Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complexities of the glomerular basement membrane

Abstract

The glomerular basement membrane (GBM) is a key component of the glomerular capillary wall and is essential for kidney filtration. The major components of the GBM include laminins, type IV collagen, nidogens and heparan sulfate proteoglycans. In addition, the GBM harbours a number of other structural and regulatory components and provides a reservoir for growth factors. New technologies have improved our ability to study the composition and assembly of basement membranes. We now know that the GBM is a complex macromolecular structure that undergoes key transitions during glomerular development. Defects in GBM components are associated with a range of hereditary human diseases such as Alport syndrome, which is caused by defects in the genes COL4A3, COL4A4 and COL4A5, and Pierson syndrome, which is caused by variants in LAMB2. In addition, the GBM is affected by acquired autoimmune disorders and metabolic diseases such as diabetes mellitus. Current treatments for diseases associated with GBM involvement aim to reduce intraglomerular pressure and to treat the underlying cause where possible. As our understanding about the maintenance and turnover of the GBM improves, therapies to replace GBM components or to stimulate GBM repair could translate into new therapies for patients with GBM-associated disease.

Key points

  • The glomerular basement membrane (GBM) is composed of many unique components that are likely to be important for appropriate GBM function.

  • The application of new imaging and proteomics technologies is enabling greater insight into GBM organization in health and disease.

  • The composition of the GBM changes during glomerulogenesis to permit proper development and filtration function.

  • The GBM is a major contributor to the size selectivity of the glomerular filter.

  • Causes of GBM-associated disease include primary genetic defects in basement membrane components and damage secondary to autoimmune and metabolic diseases, leading to abnormal synthesis and/or turnover of GBM proteins.

  • Novel pharmacological and genome-editing approaches might facilitate basement membrane repair and treatment of GBM-associated disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major components of the GBM.
Fig. 2: Glomerular matrix compartments and transition of basement membrane components during GBM development.
Fig. 3: Major and minor components of the GBM.
Fig. 4: Morphological defects of the glomerular basement membrane associated with disease.
Fig. 5: New technologies to repair defective basement membranes.

Similar content being viewed by others

References

  1. Fidler, A. L. et al. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. eLife 6, e24176 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. Farquhar, M. G. Editorial: the primary glomerular filtration barrier–basement membrane or epithelial slits? Kidney Int. 8, 197–211 (1975).

    CAS  PubMed  Google Scholar 

  3. Timpl, R. Recent advances in the biochemistry of glomerular basement membrane. Kidney Int. 30, 293–298 (1986).

    CAS  PubMed  Google Scholar 

  4. Lennon, R. et al. Global analysis reveals the complexity of the human glomerular extracellular matrix. J. Am. Soc. Nephrol. 25, 939–951 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, S., Edgar, D., Fässler, R., Wadsworth, W. & Yurchenco, P. D. The role of laminin in embryonic cell polarization and tissue organization. Dev. Cell 4, 613–624 (2003).

    CAS  PubMed  Google Scholar 

  6. Hohenester, E. & Yurchenco, P. D. Laminins in basement membrane assembly. Cell Adh. Migr. 7, 56–63 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Abrahamson, D. R. Origin of the glomerular basement membrane visualized after in vivo labeling of laminin in newborn rat kidneys. J. Cell Biol. 100, 1988–2000 (1985).

    CAS  PubMed  Google Scholar 

  8. Dische, F. E. Measurement of glomerular basement membrane thickness and its application to the diagnosis of thin-membrane nephropathy. Arch. Pathol. Lab. Med. 116, 43–49 (1992).

    CAS  PubMed  Google Scholar 

  9. Neumann, K. H., Kellner, C., Kühn, K., Stolte, H. & Schurek, H. J. Age-dependent thickening of glomerular basement membrane has no major effect on glomerular hydraulic conductivity. Nephrol. Dial. Transpl. 19, 805–811 (2004).

    Google Scholar 

  10. Randles, M. J. et al. Three-dimensional electron microscopy reveals the evolution of glomerular barrier injury. Sci. Rep. 6, 35068 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Groffen, A. J. et al. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J. Histochem. Cytochem. 46, 19–27 (1998).

    CAS  PubMed  Google Scholar 

  12. Fox, J. W. et al. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 10, 3137–3146 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Candiello, J., Cole, G. J. & Halfter, W. Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol. 29, 402–410 (2010).

    CAS  PubMed  Google Scholar 

  14. Balasubramani, M. et al. Molecular interactions in the retinal basement membrane system: a proteomic approach. Matrix Biol. 29, 471–483 (2010).

    CAS  PubMed  Google Scholar 

  15. Matsubayashi, Y. et al. A moving source of matrix components is essential for De Novo basement membrane formation. Curr. Biol. 27, 3526–3534.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Graham, P. L. et al. Type IV collagen is detectable in most, but not all, basement membranes of Caenorhabditis elegans and assembles on tissues that do not express it. J. Cell Biol. 137, 1171–1183 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, C. C. et al. Laminin alpha subunits and their role in C. elegans development. Development 130, 3343–3358 (2003).

    CAS  PubMed  Google Scholar 

  18. Smyth, N. et al. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J. Cell Biol. 144, 151–160 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Poschl, E. et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131, 1619–1628 (2004).

    PubMed  Google Scholar 

  20. Stetefeld, J., Mayer, U., Timpl, R. & Huber, R. Crystal structure of three consecutive laminin-type epidermal growth factor-like (LE) modules of laminin gamma1 chain harboring the nidogen binding site. J. Mol. Biol. 257, 644–657 (1996).

    CAS  PubMed  Google Scholar 

  21. Baumgartner, R. et al. Structure of the nidogen binding LE module of the laminin gamma1 chain in solution. J. Mol. Biol. 257, 658–668 (1996).

    CAS  PubMed  Google Scholar 

  22. Behrens, D. T. et al. The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J. Biol. Chem. 287, 18700–18709 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, T., Zhou, C. Z., Xiao, J. & Liu, J. Unique conformation in a natural interruption sequence of type XIX collagen revealed by its high-resolution crystal structure. Biochemistry 57, 1087–1095 (2018).

    CAS  PubMed  Google Scholar 

  24. Cummings, C. F. et al. Extracellular chloride signals collagen IV network assembly during basement membrane formation. J. Cell Biol. 213, 479–494 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Anazco, C. et al. Lysyl Oxidase-like-2 Cross-links Collagen IV of glomerular basement membrane. J. Biol. Chem. 291, 25999–26012 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. McCall, A. S. et al. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157, 1380–1392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhave, G. et al. Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat. Chem. Biol. 8, 784–790 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldberg, S., Harvey, S. J., Cunningham, J., Tryggvason, K. & Miner, J. H. Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol. Dial. Transpl. 24, 2044–2051 (2009).

    CAS  Google Scholar 

  29. Harvey, S. J. et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am. J. Pathol. 171, 139–152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Groffen, A. J., Veerkamp, J. H., Monnens, L. A. & van den Heuvel, L. P. Recent insights into the structure and functions of heparan sulfate proteoglycans in the human glomerular basement membrane. Nephrol. Dial. Transpl. 14, 2119–2129 (1999).

    CAS  Google Scholar 

  31. Saarela, J., Rehn, M., Oikarinen, A., Autio-Harmainen, H. & Pihlajaniemi, T. The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am. J. Pathol. 153, 611–626 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinnunen, A. I. et al. Lack of collagen XVIII long isoforms affects kidney podocytes, whereas the short form is needed in the proximal tubular basement membrane. J. Biol. Chem. 286, 7755–7764 (2011).

    CAS  PubMed  Google Scholar 

  33. Utriainen, A. et al. Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Hum. Mol. Genet. 13, 2089–2099 (2004).

    CAS  PubMed  Google Scholar 

  34. Aumailley, M., Wiedemann, H., Mann, K. & Timpl, R. Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV. Eur. J. Biochem. 184, 241–248 (1989).

    CAS  PubMed  Google Scholar 

  35. Aumailley, M. et al. Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int. 43, 7–12 (1993).

    CAS  PubMed  Google Scholar 

  36. Miner, J. H. The glomerular basement membrane. Exp. Cell Res. 318, 973–978 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Miosge, N. et al. Ultrastructural colocalization of nidogen-1 and nidogen-2 with laminin-1 in murine kidney basement membranes. Histochem. Cell Biol. 113, 115–124 (2000).

    CAS  PubMed  Google Scholar 

  38. Suleiman, H. et al. Nanoscale protein architecture of the kidney glomerular basement membrane. eLife 2, e01149 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Bader, B. L. et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol. Cell Biol. 25, 6846–6856 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Willem, M. et al. Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung development. Development 129, 2711–2722 (2002).

    CAS  PubMed  Google Scholar 

  41. Hynes, R. O. & Naba, A. Overview of the matrisome–an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).

    PubMed  PubMed Central  Google Scholar 

  42. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteom. 11, M111.014647 (2012).

    Google Scholar 

  43. Randles, M. J. et al. Genetic background is a key determinant of glomerular extracellular matrix composition and organization. J. Am. Soc. Nephrol. 26, 3021–3034 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. de Vega, S., Iwamoto, T. & Yamada, Y. Fibulins: multiple roles in matrix structures and tissue functions. Cell Mol. Life Sci. 66, 1890–1902 (2009).

    PubMed  Google Scholar 

  45. Kostka, G. et al. Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. Mol. Cell Biol. 21, 7025–7034 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Muriel, J. M., Dong, C., Hutter, H. & Vogel, B. E. Fibulin-1C and Fibulin-1D splice variants have distinct functions and assemble in a hemicentin-dependent manner. Development 132, 4223–4234 (2005).

    CAS  PubMed  Google Scholar 

  47. Muriel, J. M., Dong, C. & Vogel, B. E. Distinct regions within fibulin-1D modulate interactions with hemicentin. Exp. Cell Res. 318, 2543–2547 (2012).

    CAS  PubMed  Google Scholar 

  48. Xu, X. et al. Specific structure and unique function define the hemicentin. Cell Biosci. 3, 27 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Morrissey, M. A. & Sherwood, D. R. An active role for basement membrane assembly and modification in tissue sculpting. J. Cell Sci. 128, 1661–1668 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Morrissey, M. A. et al. B-LINK: a hemicentin, plakin, and integrin-dependent adhesion system that links tissues by connecting adjacent basement membranes. Dev. Cell 31, 319–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin, M. H. et al. Mammalian hemicentin 1 is assembled into tracks in the extracellular matrix of multiple tissues. Dev. Dyn. 249, 775–788 (2020).

    CAS  PubMed  Google Scholar 

  52. Reuten, R. et al. Structural decoding of netrin-4 reveals a regulatory function towards mature basement membranes. Nat. Commun. 7, 13515 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Abrahamson, D. R., Hudson, B. G., Stroganova, L., Borza, D. B. & St John, P. L. Cellular origins of type IV collagen networks in developing glomeruli. J. Am. Soc. Nephrol. 20, 1471–1479 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Abrahamson, D. R., St John, P. L., Stroganova, L., Zelenchuk, A. & Steenhard, B. M. Laminin and type IV collagen isoform substitutions occur in temporally and spatially distinct patterns in developing kidney glomerular basement membranes. J. Histochem. Cytochem. 61, 706–718 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. St John, P. L. & Abrahamson, D. R. Glomerular endothelial cells and podocytes jointly synthesize laminin-1 and -11 chains. Kidney Int. 60, 1037–1046 (2001).

    Google Scholar 

  56. Byron, A. et al. Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J. Am. Soc. Nephrol. 25, 953–966 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Arkill, K. P. et al. Resolution of the three dimensional structure of components of the glomerular filtration barrier. BMC Nephrol. 15, 24 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Takaki, T., Ohno, N., Saitoh, S., Nagai, M. & Joh, K. Podocyte penetration of the glomerular basement membrane to contact on the mesangial cell at the lesion of mesangial interposition in lupus nephritis: a three-dimensional analysis by serial block-face scanning electron microscopy. Clin. Exp. Nephrol. 23, 773–781 (2019).

    PubMed  Google Scholar 

  59. Miyazaki, H. et al. Application of low-vacuum scanning electron microscopy for renal biopsy specimens. Pathol. Res. Pract. 208, 503–509 (2012).

    PubMed  Google Scholar 

  60. Okada, S. et al. Morphological diagnosis of Alport syndrome and thin basement membrane nephropathy by low vacuum scanning electron microscopy. Biomed. Res. 35, 345–350 (2014).

    CAS  PubMed  Google Scholar 

  61. Kajimoto, Y. et al. Pathologic glomerular characteristics and glomerular basement membrane alterations in biopsy-proven thin basement membrane nephropathy. Clin. Exp. Nephrol. 23, 638–649 (2019).

    CAS  PubMed  Google Scholar 

  62. Joens, M. S. et al. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci. Rep. 3, 3514 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Tsuji, K. et al. Ultrastructural Characterization of the Glomerulopathy in Alport Mice by Helium Ion Scanning Microscopy (HIM). Sci. Rep. 7, 11696 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Pullman, J. M. New Views of the Glomerulus: Advanced Microscopy for Advanced Diagnosis. Front. Med. 6, 37 (2019).

    Google Scholar 

  65. Tam, J. & Merino, D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J. Neurochem. 135, 643–658 (2015).

    CAS  PubMed  Google Scholar 

  66. Suleiman, H. Y. et al. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight 2, e94137 (2017).

    PubMed Central  Google Scholar 

  67. Lin, M. H. et al. Laminin-521 protein therapy for glomerular basement membrane and podocyte abnormalities in a model of pierson syndrome. J. Am. Soc. Nephrol. 29, 1426–1436 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chozinski, T. J. et al. Volumetric, nanoscale optical imaging of mouse and human kidney via expansion microscopy. Sci. Rep. 8, 10396 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Angelotti, M. L., Antonelli, G., Conte, C. & Romagnani, P. Imaging the kidney: from light to super-resolution microscopy. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfz136 (2019).

  70. Wassie, A. T., Zhao, Y. & Boyden, E. S. Expansion microscopy: principles and uses in biological research. Nat. Methods 16, 33–41 (2019).

    CAS  PubMed  Google Scholar 

  71. Unnersjö-Jess, D. et al. Confocal super-resolution imaging of the glomerular filtration barrier enabled by tissue expansion. Kidney Int. 93, 1008–1013 (2018).

    PubMed  Google Scholar 

  72. Mayorca-Guiliani, A. E. et al. Decellularization and antibody staining of mouse tissues to map native extracellular matrix structures in 3D. Nat. Protoc. 14, 3395–3425 (2019).

    CAS  PubMed  Google Scholar 

  73. Jayadev, R. et al. α-Integrins dictate distinct modes of type IV collagen recruitment to basement membranes. J. Cell Biol. 218, 3098–3116 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Morrissey, M. A. et al. SPARC promotes cell invasion in vivo by decreasing type IV collagen levels in the basement membrane. PLoS Genet. 12, e1005905 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Keeley, D. P. et al. Comprehensive endogenous tagging of basement membrane components reveals dynamic movement within the matrix scaffolding. Dev. Cell 54, 60–74 (2020).

    CAS  PubMed  Google Scholar 

  76. Tufro, A., Norwood, V. F., Carey, R. M. & Gomez, R. A. Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J. Am. Soc. Nephrol. 10, 2125–2134 (1999).

    CAS  PubMed  Google Scholar 

  77. Kitamoto, Y., Tokunaga, H. & Tomita, K. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J. Clin. Invest. 99, 2351–2357 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ballermann, B. J. Glomerular endothelial cell differentiation. Kidney Int. 67, 1668–1671 (2005).

    PubMed  Google Scholar 

  79. Majumdar, A. & Drummond, I. A. Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche. Dev. Genet. 24, 220–229 (1999).

    CAS  PubMed  Google Scholar 

  80. Holzman, L. B. et al. Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int. 56, 1481–1491 (1999).

    PubMed  Google Scholar 

  81. Ruotsalainen, V. et al. Role of nephrin in cell junction formation in human nephrogenesis. Am. J. Pathol. 157, 1905–1916 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, G. et al. Neph1 and nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. J. Clin. Invest. 112, 209–221 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Roselli, S. et al. Podocin Localizes in the Kidney to the Slit Diaphragm Area. Am. J. Pathol. 160, 131–139 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Reiser, J., Kriz, W., Kretzler, M. & Mundel, P. The glomerular slit diaphragm is a modified adherens junction. J. Am. Soc. Nephrol. 11, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  85. Tsuji, N., Kita, K., Ozaki, K., Narama, I. & Matsuura, T. Organogenesis of mild ocular coloboma in FLS mice: failure of basement membrane disintegration at optic fissure margins. Exp. Eye Res. 94, 174–178 (2012).

    CAS  PubMed  Google Scholar 

  86. Vaccaro, C. A. & Brody, J. S. Structural features of alveolar wall basement membrane in the adult rat lung. J. Cell Biol. 91, 427–437 (1981).

    CAS  PubMed  Google Scholar 

  87. Miner, J. H. et al. The laminin α chains: expression, developmental transitions, and chromosomal locations of α1-5, identification of heterotrimeric laminins 8–11, and cloning of a novel α3 isoform. J. Cell Biol. 137, 685–701 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sorokin, L. M., Pausch, F., Durbeej, M. & Ekblom, P. Differential expression of five laminin alpha (1-5) chains in developing and adult mouse kidney. Dev. Dyn. 210, 446–462 (1997).

    CAS  PubMed  Google Scholar 

  89. Miner, J. H., Lewis, R. M. & Sanes, J. R. Molecular cloning of a novel laminin chain, alpha 5, and widespread expression in adult mouse tissues. J. Biol. Chem. 270, 28523–28526 (1995).

    CAS  PubMed  Google Scholar 

  90. Zenker, M. et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum. Mol. Genet. 13, 2625–2632 (2004).

    CAS  PubMed  Google Scholar 

  91. Miner, J. H. & Li, C. Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev. Biol. 217, 278–289 (2000).

    CAS  PubMed  Google Scholar 

  92. Abrahamson, D. R., St John, P. L., Isom, K., Robert, B. & Miner, J. H. Partial rescue of glomerular laminin alpha5 mutations by wild-type endothelia produce hybrid glomeruli. J. Am. Soc. Nephrol. 18, 2285–2293 (2007).

    PubMed  Google Scholar 

  93. Miner, J. H. & Sanes, J. R. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J. Cell Biol. 127, 879–891 (1994).

    CAS  PubMed  Google Scholar 

  94. Miner, J. H. Developmental biology of glomerular basement membrane components. Curr. Opin. Nephrol. Hypertens. 7, 13–19 (1998).

    CAS  PubMed  Google Scholar 

  95. Funk, S. D., Bayer, R. H. & Miner, J. H. Endothelial cell-specific collagen IV alpha3 expression does not rescue alport syndrome in Col4a3−/− mice. Am. J. Physiol. Ren. Physiol. 316, F830–F837 (2019).

    CAS  Google Scholar 

  96. Hudson, B. G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E. G. Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).

    CAS  PubMed  Google Scholar 

  97. Hudson, B. G. The molecular basis of Goodpasture and Alport syndromes: beacons for the discovery of the collagen IV family. J. Am. Soc. Nephrol. 15, 2514–2527 (2004).

    PubMed  Google Scholar 

  98. Kalluri, R., Shield, C. F., Todd, P., Hudson, B. G. & Neilson, E. G. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Invest. 99, 2470–2478 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gunwar, S. et al. Glomerular basement membrane. Identification of a novel disulfide-cross-linked network of alpha3, alpha4, and alpha5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J. Biol. Chem. 273, 8767–8775 (1998).

    CAS  PubMed  Google Scholar 

  100. Gardner, H., Kreidberg, J., Koteliansky, V. & Jaenisch, R. Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev. Biol. 175, 301–313 (1996).

    CAS  PubMed  Google Scholar 

  101. Shrivastava, A. et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1, 25–34 (1997).

    CAS  PubMed  Google Scholar 

  102. Vogel, W., Gish, G. D., Alves, F. & Pawson, T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1, 13–23 (1997).

    CAS  PubMed  Google Scholar 

  103. Reeves, W. H., Kanwar, Y. S. & Farquhar, M. G. Assembly of the glomerular filtration surface. Differentiation of anionic sites in glomerular capillaries of newborn rat kidney. J. Cell Biol. 85, 735–753 (1980).

    CAS  PubMed  Google Scholar 

  104. McCarthy, K. J., Abrahamson, D. R., Bynum, K. R., St John, P. L. & Couchman, J. R. Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats. J. Histochem. Cytochem. 42, 473–484 (1994).

    CAS  PubMed  Google Scholar 

  105. Karnovsky, M. J. & Ainsworth, S. K. The structural basis of glomerular filtration. Adv. Nephrol. Necker Hosp. 2, 35–60 (1972).

    CAS  PubMed  Google Scholar 

  106. Rodewald, R. & Karnovsky, M. J. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J. Cell Biol. 60, 423–433 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dane, M. J. et al. Glomerular endothelial surface layer acts as a barrier against albumin filtration. Am. J. Pathol. 182, 1532–1540 (2013).

    CAS  PubMed  Google Scholar 

  108. Jeansson, M. & Haraldsson, B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am. J. Physiol. Ren. Physiol. 290, F111–F116 (2006).

    CAS  Google Scholar 

  109. Friden, V. et al. The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int. 79, 1322–1330 (2011).

    CAS  PubMed  Google Scholar 

  110. Smithies, O. Why the kidney glomerulus does not clog: a gel permeation/diffusion hypothesis of renal function. Proc. Natl Acad. Sci. USA 100, 4108–4113 (2003).

    CAS  PubMed  Google Scholar 

  111. Ogston, A. G. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54, 1754–1757 (1958).

    Google Scholar 

  112. Lawrence, M. G. et al. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proc. Natl Acad. Sci. USA 114, 2958–2963 (2017).

    CAS  PubMed  Google Scholar 

  113. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    CAS  PubMed  Google Scholar 

  114. Putaala, H., Soininen, R., Kilpelainen, P., Wartiovaara, J. & Tryggvason, K. The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum. Mol. Genet. 10, 1–8 (2001).

    CAS  PubMed  Google Scholar 

  115. Fissell, W. H. & Miner, J. H. What is the glomerular ultrafiltration barrier? J. Am. Soc. Nephrol. 29, 2262–2264 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Butt, L. et al. A molecular mechanism explaining albuminuria in kidney disease. Nat. Metab. 2, 461–474 (2020).

    CAS  PubMed  Google Scholar 

  117. van den Hoven, M. J. et al. Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int. 73, 278–287 (2008).

    PubMed  Google Scholar 

  118. Khalil, R. et al. Glomerular permeability is not affected by heparan sulfate glycosaminoglycan deficiency in zebrafish embryos. Am. J. Physiol. Ren. Physiol. 317, F1211–F1216 (2019).

    CAS  Google Scholar 

  119. Brenner, B. M., Hostetter, T. H. & Humes, H. D. Molecular basis of proteinuria of glomerular origin. N. Engl. J. Med. 298, 826–833 (1978).

    CAS  PubMed  Google Scholar 

  120. Savige, J. et al. Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J. Am. Soc. Nephrol. 24, 364–375 (2013).

    CAS  PubMed  Google Scholar 

  121. Miner, J. H. & Sanes, J. R. Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J. Cell Biol. 135, 1403–1413 (1996).

    CAS  PubMed  Google Scholar 

  122. Rumpelt, H. J. Alport’s syndrome: specificity and pathogenesis of glomerular basement membrane alterations. Pediatr. Nephrol. 1, 422–427 (1987).

    CAS  PubMed  Google Scholar 

  123. Khoshnoodi, J., Pedchenko, V. & Hudson, B. G. Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kalluri, R., Shield, C. F., Todd, P., Hudson, B. G. & Neilson, E. G. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Invest. 99, 2470–2478 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Funk, S. D., Lin, M. H. & Miner, J. H. Alport syndrome and Pierson syndrome: Diseases of the glomerular basement membrane. Matrix Biol. 71-72, 250–261 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Rubel, D. et al. Collagen receptors integrin alpha2beta1 and discoidin domain receptor 1 regulate maturation of the glomerular basement membrane and loss of integrin alpha2beta1 delays kidney fibrosis in COL4A3 knockout mice. Matrix Biol. 34, 13–21 (2014).

    CAS  PubMed  Google Scholar 

  127. Gross, O. et al. Loss of collagen-receptor DDR1 delays renal fibrosis in hereditary type IV collagen disease. Matrix Biol. 29, 346–356 (2010).

    CAS  PubMed  Google Scholar 

  128. Randles, M. J. et al. Basement membrane ligands initiate distinct signalling networks to direct cell shape. Matrix Biol. 90, 61–78 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Abrahamson, D. R. et al. Laminin compensation in collagen alpha3(IV) knockout (Alport) glomeruli contributes to permeability defects. J. Am. Soc. Nephrol. 18, 2465–2472 (2007).

    CAS  PubMed  Google Scholar 

  130. Cosgrove, D. et al. Integrin alpha1beta1 and transforming growth factor-beta1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol. 157, 1649–1659 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nozu, K. et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin. Exp. Nephrol. 23, 158–168 (2019).

    PubMed  Google Scholar 

  132. Tryggvason, K. & Patrakka, J. Thin basement membrane nephropathy. J. Am. Soc. Nephrol. 17, 813–822 (2006).

    CAS  PubMed  Google Scholar 

  133. Savige, J. et al. Thin basement membrane nephropathy. Kidney Int. 64, 1169–1178 (2003).

    PubMed  Google Scholar 

  134. Zenker, M. et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum. Mol. Genet. 13, 2625–2632 (2004).

    CAS  PubMed  Google Scholar 

  135. Noakes, P. G. et al. The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat. Genet. 10, 400–406 (1995).

    CAS  PubMed  Google Scholar 

  136. Suh, J. H. & Miner, J. H. The glomerular basement membrane as a barrier to albumin. Nat. Rev. Nephrol. 9, 470–477 (2013).

    CAS  PubMed  Google Scholar 

  137. Jarad, G., Cunningham, J., Shaw, A. S. & Miner, J. H. Proteinuria precedes podocyte abnormalities in Lamb2−/− mice, implicating the glomerular basement membrane as an albumin barrier. J. Clin. Invest. 116, 2272–2279 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ota, Z., Shikata, K. & Ota, K. Nephrotic tunnels in glomerular basement membrane as revealed by a new electron microscopic method. J. Am. Soc. Nephrol. 4, 1965–1973 (1994).

    CAS  PubMed  Google Scholar 

  139. Suh, J. H., Jarad, G., VanDeVoorde, R. G. & Miner, J. H. Forced expression of laminin beta1 in podocytes prevents nephrotic syndrome in mice lacking laminin beta2, a model for Pierson syndrome. Proc. Natl Acad. Sci. USA 108, 15348–15353 (2011).

    CAS  PubMed  Google Scholar 

  140. Saus, J., Wieslander, J., Langeveld, J. P., Quinones, S. & Hudson, B. G. Identification of the Goodpasture antigen as the alpha 3(IV) chain of collagen IV. J. Biol. Chem. 263, 13374–13380 (1988).

    CAS  PubMed  Google Scholar 

  141. Foster, M. H. Basement membranes and autoimmune diseases. Matrix Biol. 57–58, 149–168 (2017).

    PubMed  Google Scholar 

  142. Fischer, E. G. & Lager, D. J. Anti-glomerular basement membrane glomerulonephritis: a morphologic study of 80 cases. Am. J. Clin. Pathol. 125, 445–450 (2006).

    PubMed  Google Scholar 

  143. McAdoo, S. P. & Pusey, C. D. Anti-glomerular basement membrane disease. Clin. J. Am. Soc. Nephrol. 12, 1162–1172 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Couser, W. G. Primary membranous nephropathy. Clin. J. Am. Soc. Nephrol. 12, 983–997 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, W. et al. Immunological pathogenesis of membranous nephropathy: focus on PLA2R1 and its role. Front. Immunol. 10, 1809 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Nangaku, M., Shankland, S. J. & Couser, W. G. Cellular response to injury in membranous nephropathy. J. Am. Soc. Nephrol. 16, 1195–1204 (2005).

    CAS  PubMed  Google Scholar 

  147. van den Born, J. et al. Distribution of GBM heparan sulfate proteoglycan core protein and side chains in human glomerular diseases. Kidney Int. 43, 454–463 (1993).

    PubMed  Google Scholar 

  148. Raats, C. J. et al. Reduction in glomerular heparan sulfate correlates with complement deposition and albuminuria in active Heymann nephritis. J. Am. Soc. Nephrol. 10, 1689–1699 (1999).

    CAS  PubMed  Google Scholar 

  149. Borza, D. B. Glomerular basement membrane heparan sulfate in health and disease: A regulator of local complement activation. Matrix Biol. 57–58, 299–310 (2017).

    PubMed  Google Scholar 

  150. Tervaert, T. W. et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21, 556–563 (2010).

    PubMed  Google Scholar 

  151. Kriz, W. et al. Accumulation of worn-out GBM material substantially contributes to mesangial matrix expansion in diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 312, F1101–F1111 (2017).

    CAS  Google Scholar 

  152. Kolset, S. O., Reinholt, F. P. & Jenssen, T. Diabetic nephropathy and extracellular matrix. J. Histochem. Cytochem. 60, 976–986 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Mason, R. M. & Wahab, N. A. Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol. 14, 1358–1373 (2003).

    CAS  PubMed  Google Scholar 

  154. Stefan, G. et al. Histologic predictors of renal outcome in diabetic nephropathy: Beyond renal pathology society classification. Medicine 98, e16333 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Conti, S. et al. Early and late scanning electron microscopy findings in diabetic kidney disease. Sci. Rep. 8, 4909 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Xu, X. et al. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr. Med. Chem. 21, 3244–3260 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, Y. et al. C-peptide prevents SMAD3 binding to alpha promoters to inhibit collagen type IV synthesis. J. Mol. Endocrinol. 61, 47–56 (2018).

    CAS  PubMed  Google Scholar 

  158. Geng, X. D. et al. Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis. J. Diabetes Investig. 10, 972–984 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kanwar, Y. S., Rosenzweig, L. J., Linker, A. & Jakubowski, M. L. Decreased de novo synthesis of glomerular proteoglycans in diabetes: biochemical and autoradiographic evidence. Proc. Natl Acad. Sci. USA 80, 2272–2275 (1983).

    CAS  PubMed  Google Scholar 

  160. Chetyrkin, S. et al. Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues. Biochemistry 50, 6102–6112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Voziyan, P., Brown, K. L., Chetyrkin, S. & Hudson, B. Site-specific AGE modifications in the extracellular matrix: a role for glyoxal in protein damage in diabetes. Clin. Chem. Lab. Med. 52, 39–45 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gautieri, A., Redaelli, A., Buehler, M. J. & Vesentini, S. Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in Advanced Glycation End-products. Matrix Biol. 34, 89–95 (2014).

    CAS  PubMed  Google Scholar 

  163. Cole, J. B. & Florez, J. C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 16, 377–390 (2020).

    PubMed  Google Scholar 

  164. Guan, M. et al. Association of kidney structure-related gene variants with type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum. Genet. 135, 1251–1262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Salem, R. M. et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J. Am. Soc. Nephrol. 30, 2000–2016 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Miner, J. H. Type IV collagen and diabetic kidney disease. Nat. Rev. Nephrol. 16, 3–4 (2020).

    CAS  PubMed  Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02855268 (2020).

  168. Wang, D. et al. The chemical chaperone, PBA, reduces ER stress and autophagy and increases collagen IV α5 expression in cultured fibroblasts from men with X-linked Alport syndrome and missense mutations. Kidney Int. Rep. 2, 739–748 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Matsui, T. et al. RAGE-Aptamer blocks the development and progression of experimental diabetic nephropathy. Diabetes 66, 1683–1695 (2017).

    CAS  PubMed  Google Scholar 

  170. Heidet, L. et al. A human-mouse chimera of the alpha3alpha4alpha5(IV) collagen protomer rescues the renal phenotype in Col4a3−/− Alport mice. Am. J. Pathol. 163, 1633–1644 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Lin, X., Suh, J. H., Go, G. & Miner, J. H. Feasibility of repairing glomerular basement membrane defects in Alport syndrome. J. Am. Soc. Nephrol. 25, 687–692 (2014).

    CAS  PubMed  Google Scholar 

  172. Daga, S. et al. New frontiers to cure Alport syndrome: COL4A3 and COL4A5 gene editing in podocyte-lineage cells. Eur. J. Hum. Genet. https://doi.org/10.1038/s41431-019-0537-8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ramsbottom, S. A. et al. Targeted exon skipping of a. Proc. Natl Acad. Sci. USA 115, 12489–12494 (2018).

    CAS  PubMed  Google Scholar 

  174. Yamamura, T. et al. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat. Commun. 11, 2777 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. McKee, K. K., Aleksandrova, M. & Yurchenco, P. D. Chimeric protein identification of dystrophic, Pierson and other laminin polymerization residues. Matrix Biol. 67, 32–46 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Walker, F. Basement-membrane turnover in man. J. Pathol. 107, 123–125 (1972).

    CAS  PubMed  Google Scholar 

  177. Pickard, A. et al. Kadler collagen assembly and turnover imaged with a CRISPR-Cas9 engineered Dendra2 tag. Preprint at bioRxiv https://doi.org/10.1101/331496 (2018).

    Article  Google Scholar 

  178. Gross, O. et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 81, 494–501 (2012).

    CAS  PubMed  Google Scholar 

  179. Gomez, I. G. et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J. Clin. Invest. 125, 141–156 (2015).

    PubMed  Google Scholar 

  180. Richter, H. et al. DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport syndrome. ACS Chem. Biol. 14, 37–49 (2019).

    CAS  PubMed  Google Scholar 

  181. Aoki, Y. et al. Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-α2 chain-null congenital muscular dystrophy mice. Hum. Mol. Genet. 22, 4914–4928 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust Senior Fellowship awarded (202860/Z/16/Z) to R.L. and supporting R.W.N., and by a FAPESP fellowship (2015/03525-2; 2017/26785-5) awarded to M.R.P.T.M.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rachel Lennon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Laminins

A family of glycoproteins that exist as heterotrimers with α, β and γ subunits. Laminin heterotrimers polymerize in the extracellular space to form a sheet that is essential for the formation and function of basement membranes.

Type IV collagen

Encoded for by six genes in vertebrates (COL4A1COL4A6), type IV collagen provides a scaffold and is present in basement membranes. Type IV collagen proteins form three heterotrimers (α1α1α2, α3α4α5 and α5α5α6) that establish networks in the extracellular space.

Nidogens

Formerly known as entactin, nidogens are dumbbell-shaped proteins found in all basement membranes. Nidogen functions to connect collagens and laminins in the matrix.

Heparan-sulfate proteoglycans

(HSPGs). A large family of extracellular and membrane-attached molecules formed by a major protein that contains one or more covalently attached heparin sulfate glycosaminoglycan chains. Examples of HSPGs in basement membranes include collagen XVIII, agrin and perlecan.

Collagen XVIII

A heparin-sulfate proteoglycan that exists as a homotrimer in basement membranes. It has an important role in maintaining basement membrane integrity by mediating signalling (for example, canonical Wnt signalling) and cell–matrix interactions (such as with integrin and VEGF receptors via a C-terminal endostatin domain).

Plakins

A family of large binding proteins that link cytoskeletal intermediate filaments to other filaments and to junctional complexes such as desmosomes and hemidesmosomes.

Serial block-face SEM

(SBF-SEM). An imaging approach that uses a scanning electron microscope equipped with an automated ultramicrotome that sequentially cuts resin-embedded samples and scans the block surface in a repetitive manner to yield a stack of aligned images with transmission electron microscopy quality. This approach provides volumetric imaging data of tissue structures in the X, Y and Z axes.

Low-vacuum SEM

(LV-SEM). An electron microscopy approach that allows the scanning of non-conductive hydrous samples achieving electron microscopy resolution without prominent charging artefacts.

Helium ion microscopy

An electron microscopy approach in which the beam of electrons used for scanning and surface imaging in conventional SEM is replaced by a focused beam of helium ions to minimize sample damage and obtain high magnification images of uncoated soft specimens with improved sub-nanometre resolution and high surface focus and contrast.

Stimulated emission depletion

(STED). A super resolution microscopy approach that uses a double laser beam to scan multiple fluorescent markers at the same time. The first beam stimulates fluorescence whilst a second creates a light annulus superimposed on top of the first to deplete fluorescence, creating a small scanning beam below the diffraction limit of resolution.

Stochastic optical reconstruction microscopy

(STORM). A super-resolution microscopy approach that uses stochastic photo-switchable fluorescent probes that are activated individually by a weak light source to emit light separately for short time intervals to produce a high-resolution image constructed point-by-point based on the precise location of each individual fluorophore.

Tissue expansion

A sample preparation technique in which a tissue sample embedded within a polymer meshwork (for instance, a hydrogel) is uniformly expanded to enable nanoscale-resolution imaging of preserved tissue structures by immunofluorescence staining and diffraction-limited microscopy.

Haemangioblasts

Multipotent precursor cells that can differentiate into endothelial cells and any cell type within the haematopoietic lineage.

Microcoria

A congenital disorder of the eye characterized by small pupils with a diameter of less than 2 mm.

Advanced glycation end products

(AGEs). Proteins or lipids that are modified by the non-enzymatic binding of a reactive sugar to basic amino acids such as lysine or arginine.

Exon skipping therapy

A technology that can be used to correct the coding reading frame of a mRNA transcript from a mutated gene in order to produce a functional protein.

Joubert syndrome

An inherited ciliopathy caused by mutations in more than 30 genes required for normal ciliary function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naylor, R.W., Morais, M.R.P.T. & Lennon, R. Complexities of the glomerular basement membrane. Nat Rev Nephrol 17, 112–127 (2021). https://doi.org/10.1038/s41581-020-0329-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0329-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing