Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus

Abstract

Bariatric surgery is an effective therapy for obesity, hypertension and type 2 diabetes mellitus that is refractory to maximal medical therapy. Results of long-term cohort studies and emerging evidence from randomized clinical trials have revealed that, in addition to its beneficial effects on weight reduction, blood pressure and metabolic control, bariatric surgery might reduce the incidence and long-term progression of chronic kidney disease (CKD). Preclinical studies have provided experimental verification that bariatric surgery improves key parameters of kidney injury at the functional, structural and ultrastructural levels, and effects a programme of transcriptomic change in the kidney that is coherent with injury resolution. Multiple mechanisms explain these observations, ranging from predictable aspects of risk-factor reduction to some novel and unforeseen renoprotective benefits of surgery. Current evidence therefore supports the judicious use of bariatric surgery to treat patients with obesity, diabetes and CKD. Optimizing the benefits of surgery requires careful patient selection and consideration of how to identify and mitigate some of the challenges associated with these surgical procedures.

Key points

  • A causal link between elevated BMI and the incidence and progression of chronic kidney disease (CKD) is now well substantiated.

  • Bariatric surgery reduces risk factors implicated in the progression of kidney injury in obesity and type 2 diabetes mellitus.

  • Long-term outcomes of bariatric surgery confirm the role of obesity as a modifiable risk factor for advanced CKD.

  • Preclinical studies demonstrate that bariatric surgery improves biochemical, structural and ultrastructural measures of experimental diabetic kidney disease and interrupts the transcriptional programme characteristic of progressive CKD.

  • Definitive randomized clinical trial studies comparing kidney outcomes and safety following best medical therapy alone or best medical therapy in combination with bariatric surgery at various stages of disease progression are required.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Precipitating phenomena, pathogenic stimuli and injury responses in obesity-associated chronic kidney disease.
Fig. 2: Anatomical reconfigurations in vertical sleeve gastrectomy and Roux-en-Y gastric bypass.
Fig. 3: Renoprotective effects of bariatric surgery.

References

  1. Kyle, T. K., Dhurandhar, E. J. & Allison, D. B. Regarding obesity as a disease: evolving policies and their implications. Endocrinol. Metab. Clin. North. Am. 45, 511–520 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 386, 1377–1396 (2016).

    Google Scholar 

  3. Lim, C. C. et al. Elevated serum leptin, adiponectin and leptin to adiponectin ratio is associated with chronic kidney disease in Asian adults. PloS ONE 10, e0122009 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Foster, M. C. et al. Overweight, obesity, and the development of stage 3 CKD: the Framingham heart study. Am. J. Kidney Dis. 52, 39–48 (2008).

    PubMed  PubMed Central  Google Scholar 

  5. Sinclair, P., Brennan, D. J. & le Roux, C. W. Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer. Nat. Rev. Gastroenterol. Hepatol. 15, 606–624 (2018).

    CAS  PubMed  Google Scholar 

  6. Sinclair, P., Docherty, N. & le Roux, C. W. Metabolic effects of bariatric surgery. Clin. Chem. 64, 72–81 (2018).

    CAS  PubMed  Google Scholar 

  7. D’Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 (2016).

    PubMed  Google Scholar 

  8. Garofalo, C. et al. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 91, 1224–1235 (2017).

    PubMed  Google Scholar 

  9. Vivante, A. et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch. Intern. Med. 172, 1644–1650 (2012).

    PubMed  PubMed Central  Google Scholar 

  10. Hsu, C. Y., McCulloch, C. E., Iribarren, C., Darbinian, J. & Go, A. S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 144, 21–28 (2006).

    PubMed  Google Scholar 

  11. Ntuk, U. E., Gill, J. M., Mackay, D. F., Sattar, N. & Pell, J. P. Ethnic-specific obesity cutoffs for diabetes risk: cross-sectional study of 490,288 UK biobank participants. Diabetes Care 37, 2500–2507 (2014).

    PubMed  Google Scholar 

  12. Xu, H. et al. Higher body mass index is associated with incident diabetes and chronic kidney disease independent of genetic confounding. Kidney Int. 95, 1225–1233 (2019).

    PubMed  Google Scholar 

  13. Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol. 15, 367–385 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Freedland, E. S. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr. Metab. 1, 12 (2004).

    Google Scholar 

  15. Zhu, Q. & Scherer, P. E. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat. Rev. Nephrol. 14, 105–120 (2018).

    CAS  PubMed  Google Scholar 

  16. Thomas, M. C. et al. Diabetic kidney disease. Nat. Rev. Dis. Prim. 1, 15018 (2015).

    PubMed  Google Scholar 

  17. Vallon, V. & Docherty, N. G. Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4. Exp. Physiol. 99, 1140–1145 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. de Vries, A. P. et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2, 417–426 (2014).

    PubMed  Google Scholar 

  19. Choi, S. R. et al. Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metab. Clin. Exp. 85, 348–360 (2018).

    CAS  PubMed  Google Scholar 

  20. Lennon, R. et al. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol. Dial. Transplant. 24, 3288–3296 (2009).

    CAS  PubMed  Google Scholar 

  21. Chandran, M., Phillips, S. A., Ciaraldi, T. & Henry, R. R. Adiponectin: more than just another fat cell hormone? Diabetes Care 26, 2442–2450 (2003).

    CAS  PubMed  Google Scholar 

  22. Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).

    CAS  PubMed  Google Scholar 

  23. Sharma, K. et al. Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest. 118, 1645–1656 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, Y. & Park, C. W. Mechanisms of adiponectin action: implication of adiponectin receptor agonism in diabetic kidney disease. Int. J. Mol. Sci. 20, 1782 (2019).

    CAS  PubMed Central  Google Scholar 

  25. Briffa, J. F., McAinch, A. J., Poronnik, P. & Hryciw, D. H. Adipokines as a link between obesity and chronic kidney disease. Am. J. Physiol. Renal Physiol. 305, F1629–F1636 (2013).

    CAS  PubMed  Google Scholar 

  26. Cnop, M. et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46, 459–469 (2003).

    CAS  PubMed  Google Scholar 

  27. Kern, P. A., Di Gregorio, G. B., Lu, T., Rassouli, N. & Ranganathan, G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52, 1779–1785 (2003).

    CAS  PubMed  Google Scholar 

  28. Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    CAS  PubMed  Google Scholar 

  29. La Cava, A. Leptin in inflammation and autoimmunity. Cytokine 98, 51–58 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Caron, A., Lee, S., Elmquist, J. K. & Gautron, L. Leptin and brain-adipose crosstalks. Nat. Rev. Neurosci. 19, 153–165 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shand, B. I., Scott, R. S., Elder, P. A. & George, P. M. Plasma adiponectin in overweight, nondiabetic individuals with or without insulin resistance. Diabetes Obes. Metab. 5, 349–353 (2003).

    CAS  PubMed  Google Scholar 

  32. Oosterhuis, N. R. et al. Extravascular renal denervation ameliorates juvenile hypertension and renal damage resulting from experimental hyperleptinemia in rats. J. Hypertens. 35, 2537–2547 (2017).

    CAS  PubMed  Google Scholar 

  33. Shi, Z., Li, B. & Brooks, V. L. Role of the paraventricular nucleus of the hypothalamus in the sympathoexcitatory effects of leptin. Hypertension 66, 1034–1041 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Faulkner, J. L. & Belin de Chantemele, E. J. Leptin and aldosterone. Vitam. Horm. 109, 265–284 (2019).

    CAS  PubMed  Google Scholar 

  35. Yiannikouris, F. et al. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension 60, 1524–1530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakamura, M. et al. Stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in type 2 diabetes with nephropathy. Biochem. Biophys. Res. Commun. 461, 154–158 (2015).

    CAS  PubMed  Google Scholar 

  37. Artunc, F. et al. The impact of insulin resistance on the kidney and vasculature. Nat. Rev. Nephrol. 12, 721–737 (2016).

    CAS  PubMed  Google Scholar 

  38. Lay, A. C. et al. Prolonged exposure of mouse and human podocytes to insulin induces insulin resistance through lysosomal and proteasomal degradation of the insulin receptor. Diabetologia 60, 2299–2311 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bailey, M. A. 11beta-hydroxysteroid dehydrogenases and hypertension in the metabolic syndrome. Curr. Hypertens. Rep. 19, 100 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Gant, C. M. et al. Lower renal function is associated with derangement of 11-beta hydroxysteroid dehydrogenase in type 2 diabetes. J. Endocr. Soc. 2, 609–620 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Standeven, K. F. et al. Neprilysin, obesity and the metabolic syndrome. Int. J. Obes. 35, 1031–1040 (2011).

    CAS  Google Scholar 

  42. Lamacchia, O. et al. Para- and perirenal fat thickness is an independent predictor of chronic kidney disease, increased renal resistance index and hyperuricaemia in type-2 diabetic patients. Nephrol. Dial. Transplant. 26, 892–898 (2011).

    PubMed  Google Scholar 

  43. Foster, M. C. et al. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension 58, 784–790 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Welbourn, R. et al. Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the second IFSO global registry report 2013–2015. Obes. Surg. 28, 313–322 (2018).

    PubMed  Google Scholar 

  45. DeMaria, E. J., Pate, V., Warthen, M. & Winegar, D. A. Baseline data from American society for metabolic and bariatric surgery-designated bariatric surgery centers of excellence using the bariatric outcomes longitudinal database. Surg. Obes. Relat. Dis. 6, 347–355 (2010).

    PubMed  Google Scholar 

  46. Fried, M. et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes. Surg. 24, 42–55 (2014).

    CAS  PubMed  Google Scholar 

  47. Rubino, F. et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care 39, 861–877 (2016).

    CAS  PubMed  Google Scholar 

  48. Peterli, R. et al. Laparoscopic sleeve gastrectomy versus Roux-Y-Gastric bypass for morbid obesity-3-year outcomes of the prospective randomized swiss multicenter bypass or sleeve study (SM-BOSS). Ann. Surg. 265, 466–473 (2017).

    PubMed  Google Scholar 

  49. Salminen, P. et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y Gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA 319, 241–254 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Kissler, H. J. & Settmacher, U. Bariatric surgery to treat obesity. Semin. Nephrol. 33, 75–89 (2013).

    PubMed  Google Scholar 

  51. Wolfe, B. M., Kvach, E. & Eckel, R. H. Treatment of obesity: weight loss and bariatric surgery. Circ. Res. 118, 1844–1855 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Thereaux, J. et al. Long-term adverse events after sleeve gastrectomy or gastric bypass: a 7-year nationwide, observational, population-based, cohort study. Lancet Diabetes Endocrinol. 7, 786–795 (2019).

    PubMed  Google Scholar 

  53. Hofso, D. et al. Gastric bypass versus sleeve gastrectomy in patients with type 2 diabetes (Oseberg): a single-centre, triple-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 7, 912–924 (2019).

    PubMed  Google Scholar 

  54. Sheetz, K. H. et al. Trends in bariatric surgery procedures among patients with ESKD in the United States. Clin. J. Am. Soc. Nephrol. 14, 1193–1199 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Sjostrom, L. Review of the key results from the Swedish Obese Subjects (SOS) trial — a prospective controlled intervention study of bariatric surgery. J. Intern. Med. 273, 219–234 (2013).

    CAS  PubMed  Google Scholar 

  56. Sjöström, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    PubMed  Google Scholar 

  57. Eliasson, B. et al. Cardiovascular disease and mortality in patients with type 2 diabetes after bariatric surgery in Sweden: a nationwide, matched, observational cohort study. Lancet Diabetes Endocrinol. 3, 847–854 (2015).

    PubMed  Google Scholar 

  58. Adams, T. D. et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357, 753–761 (2007).

    CAS  PubMed  Google Scholar 

  59. Sjostrom, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351, 2683–2693 (2004).

    PubMed  Google Scholar 

  60. le Roux, C. W. et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243, 108–114 (2006).

    PubMed  PubMed Central  Google Scholar 

  61. Docherty, N. G. & le Roux, C. W. Reconfiguration of the small intestine and diabetes remitting effects of Roux-en-Y gastric bypass surgery. Curr. Opin. Gastroenterol. 32, 61–66 (2016).

    PubMed  Google Scholar 

  62. Saeidi, N. et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science 341, 406–410 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Quercia, I., Dutia, R., Kotler, D. P., Belsley, S. & Laferrere, B. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 40, 87–94 (2014).

    CAS  PubMed  Google Scholar 

  64. Bojsen-Møller, K. N. et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass. Diabetes 63, 1725–1737 (2014).

    PubMed  Google Scholar 

  65. Cummings, D. E. et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia 59, 945–953 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ikramuddin, S. et al. Roux-en-Y gastric bypass for diabetes (the diabetes surgery study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diabetes Endocrinol. 3, 413–422 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Mingrone, G. et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med. 366, 1577–1585 (2012).

    CAS  PubMed  Google Scholar 

  68. Courcoulas, A. P. et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg. 150, 931–940 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Dixon, J. B. et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299, 316–323 (2008).

    CAS  PubMed  Google Scholar 

  70. Gloy, V. L. et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ 347, f5934 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. Carlsson, L. M. et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N. Engl. J. Med. 367, 695–704 (2012).

    CAS  PubMed  Google Scholar 

  72. Hallersund, P. et al. Gastric bypass surgery is followed by lowered blood pressure and increased diuresis - long term results from the Swedish obese subjects (SOS) study. PLoS ONE 7, e49696 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schiavon, C. A. et al. Effects of bariatric surgery in obese patients with hypertension: the GATEWAY randomized trial (gastric bypass to treat obese patients with steady hypertension). Circulation 137, 1132–1142 (2018).

    PubMed  Google Scholar 

  74. Rosenstock, J. L., Pommier, M., Stoffels, G., Patel, S. & Michelis, M. F. Prevalence of proteinuria and albuminuria in an obese population and associated risk factors. Front. Med. 5, 122 (2018).

    Google Scholar 

  75. Hallan, S. I. et al. Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J. Am. Soc. Nephrol. 20, 1069–1077 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gaede, P., Tarnow, L., Vedel, P., Parving, H. H. & Pedersen, O. Remission to normoalbuminuria during multifactorial treatment preserves kidney function in patients with type 2 diabetes and microalbuminuria. Nephrol. Dial. Transplant. 19, 2784–2788 (2004).

    PubMed  Google Scholar 

  77. Heerspink, H. J., Kropelin, T. F., Hoekman, J. & de Zeeuw, D. Drug-induced reduction in albuminuria is associated with subsequent renoprotection: a meta-analysis. J. Am. Soc. Nephrol. 26, 2055–2064 (2015).

    CAS  PubMed  Google Scholar 

  78. Bilha, S. C. et al. The effects of bariatric surgery on renal outcomes: a systematic review and meta-analysis. Obes. Surg. 28, 3815–3833 (2018).

    PubMed  Google Scholar 

  79. Li, K. et al. Effects of bariatric surgery on renal function in obese patients: a systematic review and meta analysis. PLoS ONE 11, e0163907 (2016).

    PubMed  PubMed Central  Google Scholar 

  80. Scheurlen, K. M. et al. Metabolic surgery improves renal injury independent of weight loss: a meta-analysis. Surg. Obes. Relat. Dis. 15, 1006–1020 (2019).

    PubMed  Google Scholar 

  81. Herder, C. et al. Adiponectin and bariatric surgery: associations with diabetes and cardiovascular disease in the Swedish Obese Subjects study. Diabetes Care 37, 1401–1409 (2014).

    CAS  PubMed  Google Scholar 

  82. Stephens, J. W. et al. Temporal effects of laparoscopic sleeve gastrectomy on adipokines, inflammation, and oxidative stress in patients with impaired glucose homeostasis. Surg. Obes. Relat. Dis. 15, 2011–2017 (2019).

    PubMed  Google Scholar 

  83. Unamuno, X. et al. Increase of the adiponectin/leptin ratio in patients with obesity and type 2 diabetes after Roux-en-Y gastric bypass. Nutrients 11, 2069 (2019).

    CAS  PubMed Central  Google Scholar 

  84. Billeter, A. T. et al. Meta-analysis of metabolic surgery versus medical treatment for microvascular complications in patients with type 2 diabetes mellitus. Br. J. Surg. 105, 168–181 (2018).

    CAS  PubMed  Google Scholar 

  85. Bjornstad, P. et al. Effect of surgical versus medical therapy on diabetic kidney disease over 5 years in severely obese adolescents with type 2 diabetes. Diabetes Care 43, 187–195 (2020).

    PubMed  Google Scholar 

  86. Cohen, R. V. et al. Microvascular outcomes after metabolic surgery (MOMS) in patients with type 2 diabetes mellitus and class I obesity: rationale and design for a randomised controlled trial. BMJ Open 7, e013574 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Cohen, R. V. et al. Effect of gastric bypass vs best medical treatment on early-stage chronic kidney disease in patients with type 2 diabetes and obesity a randomized clinical trial. JAMA Surg. https://doi.org/10.1001/jamasurg.2020.0420 (2020).

    Article  PubMed  Google Scholar 

  88. Carlsson, L. M. et al. The incidence of albuminuria after bariatric surgery and usual care in Swedish obese subjects (SOS): a prospective controlled intervention trial. Int. J. Obes. 39, 169–175 (2015).

    CAS  Google Scholar 

  89. Belle, S. H. et al. Baseline characteristics of participants in the longitudinal assessment of bariatric surgery-2 (LABS-2) study. Surg. Obes. Relat. Dis. 9, 926–935 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. Friedman, A. N. et al. Effect of bariatric surgery on CKD risk. J. Am. Soc. Nephrol. 29, 1289–1300 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Funes, D. R. et al. Metabolic surgery reduces the risk of progression from chronic kidney disease to kidney failure. Ann. Surg. 270, 511–518 (2019).

    PubMed  Google Scholar 

  92. Grams, M. E. et al. Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate. Kidney Int. 93, 1442–1451 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Neff, K. J. et al. Effect of Roux-en-Y gastric bypass and diet-induced weight loss on diabetic kidney disease in the Zucker diabetic fatty rat. Surg. Obes. Relat. Dis. 13, 21–27 (2017).

    PubMed  Google Scholar 

  94. Canney, A. L. et al. Improvements in diabetic albuminuria and podocyte differentiation following Roux-en-Y gastric bypass surgery. Diab. Vasc. Dis. Res. 17, 1479164119879039 (2019).

    PubMed  Google Scholar 

  95. Nair, M. et al. Characterisation of the renal cortical transcriptome following roux-en-y gastric bypass surgery in experimental diabetic kidney disease. Preprint at bioRxiv https://doi.org/10.1101/2020.06.01.120980v1 (2020).

  96. Wang, C., He, B., Piao, D. & Han, P. Roux-en-Y esophagojejunostomy ameliorates renal function through reduction of renal inflammatory and fibrotic markers in diabetic nephropathy. Obes. Surg. 26, 1402–1413 (2016).

    PubMed  Google Scholar 

  97. Zhiqing, W. et al. Renal function is ameliorated in a diabetic nephropathy rat model through a duodenal-jejunal bypass. Diabetes Res. Clin. Pract. 103, 26–34 (2014).

    PubMed  Google Scholar 

  98. Wu, D. et al. Downregulation of lncRNA MALAT1 contributes to renal functional improvement after duodenal-jejunal bypass in a diabetic rat model. J. Physiol. Biochem. 74, 431–439 (2018).

    PubMed  Google Scholar 

  99. Carrara, F. et al. Simplified method to measure glomerular filtration rate by iohexol plasma clearance in conscious rats. Nephron 133, 62–70 (2016).

    CAS  PubMed  Google Scholar 

  100. Schock-Kusch, D. et al. Transcutaneous assessment of renal function in conscious rats with a device for measuring FITC-sinistrin disappearance curves. Kidney Int. 79, 1254–1258 (2011).

    CAS  PubMed  Google Scholar 

  101. Mangan, A., Le Roux, C. W., Miller, N. G. & Docherty, N. G. Iron and vitamin D/calcium deficiency after gastric bypass: mechanisms involved and strategies to improve oral supplement disposition. Curr. Drug Metab. 20, 244–252 (2019).

    CAS  PubMed  Google Scholar 

  102. Stein, J., Stier, C., Raab, H. & Weiner, R. Review article: the nutritional and pharmacological consequences of obesity surgery. Aliment. Pharmacol. Ther. 40, 582–609 (2014).

    CAS  PubMed  Google Scholar 

  103. Milone, M. et al. Incidence of successful pregnancy after weight loss interventions in infertile women: a systematic review and meta-analysis of the literature. Obes. Surg. 26, 443–451 (2016).

    PubMed  Google Scholar 

  104. Kwong, W., Tomlinson, G. & Feig, D. S. Maternal and neonatal outcomes after bariatric surgery; a systematic review and meta-analysis: do the benefits outweigh the risks? Am. J. Obstetr. Gynecol. 218, 573–580 (2018).

    Google Scholar 

  105. Stephansson, O., Johansson, K., Söderling, J., Näslund, I. & Neovius, M. Delivery outcomes in term births after bariatric surgery: population-based matched cohort study. PLoS Med. 15, e1002656 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes — a global concern. Nat. Rev. Nephrol. 11, 135–149 (2015).

    PubMed  Google Scholar 

  107. Lee, Y. Q. et al. Relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function: a systematic review of animal studies. Am. J. Physiol. Renal Physiol. 316, F1227–F1235 (2019).

    CAS  PubMed  Google Scholar 

  108. Lieske, J. C. et al. Kidney stones are common after bariatric surgery. Kidney Int. 87, 839–845 (2015).

    PubMed  Google Scholar 

  109. Nazzal, L., Puri, S. & Goldfarb, D. S. Enteric hyperoxaluria: an important cause of end-stage kidney disease. Nephrol. Dial. Transplant. 31, 375–382 (2016).

    PubMed  Google Scholar 

  110. Asplin, J. R. The management of patients with enteric hyperoxaluria. Urolithiasis 44, 33–43 (2016).

    CAS  PubMed  Google Scholar 

  111. Nor Hanipah, Z. et al. Impact of early postbariatric surgery acute kidney injury on long-term renal function. Obes. Surg. 28, 3580–3585 (2018).

    PubMed  Google Scholar 

  112. Montgomery, J. R., Waits, S. A., Dimick, J. B. & Telem, D. A. Perioperative risks of sleeve gastrectomy versus Roux-en-Y gastric bypass among patients with chronic kidney disease: a review of the MBSAQIP database. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003627 (2019).

    Article  PubMed  Google Scholar 

  113. Lee, J. E. et al. Risk of ESRD and all cause mortality in type 2 diabetes according to circulating levels of FGF-23 and TNFR1. PLoS ONE 8, e58007 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Niewczas, M. A. et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J. Am. Soc. Nephrol. 23, 507–515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pavkov, M. E. et al. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int. 89, 226–234 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Saulnier, P. J. et al. Association of serum concentration of TNFR1 with all-cause mortality in patients with type 2 diabetes and chronic kidney disease: follow-up of the SURDIAGENE Cohort. Diabetes Care 37, 1425–1431 (2014).

    CAS  PubMed  Google Scholar 

  117. Doody, A. et al. Validating the association between plasma tumour necrosis factor receptor 1 levels and the presence of renal injury and functional decline in patients with type 2 diabetes. J. Diabetes Complicat. 32, 95–99 (2018).

    Google Scholar 

  118. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    PubMed  Google Scholar 

  119. Sjostrom, L. et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311, 2297–2304 (2014).

    PubMed  Google Scholar 

  120. Ahren, B. et al. Semaglutide induces weight loss in subjects with type 2 diabetes regardless of baseline BMI or gastrointestinal adverse events in the SUSTAIN 1 to 5 trials. Diabetes, Obes. Metab. 20, 2210–2219 (2018).

    CAS  Google Scholar 

  121. Neuen, B. L. et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 7, 845–854 (2019).

    CAS  PubMed  Google Scholar 

  122. Potluri, K. & Hou, S. Obesity in kidney transplant recipients and candidates. Am. J. Kidney Dis. 56, 143–156 (2010).

    PubMed  Google Scholar 

  123. Sheetz, K. H., Gerhardinger, L., Dimick, J. B. & Waits, S. A. Bariatric surgery and long-term survival in patients with obesity and end-stage kidney disease. JAMA Surg. https://doi.org/10.1001/jamasurg.2020.0829 (2020).

    Article  PubMed  Google Scholar 

  124. Hansel, B. et al. Severe chronic kidney disease is associated with a lower efficiency of bariatric surgery. Obes. Surg. 29, 1514–1520 (2019).

    PubMed  Google Scholar 

  125. Al-Bahri, S., Fakhry, T. K., Gonzalvo, J. P. & Murr, M. M. Bariatric surgery as a bridge to renal transplantation in patients with end-stage renal disease. Obes. Surg. 27, 2951–2955 (2017).

    PubMed  Google Scholar 

  126. Salehi, M., Vella, A., McLaughlin, T. & Patti, M. E. Hypoglycemia after gastric bypass surgery: current concepts and controversies. J. Clin. Endocrinol. Metab. 103, 2815–2826 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Abrahamsson, N., Engstrom, B. E., Sundbom, M. & Karlsson, F. A. Gastric bypass surgery elevates NT-ProBNP levels. Obes. Surg. 23, 1421–1426 (2013).

    PubMed  Google Scholar 

  128. Bueter, M. et al. Sodium and water handling after gastric bypass surgery in a rat model. Surg. Obes. Relat. Dis. 7, 68–73 (2011).

    PubMed  Google Scholar 

  129. Docherty, N. G., Fandriks, L., le Roux, C. W., Hallersund, P. & Werling, M. Urinary sodium excretion after gastric bypass surgery. Surg. Obes. Relat. Dis. 13, 1506–1514 (2017).

    PubMed  Google Scholar 

  130. Arapis, K., Kadouch, D., Caillieret, O., Roussel, R. & Hansel, B. Bariatric surgery and chronic kidney disease: much hope, but proof is still awaited. Int. J. Obes. 42, 1532–1533 (2018).

    Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02612831 (2018).

  132. Perakakis, N. et al. Circulating levels of gastrointestinal hormones in response to the most common types of bariatric surgery and predictive value for weight loss over one year: evidence from two independent trials. Metab. Clin. Exp. 101, 153997 (2019).

    CAS  PubMed  Google Scholar 

  133. Elliott, J. A., Reynolds, J. V., le Roux, C. W. & Docherty, N. G. Physiology, pathophysiology and therapeutic implications of enteroendocrine control of food intake. Expert Rev. Endocrinol. Metab. 11, 475–499 (2016).

    CAS  PubMed  Google Scholar 

  134. Werling, M. et al. Biliopancreatic diversion is associated with greater increases in energy expenditure than Roux-en-Y gastric bypass. PLoS ONE 13, e0194538 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. Werling, M. et al. Roux-en-Y gastric bypass surgery increases respiratory quotient and energy expenditure during food intake. PLoS ONE 10, e0129784 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. Sondergaard Nielsen, M. et al. Bariatric surgery does not affect food preferences, but individual changes in food preferences may predict weight loss. Obesity 26, 1879–1887 (2018).

    CAS  PubMed  Google Scholar 

  137. Ghanim, H. et al. Decreases in neprilysin and vasoconstrictors and increases in vasodilators following bariatric surgery. Diabetes Obes. Metab. 20, 2029–2033 (2018).

    CAS  PubMed  Google Scholar 

  138. Sharma, A. M. & Kushner, R. F. A proposed clinical staging system for obesity. Int. J. Obes. 33, 289–295 (2009).

    CAS  Google Scholar 

  139. Yan, W., Bai, R., Yan, M. & Song, M. Preoperative fasting plasma C-peptide levels as predictors of remission of type 2 diabetes mellitus after bariatric surgery: a systematic review and meta-analysis. J. Investig. Surg. 30, 383–393 (2017).

    Google Scholar 

  140. Scheurlen, K. M. et al. Serum uromodulin and Roux-en-Y gastric bypass: improvement of a marker reflecting nephron mass. Surg. Obes. Relat. Dis. 15, 1319–1325 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

N.G.D. is also a visiting researcher at the Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden. C.W.l.R. also holds an adjunct Professor position in Investigative Science at Imperial College London, UK. The authors acknowledge funding support from the following agencies: Swedish Medical Research Council (2015-02733) and European Foundation for the Study of Diabetes/Boehringer Ingelheim European Diabetes Research Programme (BI 2017_3) to C.W.l.R. and N.G.D., and Science Foundation Ireland (12/YI/B2480) to C.W.l.R.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, wrote the manuscript, made substantial contributions to discussions of the content, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Neil G. Docherty.

Ethics declarations

Competing interests

C.W.l.R. is an advisory board member for Novo Nordisk, Herbalife, Johnson & Johnson, Keyron and GI Dynamics, and has received honoraria for speaking from Novo Nordisk, Herbalife, Johnson & Johnson, GI Dynamics, Lilly, MSD and Consilient Health. N.G.D. declares no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks A. Courcoulas, T. Diwan, R. Roussel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Critical adipose threshold

A concept that postulates that adipose storage capacity varies among individuals owing to a threshold or upper limit in the triglyceride storage capacity of individual adipocytes.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Docherty, N.G., le Roux, C.W. Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus. Nat Rev Nephrol 16, 709–720 (2020). https://doi.org/10.1038/s41581-020-0323-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0323-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing