Genet. 10, 2593–2601 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. McGreevy, E. M., Vijayraghavan, D., Davidson, L. A. & Hildebrand, J. D. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure. Biol. Open 4, 186–196 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hildebrand, J. D. & Soriano, P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99, 485–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Nishita, M. et al. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J. Cell Biol. 175, 555–562 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao, B. et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev. Cell 20, 163–176 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, W., Yamamoto, V., Ortega, B. & Baltimore, D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Andre, P. et al. The Wnt coreceptor Ryk regulates Wnt/planar cell polarity by modulating the degradation of the core planar cell polarity component Vangl2. J. Biol. Chem. 287, 44518–44525 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu, X. et al. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430, 93–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Adler, P. N. & Wallingford, J. B. From planar cell polarity to ciliogenesis and back: the curious tale of the PPE and CPLANE proteins. Trends Cell Biol. 27, 379–390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gray, R. S., Roszko, I. & Solnica-Krezel, L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev. Cell 21, 120–133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sokol, S. Y. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Ybot-Gonzalez, P. et al. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134, 789–799 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song, H. et al. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 466, 378–382 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hashimoto, M. et al. Planar polarization of node cells determines the rotational axis of node cilia. Nat. Cell Biol. 12, 170–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Borovina, A., Superina, S., Voskas, D. & Ciruna, B. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat. Cell Biol. 12, 407–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Antic, D. et al. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS ONE 5, e8999 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mochizuki, T. et al. Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395, 177–181 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Yasunaga, T., Itoh, K. & Sokol, S. Y. Regulation of basal body and ciliary functions by diversin. Mech. Dev. 128, 376–386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schnell, U. & Carroll, T. J. Planar cell polarity of the kidney. Exp. Cell Res. 343, 258–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Adler, P. N., Krasnow, R. E. & Liu, J. Tissue polarity points from cells that have higher Frizzled levels towards cells that have lower Frizzled levels. Curr. Biol. 7, 940–949 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Qian, D. et al. Wnt5a functions in planar cell polarity regulation in mice. Dev. Biol. 306, 121–133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gros, J., Serralbo, O. & Marcelle, C. WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature 457, 589–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Chu, C. W. & Sokol, S. Y. Wnt proteins can direct planar cell polarity in vertebrate ectoderm. eLife 5, e16463 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wu, J., Roman, A. C., Carvajal-Gonzalez, J. M. & Mlodzik, M. Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila. Nat. Cell Biol. 15, 1045–1055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Navajas Acedo, J. et al. PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation. Nat. Commun. 10, 3993 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yu, J. J. S. et al. Frizzled-dependent planar cell polarity without secreted Wnt ligands. Dev. Cell 54, 583–592.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ewen-Campen, B., Comyn, T., Vogt, E. & Perrimon, N. No evidence that Wnt ligands are required for planar cell polarity in drosophila. Cell Rep. 32, 108121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sagner, A. et al. Establishment of global patterns of planar polarity during growth of the Drosophila wing epithelium. Curr. Biol. 22, 1296–1301 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Aigouy, B. et al. Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142, 773–786 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Matis, M. & Axelrod, J. D. Regulation of PCP by the Fat signaling pathway. Genes Dev. 27, 2207–2220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Casal, J., Lawrence, P. A. & Struhl, G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development 133, 4561–4572 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lawrence, P. A., Struhl, G. & Casal, J. Planar cell polarity: one or two pathways? Nat. Rev. Genet. 8, 555–563 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chien, Y. H., Keller, R., Kintner, C. & Shook, D. R. Mechanical strain determines the axis of planar polarity in ciliated epithelia. Curr. Biol. 25, 2774–2784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aw, W. Y., Heck, B. W., Joyce, B. & Devenport, D. Transient tissue-scale deformation coordinates alignment of planar cell polarity junctions in the mammalian skin. Curr. Biol. 26, 2090–2100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. de Matos Simões, S. et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 19, 377–388 (2010).

    Article  PubMed Central  Google Scholar 

  64. Jenny, A., Darken, R. S., Wilson, P. A. & Mlodzik, M. Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling. EMBO J. 22, 4409–4420 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Strutt, H., Warrington, S. J. & Strutt, D. Dynamics of core planar polarity protein turnover and stable assembly into discrete membrane subdomains. Dev. Cell 20, 511–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tree, D. R. et al. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, J. & Mlodzik, M. The frizzled extracellular domain is a ligand for Van Gogh/Stbm during nonautonomous planar cell polarity signaling. Dev. Cell 15, 462–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Loza, O. et al. A synthetic planar cell polarity system reveals localized feedback on Fat4-Ds1 complexes. eLife 6, e24820 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kelly, L. K., Wu, J., Yanfeng, W. A. & Mlodzik, M. Frizzled-induced Van Gogh phosphorylation by CK1ε promotes asymmetric localization of core PCP factors in Drosophila. Cell Rep. 16, 344–356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Strutt, H., Gamage, J. & Strutt, D. Reciprocal action of casein kinase Iε on core planar polarity proteins regulates clustering and asymmetric localisation. eLife 8, e45107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, J., Klein, T. J. & Mlodzik, M. Subcellular localization of frizzled receptors, mediated by their cytoplasmic tails, regulates signaling pathway specificity. PLoS Biol. 2, E158 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chuykin, I., Ossipova, O. & Sokol, S. Y. Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate. eLife 7, e37881 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Montcouquiol, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423, 173–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Murdoch, J. N. et al. Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum. Mol. Genet. 12, 87–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Ossipova, O., Dhawan, S., Sokol, S. & Green, J. B. Distinct PAR-1 proteins function in different branches of Wnt signaling during vertebrate development. Dev. Cell 8, 829–841 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Dollar, G. L., Weber, U., Mlodzik, M. & Sokol, S. Y. Regulation of Lethal giant larvae by Dishevelled. Nature 437, 1376–1380 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Djiane, A., Yogev, S. & Mlodzik, M. The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 121, 621–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Narimatsu, M. et al. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 137, 295–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Cho, B., Pierre-Louis, G., Sagner, A., Eaton, S. & Axelrod, J. D. Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle. PLoS Genet. 11, e1005259 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Strutt, H. & Strutt, D. Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Curr. Biol. 18, 1555–1564 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wansleeben, C. et al. Planar cell polarity defects and defective Vangl2 trafficking in mutants for the COPII gene Sec24b. Development 137, 1067–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Merte, J. et al. Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure. Nat. Cell Biol. 12, 41–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Guo, Y., Zanetti, G. & Schekman, R. A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network. Elife 2, e00160 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mottola, G., Classen, A. K., Gonzalez-Gaitan, M., Eaton, S. & Zerial, M. A novel function for the Rab5 effector Rabenosyn-5 in planar cell polarity. Development 137, 2353–2364 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Shimada, Y., Yonemura, S., Ohkura, H., Strutt, D. & Uemura, T. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 10, 209–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Carvajal-Gonzalez, J. M. et al. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo. Nat. Commun. 6, 6751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vinson, C. R. & Adler, P. N. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329, 549–551 (1987).

    Article  CAS  PubMed  Google Scholar 

  88. Adler, P. N., Taylor, J. & Charlton, J. The domineering non-autonomy of frizzled and van Gogh clones in the Drosophila wing is a consequence of a disruption in local signaling. Mech. Dev. 96, 197–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Lu, Q., Schafer, D. A. & Adler, P. N. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton. Development 142, 2478–2486 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yan, J. et al. The multiple-wing-hairs gene encodes a novel GBD-FH3 domain-containing protein that functions both prior to and after wing hair initiation. Genetics 180, 219–228 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yasunaga, T. et al. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells. J. Cell Biol. 211, 963–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, S. K. et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 329, 1337–1340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cui, C. et al. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton. PLoS Biol. 11, e1001720 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ossipova, O., Chuykin, I., Chu, C. W. & Sokol, S. Y. Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development 142, 99–107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lee, J. et al. PTK7 regulates myosin II activity to orient planar polarity in the mammalian auditory epithelium. Curr. Biol. 22, 956–966 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Andreeva, A. et al. PTK7-Src signaling at epithelial cell contacts mediates spatial organization of actomyosin and planar cell polarity. Dev. Cell 29, 20–33 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Matis, M., Russler-Germain, D. A., Hu, Q., Tomlin, C. J. & Axelrod, J. D. Microtubules provide directional information for core PCP function. eLife 3, e02893 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Olofsson, J., Sharp, K. A., Matis, M., Cho, B. & Axelrod, J. D. Prickle/spiny-legs isoforms control the polarity of the apical microtubule network in planar cell polarity. Development 141, 2866–2874 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ayukawa, T. et al. Dachsous-dependent asymmetric localization of spiny-legs determines planar cell polarity orientation in Drosophila. Cell Rep. 8, 610–621 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Pataki, C. et al. Drosophila Rab23 is involved in the regulation of the number and planar polarization of the adult cuticular hairs. Genetics 184, 1051–1065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Park, T. J., Haigo, S. L. & Wallingford, J. B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat. Genet. 38, 303–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Gray, R. S. et al. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat. Cell Biol. 11, 1225–1232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Seo, J. H. et al. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum. Mol. Genet. 20, 4324–4333 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Dos-Santos Carvalho, S. et al. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. eLife 9, e51822 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Green, J. L., Inoue, T. & Sternberg, P. W. Opposing Wnt pathways orient cell polarity during organogenesis. Cell 134, 646–656 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Keller, R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298, 1950–1954 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Huebner, R. J. & Wallingford, J. B. Coming to consensus: a unifying model emerges for convergent extension. Dev. Cell 46, 389–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Walck-Shannon, E. & Hardin, J. Cell intercalation from top to bottom. Nat. Rev. Mol. Cell Biol. 15, 34–48 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Smith, P. et al. VANGL2 regulates luminal epithelial organization and cell turnover in the mammary gland. Sci. Rep. 9, 7079 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ossipova, O. et al. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev. Biol. 408, 316–327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sawyer, J. M. et al. Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol. 341, 5–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Nikolopoulou, E., Galea, G. L., Rolo, A., Greene, N. D. & Copp, A. J. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144, 552–566 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sherrard, K., Robin, F., Lemaire, P. & Munro, E. Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr. Biol. 20, 1499–1510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Williams, M., Yen, W., Lu, X. & Sutherland, A. Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate. Dev. Cell 29, 34–46 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Barlan, K., Cetera, M. & Horne-Badovinac, S. Fat2 and Lar define a basally localized planar signaling system controlling collective cell migration. Dev. Cell 40, 467–477.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bellaiche, Y., Beaudoin-Massiani, O., Stuttem, I. & Schweisguth, F. The planar cell polarity protein Strabismus promotes Pins anterior localization during asymmetric division of sensory organ precursor cells in Drosophila. Development 131, 469–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Baena-Lopez, L. A., Baonza, A. & Garcia-Bellido, A. The orientation of cell divisions determines the shape of Drosophila organs. Curr. Biol. 15, 1640–1644 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Gong, Y., Mo, C. & Fraser, S. E. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430, 689–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Ciruna, B., Jenny, A., Lee, D., Mlodzik, M. & Schier, A. F. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 439, 220–224 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Segalen, M. et al. The Fz-Dsh planar cell polarity pathway induces oriented cell division via Mud/NuMA in Drosophila and zebrafish. Dev. Cell 19, 740–752 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lake, B. B. & Sokol, S. Y. Strabismus regulates asymmetric cell divisions and cell fate determination in the mouse brain. J. Cell Biol. 185, 59–66 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nance, J. & Zallen, J. A. Elaborating polarity: PAR proteins and the cytoskeleton. Development 138, 799–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Borovina, A. & Ciruna, B. IFT88 plays a cilia- and PCP-independent role in controlling oriented cell divisions during vertebrate embryonic development. Cell Rep. 5, 37–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Gerdes, J. M., Davis, E. E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Toriyama, M. et al. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat. Genet. 48, 648–656 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zeng, H., Hoover, A. N. & Liu, A. PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals. Dev. Biol. 339, 418–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Heydeck, W., Zeng, H. & Liu, A. Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev. Dyn. 238, 3035–3042 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Wallingford, J. B. & Mitchell, B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 25, 201–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gerondopoulos, A. et al. Planar cell polarity effector proteins inturned and fuzzy form a Rab23 GEF complex. Curr. Biol. 29, 3323–3330.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Boutin, C. et al. A dual role for planar cell polarity genes in ciliated cells. Proc. Natl Acad. Sci. USA 111, E3129–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Conduit, P. T., Wainman, A. & Raff, J. W. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16, 611–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Tissir, F. et al. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat. Neurosci. 13, 700–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Watanabe, D. et al. The left-right determinant Inversin is a component of node monocilia and other 9+0 cilia. Development 130, 1725–1734 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Itoh, K., Jenny, A., Mlodzik, M. & Sokol, S. Y. Centrosomal localization of Diversin and its relevance to Wnt signaling. J. Cell Sci. 122, 3791–3798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Park, T. J., Mitchell, B. J., Abitua, P. B., Kintner, C. & Wallingford, J. B. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat. Genet. 40, 871–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cervenka, I. et al. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins. Proc. Natl Acad. Sci. USA 113, 9304–9309 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Chu, C. W., Ossipova, O., Ioannou, A. & Sokol, S. Y. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci. Rep. 6, 24104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dressler, G. R. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol. 22, 509–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Krneta-Stankic, V., DeLay, B. D. & Miller, R. K. Xenopus: leaping forward in kidney organogenesis. Pediatr. Nephrol. 32, 547–555 (2017).

    Article  PubMed  Google Scholar 

  143. Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 18, 698–712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Costantini, F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. Wiley Interdiscip. Rev. Dev. Biol. 1, 693–713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shaw, G. & Renfree, M. B. Wolffian duct development. Sex. Dev. 8, 273–280 (2014).

    Article  PubMed  Google Scholar 

  146. Boletta, A. & Germino, G. G. Role of polycystins in renal tubulogenesis. Trends Cell Biol. 13, 484–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Rowan, C. J., Sheybani-Deloui, S. & Rosenblum, N. D. Origin and function of the renal stroma in health and disease. Results Probl. Cell Differ. 60, 205–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Sequeira-Lopez, M. L. S. & Torban, E. New insights into precursors of renal endothelium. Kidney Int. 90, 244–246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hughson, M., Farris, A. B. III, Douglas-Denton, R., Hoy, W. E. & Bertram, J. F. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 63, 2113–2122 (2003).

    Article  PubMed  Google Scholar 

  150. Baldelomar, E. J., Charlton, J. R., Beeman, S. C. & Bennett, K. M. Measuring rat kidney glomerular number and size in vivo with MRI. Am. J. Physiol. Ren. Physiol 314, F399–F406 (2018).

    Article  Google Scholar 

  151. Marcotte, M., Sharma, R. & Bouchard, M. Gene regulatory network of renal primordium development. Pediatr. Nephrol. 29, 637–644 (2014).

    Article  PubMed  Google Scholar 

  152. Nicolaou, N., Renkema, K. Y., Bongers, E. M., Giles, R. H. & Knoers, N. V. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat. Rev. Nephrol. 11, 720–731 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. van der Ven, A. T., Vivante, A. & Hildebrandt, F. Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 36–50 (2018).

    Article  PubMed  Google Scholar 

  154. Torban, E. et al. Tissue, cellular and sub-cellular localization of the Vangl2 protein during embryonic development: effect of the Lp mutation. Gene Expr. Patterns 7, 346–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Yates, L. L. et al. The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum. Mol. Genet. 19, 4663–4676 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Viktorinova, I., Konig, T., Schlichting, K. & Dahmann, C. The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary. Development 136, 4123–4132 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Saburi, S., Hester, I., Goodrich, L. & McNeill, H. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development 139, 1806–1820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rocque, B. L. et al. Deficiency of the planar cell polarity protein vangl2 in podocytes affects glomerular morphogenesis and increases susceptibility to injury. J. Am. Soc. Nephrol. 26, 576–586 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Ciani, L., Patel, A., Allen, N. D. & ffrench-Constant, C. Mice lacking the giant protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia and anophthalmia phenotype. Mol. Cell Biol. 23, 3575–3582 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bagherie-Lachidan, M. et al. Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development 142, 2564–2573 (2015).

    CAS  PubMed  Google Scholar 

  161. Mao, Y., Francis-West, P. & Irvine, K. D. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 142, 2574–2585 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang, Y., Chang, H., Rattner, A. & Nathans, J. Frizzled receptors in development and disease. Curr. Top. Dev. Biol. 117, 113–139 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wang, Y., Zhou, C. J. & Liu, Y. Wnt signaling in kidney development and disease. Prog. Mol. Biol. Transl. Sci. 153, 181–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Halt, K. & Vainio, S. Coordination of kidney organogenesis by Wnt signaling. Pediatr. Nephrol. 29, 737–744 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Nomachi, A. et al. Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J. Biol. Chem. 283, 27973–27981 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Huang, L. et al. Wnt5a is necessary for normal kidney development in zebrafish and mice. Nephron Exp. Nephrol. 128, 80–88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yun, K. et al. Non-canonical Wnt5a/Ror2 signaling regulates kidney morphogenesis by controlling intermediate mesoderm extension. Hum. Mol. Genet 23, 6807–6814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Majumdar, A., Vainio, S., Kispert, A., McMahon, J. & McMahon, A. P. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130, 3175–3185 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Karner, C. M. et al. Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat. Genet. 41, 793–799 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yu, J. et al. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136, 161–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Kunimoto, K. et al. Disruption of core planar cell polarity signaling regulates renal tubule morphogenesis but is not cystogenic. Curr. Biol. 27, 3120–3131.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ye, X., Wang, Y., Rattner, A. & Nathans, J. Genetic mosaic analysis reveals a major role for frizzled 4 and frizzled 8 in controlling ureteric growth in the developing kidney. Development 138, 1161–1172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Drawbridge, J., Meighan, C. M., Lumpkins, R. & Kite, M. E. Pronephric duct extension in amphibian embryos: migration and other mechanisms. Dev. Dyn. 226, 1–11 (2003).

    Article  PubMed  Google Scholar 

  174. Stewart, K. & Bouchard, M. Coordinated cell behaviours in early urogenital system morphogenesis. Semin. Cell Dev. Biol. 36, 13–20 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Lienkamp, S. S. et al. Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat. Genet. 44, 1382–1387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xu, B. et al. Protein tyrosine kinase 7 is essential for tubular morphogenesis of the Wolffian duct. Dev. Biol. 412, 219–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Carroll, T. J., Park, J. S., Hayashi, S., Majumdar, A. & McMahon, A. P. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Kispert, A., Vainio, S. & McMahon, A. P. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125, 4225–4234 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Stark, K., Vainio, S., Vassileva, G. & McMahon, A. P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  180. Tanigawa, S. et al. Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev. Biol. 352, 58–69 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pietila, I. et al. Wnt5a deficiency leads to anomalies in ureteric tree development, tubular epithelial cell organization and basement membrane integrity pointing to a role in kidney collecting duct patterning. PLoS ONE 11, e0147171 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Qi, X., Okinaka, Y., Nishita, M. & Minami, Y. Essential role of Wnt5a-Ror1/Ror2 signaling in metanephric mesenchyme and ureteric bud formation. Genes Cell 21, 325–334 (2016).

    Article  CAS  Google Scholar 

  183. Schuchardt, A., D’Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  184. Chi, X. et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell 17, 199–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nishita, M. et al. Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol. Cell Biol. 34, 3096–3105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Zhang, H. et al. FAT4 fine-tunes kidney development by regulating RET signaling. Dev. Cell 48, 780–792.e4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zhao, H. et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev. Biol. 276, 403–415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Brzoska, H. L. et al. Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney Int. 90, 1274–1284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kibar, Z. et al. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat. Genet. 28, 251–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Yates, L. L. et al. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Hum. Mol. Genet. 19, 2251–2267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Torban, E., Wang, H. J., Groulx, N. & Gros, P. Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. J. Biol. Chem. 279, 52703–52713 (2004).

    Article  CAS  PubMed  Google Scholar 

  192. Miller, R. K. et al. Pronephric tubulogenesis requires Daam1-mediated planar cell polarity signaling. J. Am. Soc. Nephrol. 22, 1654–1664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Warrington, S. J., Strutt, H. & Strutt, D. The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2. Development 140, 1045–1054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Williams, B. B. et al. VANGL2 regulates membrane trafficking of MMP14 to control cell polarity and migration. J. Cell Sci. 125, 2141–2147 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Coyle, R. C., Latimer, A. & Jessen, J. R. Membrane-type 1 matrix metalloproteinase regulates cell migration during zebrafish gastrulation: evidence for an interaction with non-canonical Wnt signaling. Exp. Cell Res. 314, 2150–2162 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Kopan, R., Chen, S. & Little, M. Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr. Top. Dev. Biol. 107, 293–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Das, A. et al. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat. Cell Biol. 15, 1035–1044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. O’Brien, L. L. et al. Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. eLife 7, e40392 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Ramalingam, H. et al. Disparate levels of beta-catenin activity determine nephron progenitor cell fate. Dev. Biol. 440, 13–21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Karner, C. M. et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138, 1247–1257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Liu, C. et al. Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Biol. Open 3, 861–870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. San Agustin, J. T. et al. Genetic link between renal birth defects and congenital heart disease. Nat. Commun. 7, 11103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Babayeva, S. et al. Planar cell polarity pathway regulates nephrin endocytosis in developing podocytes. J. Biol. Chem. 288, 24035–24048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Derish, I. et al. Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys. PLoS ONE 15, e0230586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Fischer, E. et al. Defective planar cell polarity in polycystic kidney disease. Nat. Genet. 38, 21–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Saburi, S. et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40, 1010–1015 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Matakatsu, H. & Blair, S. S. Separating planar cell polarity and Hippo pathway activities of the protocadherins Fat and Dachsous. Development 139, 1498–1508 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Happe, H. et al. Altered Hippo signalling in polycystic kidney disease. J. Pathol. 224, 133–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Cai, J. et al. A RhoA-YAP-c-Myc signaling axis promotes the development of polycystic kidney disease. Genes Dev. 32, 781–793 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Mammoto, T., Jiang, E., Jiang, A. & Mammoto, A. Extracellular matrix structure and tissue stiffness control postnatal lung development through the lipoprotein receptor-related protein 5/Tie2 signaling system. Am. J. Respir. Cell Mol. Biol. 49, 1009–1018 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Sekiguchi, R. & Yamada, K. M. Basement membranes in development and disease. Curr. Top. Dev. Biol. 130, 143–191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sutherland, A., Keller, R. & Lesko, A. Convergent extension in mammalian morphogenesis. Semin. Cell Dev. Biol. 100, 199–211 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Collins, I. & Wann, A. K. T. Regulation of the extracellular matrix by ciliary machinery. Cells 9, 278 (2020).

    Article  CAS  Google Scholar 

  214. Nishio, S. et al. Loss of oriented cell division does not initiate cyst formation. J. Am. Soc. Nephrol. 21, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Castelli, M. et al. Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis. Nat. Commun. 4, 2658 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Babayeva, S., Zilber, Y. & Torban, E. Planar cell polarity pathway regulates actin rearrangement, cell shape, motility, and nephrin distribution in podocytes. Am. J. Physiol. Ren. Physiol. 300, F549–F560 (2011).

    Article  CAS  Google Scholar 

  217. Yaoita, E. et al. Role of Fat1 in cell-cell contact formation of podocytes in puromycin aminonucleoside nephrosis and neonatal kidney. Kidney Int. 68, 542–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Gee, H. Y. et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat. Commun. 7, 10822 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Montaldo, P. et al. Small renal size in newborns with spina bifida: possible causes. Clin. Exp. Nephrol. 18, 120–123 (2014).

    Article  PubMed  Google Scholar 

  220. Wang, M., Marco, P., Capra, V. & Kibar, Z. Update on the role of the non-canonical wnt/planar cell polarity pathway in neural tube defects. Cells 8, 1198 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  221. Murdoch, J. N. et al. Circletail, a new mouse mutant with severe neural tube defects: chromosomal localization and interaction with the loop-tail mutation. Genomics 78, 55–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  222. Person, A. D. et al. WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev. Dyn. 239, 327–337 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Bunn, K. J. et al. Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome. Am. J. Hum. Genet. 96, 623–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. White, J. J. et al. DVL3 alleles resulting in a -1 frameshift of the last exon mediate autosomal-dominant robinow syndrome. Am. J. Hum. Genet. 98, 553–561 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Afzal, A. R. et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat. Genet. 25, 419–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  226. van Bokhoven, H. et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat. Genet. 25, 423–426 (2000).

    Article  PubMed  Google Scholar 

  227. Brunetti-Pierri, N. et al. Robinow syndrome: phenotypic variability in a family with a novel intragenic ROR2 mutation. Am. J. Med. Genet. A 146A, 2804–2809 (2008).

    Article  CAS  PubMed  Google Scholar 

  228. Mansour, S. et al. Van Maldergem syndrome: further characterisation and evidence for neuronal migration abnormalities and autosomal recessive inheritance. Eur. J. Hum. Genet. 20, 1024–1031 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Lahrouchi, N. et al. Homozygous frameshift mutations in FAT1 cause a syndrome characterized by colobomatous-microphthalmia, ptosis, nephropathy and syndactyly. Nat. Commun. 10, 1180 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Zhang, W. et al. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum. Mutat. 39, 152–166 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Otto, E. A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat. Genet. 34, 413–420 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Heydeck, W. & Liu, A. PCP effector proteins inturned and fuzzy play nonredundant roles in the patterning but not convergent extension of mammalian neural tube. Dev. Dyn. 240, 1938–1948 (2011).

    Article  CAS  PubMed  Google Scholar 

  233. van Amerongen, R. & Nusse, R. Towards an integrated view of Wnt signaling in development. Development 136, 3205–3214 (2009).

    Article  PubMed  Google Scholar 

  234. Minegishi, K. et al. A Wnt5 activity asymmetry and intercellular signaling via PCP proteins polarize node cells for left-right symmetry breaking. Dev. Cell 40, 439–452.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Nishimura, T., Honda, H. & Takeichi, M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  236. Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  237. Weiser, D. C., Row, R. H. & Kimelman, D. Rho-regulated myosin phosphatase establishes the level of protrusive activity required for cell movements during zebrafish gastrulation. Development 136, 2375–2384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Butler, M. T. & Wallingford, J. B. Planar cell polarity in development and disease. Nat. Rev. Mol. Cell Biol. 18, 375–388 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Happe, H., de Heer, E. & Peters, D. J. Polycystic kidney disease: the complexity of planar cell polarity and signaling during tissue regeneration and cyst formation. Biochim. Biophys. Acta 1812, 1249–1255 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Gusella (Icahn School of Medicine at Mount Sinai, New York, NY, USA) for comments on the manuscript before submission. We apologize to those investigators whose studies we could not cite due to the constraints for space. The authors’ work was supported by grants from the Kidney Foundation of Canada KFOC1719 and the Canadian Institute of Health Research (MOP130315 and PJT-169082) to E.T. and National Institutes of Health grants (GM122492, HD092990, DE027665 and NS100759) to S.Y.S.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Elena Torban or Sergei Y. Sokol.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks R. Miller, M. Simons and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Genitourinary Development Molecular Anatomy Project (GUDMAP): www.gudmap.org

Supplementary information

Glossary

Insect cuticle

An extracellular layer that covers the external surface of the epidermis in many insects.

Functional drift

Acquisition of a diverse function or functions by homologous genes.

Germband extension

A morphogenetic process similar to vertebrate convergent extension, in which the segmented trunk of an insect embryo (germband) elongates along the anteroposterior axis and narrows along the dorsoventral axis.

Non-centrosomal microtubules

Microtubular arrays that do not originate from the centrosome. In many polarized epithelia non-centrosomal microtubules are aligned along the apical–basal axis with their minus ends oriented towards the apical surface.

SNARE proteins

A diverse group of proteins that enable docking and fusion of cargo vesicles with the target membrane such as plasma or ciliary membrane.

Neural folds

Elevated structures in the flanking areas of the neural plate that bend towards each other and fuse to form the neural tube.

Mouse node

Cell population at the distal tip (anterior primitive streak) of the gastrulating mouse embryo that secretes signalling factors regulating cell movements and the body axes.

Gastrocoel roof plate

A transient patch of ciliated endodermal cells in frog embryos that controls left–right patterning.

Kupffer vesicle

A transient ciliated organ at the posterior end of the zebrafish embryo that is required for left–right patterning, similar to the frog gastrocoel roof plate and mouse posterior node.

Centrosome

A microtubule-based organelle that consists of two centrioles and functions to regulate cell divisions and ciliary growth.

Paralogs

Homologous genes that originate in the same species as a result of gene duplication.

Multicellular rosette

A group of five or more cells exhibiting coordinated behaviours, including the formation of a transient single contact (vertex), that result in tissue convergence and extension.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torban, E., Sokol, S.Y. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 17, 369–385 (2021). https://doi.org/10.1038/s41581-021-00395-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00395-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing