Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Determining the true burden of kidney stone disease

Abstract

The incidence and prevalence of kidney stones have increased over the past four decades. However, the diagnosis of ‘kidney stone’ can range from an incidental asymptomatic finding of limited clinical significance to multiple painful episodes of ureteral obstruction with eventual kidney failure. Some general strategies may be useful to prevent the recurrence of kidney stones. In particular, greater attention to kidney stone classification, approaches to assessing the risk of recurrence and individualized prevention strategies may improve the clinical care of stone formers. Although there have been some advances in approaches to predicting the recurrence of kidney stones, notable challenges remain. Studies of kidney stone prevalence, incidence and recurrence have reported inconsistent findings, in part because of the lack of a standardized stone classification system. A kidney stone classification system based on practical and clinically useful measures of stone disease may help to improve both the study and clinical care of stone formers. Any future kidney stone classification system should be aimed at distinguishing asymptomatic from symptomatic stones, clinically diagnosed symptomatic stone episodes from self-reported symptomatic stone episodes, symptomatic stone episodes that are confirmed from those that are suspected, symptomatic recurrence from radiographic recurrence (that is, with radiographic evidence of a new stone, stone growth or stone disappearance from presumed passage) and determine stone composition based on mutually exclusive categories.

Key points

  • Kidney stones can range from an asymptomatic incidental finding with limited clinical significance to a painful recurrent disorder with substantial morbidity.

  • The prevalence and incidence of kidney stones has increased worldwide, but some of this increase is due to improvements in medical imaging with increased utilization of CT.

  • Classifying stone formers according to their clinical presentation and stone composition can help to predict the risk of future symptomatic stone episodes and aid personalization of stone prevention strategies.

  • The wide range of recurrence rates reported between different studies might largely be due to the use of different definitions that include various degrees of symptomatic evidence of recurrence and/or radiographic manifestations of recurrence.

  • Risk factors for symptomatic kidney stone recurrence include younger age, male gender, family history of stones, obesity, pregnancy, rarer stone compositions, higher radiographic kidney stone burden, number of past symptomatic kidney stone episodes and fewer years since last kidney stone episode.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The classification of kidney stones according to stone composition.
Fig. 2: Progression and pathways of kidney stone disease.
Fig. 3: Cumulative risk of symptomatic recurrence resulting in clinical care after symptomatic kidney stone episodes.

References

  1. 1.

    Scales, C. D. Jr., Smith, A. C., Hanley, J. M. & Saigal, C. S. Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).

    PubMed  Article  Google Scholar 

  3. 3.

    Trinchieri, A. et al. Increase in the prevalence of symptomatic upper urinary tract stones during the last ten years. Eur. Urol. 37, 23–25 (2000).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Hesse, A., Brandle, E., Wilbert, D., Kohrmann, K. U. & Alken, P. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur. Urol. 44, 709–713 (2003).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Penniston, K. L., McLaren, I. D., Greenlee, R. T. & Nakada, S. Y. Urolithiasis in a rural Wisconsin population from 1992 to 2008: narrowing of the male-to-female ratio. J. Urol. 185, 1731–1736 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Liu, Y. et al. Epidemiology of urolithiasis in Asia. Asian J. Urol. 5, 205–214 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Sorokin, I. et al. Epidemiology of stone disease across the world. World J. Urol. 35, 1301–1320 (2017).

    PubMed  Article  Google Scholar 

  8. 8.

    Pearle, M. S., Calhoun, E. A. & Curhan, G. C. Urologic Diseases of America Project. Urologic diseases in America project: urolithiasis. J. Urol. 173, 848–857 (2005).

    PubMed  Article  Google Scholar 

  9. 9.

    Kittanamongkolchai, W. et al. The changing incidence and presentation of urinary stones over 3 decades. Mayo Clin. Proc. 93, 291–299 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Dwyer, M. E. et al. Temporal trends in incidence of kidney stones among children: a 25-year population based study. J. Urol. 188, 247–252 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Tasian, G. E. et al. Annual incidence of nephrolithiasis among children and adults in South Carolina from 1997 to 2012. Clin. J. Am. Soc. Nephrol. 11, 488–496 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Edvardsson, V. O., Indridason, O. S., Haraldsson, G., Kjartansson, O. & Palsson, R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 83, 146–152 (2013).

    PubMed  Article  Google Scholar 

  13. 13.

    Edvardsson, V. O., Ingvarsdottir, S. E., Palsson, R. & Indridason, O. S. Incidence of kidney stone disease in Icelandic children and adolescents from 1985 to 2013: results of a nationwide study. Pediatr. Nephrol. 33, 1375–1384 (2018).

    PubMed  Article  Google Scholar 

  14. 14.

    Yasui, T., Iguchi, M., Suzuki, S. & Kohri, K. Prevalence and epidemiological characteristics of urolithiasis in Japan: national trends between 1965 and 2005. Urology 71, 209–213 (2008).

    PubMed  Article  Google Scholar 

  15. 15.

    Krambeck, A. E. et al. Effect of age on the clinical presentation of incident symptomatic urolithiasis in the general population. J. Urol. 189, 158–164 (2013).

    PubMed  Article  Google Scholar 

  16. 16.

    Brisbane, W., Bailey, M. R. & Sorensen, M. D. An overview of kidney stone imaging techniques. Nat. Rev. Urol. 13, 654–662 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Semins, M. J. & Matlaga, B. R. Kidney stones during pregnancy. Nat. Rev. Urol. 11, 163–168 (2014).

    PubMed  Article  Google Scholar 

  18. 18.

    Smith-Bindman, R. et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N. Engl. J. Med. 371, 1100–1110 (2014).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Sternberg, K. M. et al. Is hydronephrosis on ultrasound predictive of ureterolithiasis in patients with renal colic? J. Urol. 196, 1149–1152 (2016).

    PubMed  Article  Google Scholar 

  20. 20.

    Chi, T., Miller, J. & Stoller, M. L. Randall plaque versus renal stone? Transl. Androl. Urol. 1, 66–70 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Dhondup, T. et al. Risk of ESRD and mortality in kidney and bladder stone formers. Am. J. Kidney Dis. 72, 790–797 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Emamian, S. A., Nielsen, M. B., Pedersen, J. F. & Ytte, L. Sonographic evaluation of renal appearance in 665 adult volunteers. Correlation age obesity. Acta Radiol. 34, 482–485 (1993).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Oshibuchi, M., Nishi, F., Sato, M., Ohtake, H. & Okuda, K. Frequency of abnormalities detected by abdominal ultrasound among Japanese adults. J. Gastroenterol. Hepatol. 6, 165–168 (1991).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Buchholz, N. P. et al. The prevalence of silent kidney stones — an ultrasonographic screening study. J. Pak. Med. Assoc. 53, 24–25 (2003).

    CAS  PubMed  Google Scholar 

  25. 25.

    Passerotti, C. et al. Ultrasound versus computerized tomography for evaluating urolithiasis. J. Urol. 182, 1829–1834 (2009).

    PubMed  Article  Google Scholar 

  26. 26.

    Brenner, D. J. & Hall, E. J. Computed tomography — an increasing source of radiation exposure. N. Engl. J. Med. 357, 2277–2284 (2007).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Lorenz, E. C. et al. Clinical characteristics of potential kidney donors with asymptomatic kidney stones. Nephrol. Dial. Transpl. 26, 2695–2700 (2011).

    Article  Google Scholar 

  28. 28.

    Durbin, J. M. et al. Genitourinary abnormalities in an asymptomatic screening population: findings on virtual colonoscopy. Clin. Nephrol. 77, 204–210 (2012).

    PubMed  Article  Google Scholar 

  29. 29.

    D’Costa, M. R. et al. Symptomatic and radiographic manifestations of kidney stone recurrence and their prediction by risk factors: a prospective cohort study. J. Am. Soc. Nephrol. 30, 1251–1260 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Li, X. et al. Outcomes of long-term follow-up of asymptomatic renal stones and prediction of stone-related events. BJU Int. 123, 485–492 (2019).

    PubMed  Article  Google Scholar 

  31. 31.

    Goldsmith, Z. G. & Lipkin, M. E. When (and how) to surgically treat asymptomatic renal stones. Nat. Rev. Urol. 9, 315–320 (2012).

    PubMed  Article  Google Scholar 

  32. 32.

    Selby, M. G. et al. Quantification of asymptomatic kidney stone burden by computed tomography for predicting future symptomatic stone events. Urology 85, 45–50 (2015).

    PubMed  Article  Google Scholar 

  33. 33.

    Dropkin, B. M., Moses, R. A., Sharma, D. & Pais, V. M. Jr. The natural history of nonobstructing asymptomatic renal stones managed with active surveillance. J. Urol. 193, 1265–1269 (2015).

    PubMed  Article  Google Scholar 

  34. 34.

    Kang, H. W. et al. Natural history of asymptomatic renal stones and prediction of stone related events. J. Urol. 189, 1740–1746 (2013).

    PubMed  Article  Google Scholar 

  35. 35.

    Burgher, A., Beman, M., Holtzman, J. L. & Monga, M. Progression of nephrolithiasis: long-term outcomes with observation of asymptomatic calculi. J. Endourol. 18, 534–539 (2004).

    PubMed  Article  Google Scholar 

  36. 36.

    Assimos, D. et al. Surgical management of stones: American Urological Association/Endourological Society guideline, part I. J. Urol. 196, 1153–1160 (2016).

    PubMed  Article  Google Scholar 

  37. 37.

    Assimos, D. et al. Surgical management of stones: American Urological Association/Endourological Society guideline, part II. J. Urol. 196, 1161–1169 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Curhan, G. C., Willett, W. C., Speizer, F. E. & Stampfer, M. J. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int. 59, 2290–2298 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Chooi, Y. C., Ding, C. & Magkos, F. The epidemiology of obesity. Metabolism 92, 6–10 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Obesity, weight gain, and the risk of kidney stones. JAMA 293, 455–462 (2005).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Geiss, L. S. et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980–2012. JAMA 312, 1218–1226 (2014).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 68, 1230–1235 (2005).

    PubMed  Article  Google Scholar 

  43. 43.

    Meyer, K. A. et al. Twenty-two-year population trends in sodium and potassium consumption: the Minnesota Heart Survey. J. Am. Heart Assoc. 2, e000478 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Sorensen, M. D. et al. Impact of nutritional factors on incident kidney stone formation: a report from the WHI OS. J. Urol. 187, 1645–1649 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Muldowney, F. P., Freaney, R. & Moloney, M. F. Importance of dietary sodium in the hypercalciuria syndrome. Kidney Int. 22, 292–296 (1982).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Curhan, G. C., Willett, W. C., Speizer, F. E., Spiegelman, D. & Stampfer, M. J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 126, 497–504 (1997).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Daniel, C. R., Cross, A. J., Koebnick, C. & Sinha, R. Trends in meat consumption in the USA. Public. Health Nutr. 14, 575–583 (2011).

    PubMed  Article  Google Scholar 

  48. 48.

    Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J. Am. Soc. Nephrol. 15, 3225–3232 (2004).

    PubMed  Article  Google Scholar 

  49. 49.

    Breslau, N. A., Brinkley, L., Hill, K. D. & Pak, C. Y. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J. Clin. Endocrinol. Metab. 66, 140–146 (1988).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Gross, L. S., Li, L., Ford, E. S. & Liu, S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am. J. Clin. Nutr. 79, 774–779 (2004).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Curhan, G. C., Willett, W. C., Knight, E. L. & Stampfer, M. J. Dietary factors and the risk of incident kidney stones in younger women: Nurses’ Health Study II. Arch. Intern. Med. 164, 885–891 (2004).

    PubMed  Article  Google Scholar 

  52. 52.

    Lemann, J. Jr., Piering, W. F. & Lennon, E. J. Possible role of carbohydrate-induced calciuria in calcium oxalate kidney-stone formation. N. Engl. J. Med. 280, 232–237 (1969).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Bleich, S. N., Wang, Y. C., Wang, Y. & Gortmaker, S. L. Increasing consumption of sugar-sweetened beverages among US adults: 1988–1994 to 1999–2004. Am. J. Clin. Nutr. 89, 372–381 (2009).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Ferraro, P. M., Taylor, E. N., Gambaro, G. & Curhan, G. C. Soda and other beverages and the risk of kidney stones. Clin. J. Am. Soc. Nephrol. 8, 1389–1395 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Fakheri, R. J. & Goldfarb, D. S. Ambient temperature as a contributor to kidney stone formation: implications of global warming. Kidney Int. 79, 1178–1185 (2011).

    PubMed  Article  Google Scholar 

  56. 56.

    Soucie, J. M., Coates, R. J., McClellan, W., Austin, H. & Thun, M. Relation between geographic variability in kidney stones prevalence and risk factors for stones. Am. J. Epidemiol. 143, 487–495 (1996).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Soucie, J. M., Thun, M. J., Coates, R. J., McClellan, W. & Austin, H. Demographic and geographic variability of kidney stones in the United States. Kidney Int. 46, 893–899 (1994).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Boscolo-Berto, R. et al. Do weather conditions influence the onset of renal colic? A novel approach to analysis. Urol. Int. 80, 19–25 (2008).

    PubMed  Article  Google Scholar 

  59. 59.

    Chen, Y. K., Lin, H. C., Chen, C. S. & Yeh, S. D. Seasonal variations in urinary calculi attacks and their association with climate: a population based study. J. Urol. 179, 564–569 (2008).

    PubMed  Article  Google Scholar 

  60. 60.

    Chauhan, V., Eskin, B., Allegra, J. R. & Cochrane, D. G. Effect of season, age, and gender on renal colic incidence. Am. J. Emerg. Med. 22, 560–563 (2004).

    PubMed  Article  Google Scholar 

  61. 61.

    Brikowski, T. H., Lotan, Y. & Pearle, M. S. Climate-related increase in the prevalence of urolithiasis in the United States. Proc. Natl Acad. Sci. USA 105, 9841–9846 (2008).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Rule, A. D. et al. The ROKS nomogram for predicting a second symptomatic stone episode. J. Am. Soc. Nephrol. 25, 2878–2886 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Vaughan, L. E. et al. Predictors of symptomatic kidney stone recurrence after the first and subsequent episodes. Mayo Clin. Proc. 94, 202–210 (2019).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Singh, P. et al. Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin. Proc. 90, 1356–1365 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Lieske, J. C. et al. Stone composition as a function of age and sex. Clin. J. Am. Soc. Nephrol. 9, 2141–2146 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Knoll, T. et al. Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J. Urol. 185, 1304–1311 (2011).

    PubMed  Article  Google Scholar 

  67. 67.

    Daudon, M. et al. Sex- and age-related composition of 10 617 calculi analyzed by infrared spectroscopy. Urol. Res. 23, 319–326 (1995).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Ye, Z. et al. The status and characteristics of urinary stone composition in China. BJU Int. 125, 801–809 (2019).

    Article  CAS  Google Scholar 

  69. 69.

    Worcester, E. M., Bergsland, K. J., Gillen, D. L. & Coe, F. L. Mechanism for higher urine pH in normal women compared with men. Am. J. Physiol. Renal Physiol 314, F623–F629 (2018).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Kohri, K. et al. Relationship between metabolic acidosis and calcium phosphate urinary stone formation in women. Int. Urol. Nephrol. 23, 307–316 (1991).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Maalouf, N. M. Metabolic syndrome and the genesis of uric acid stones. J. Ren. Nutr. 21, 128–131 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Sakhaee, K. & Maalouf, N. M. Metabolic syndrome and uric acid nephrolithiasis. Semin. Nephrol. 28, 174–180 (2008).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Morgan, M. S. & Pearle, M. S. Medical management of renal stones. BMJ 352, i52 (2016).

    PubMed  Article  Google Scholar 

  74. 74.

    Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    PubMed  Article  Google Scholar 

  75. 75.

    Qaseem, A. et al. Dietary and pharmacologic management to prevent recurrent nephrolithiasis in adults: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 161, 659–667 (2014).

    PubMed  Article  Google Scholar 

  76. 76.

    Skolarikos, A. et al. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur. Urol. 67, 750–763 (2015).

    PubMed  Article  Google Scholar 

  77. 77.

    D’Costa, M. R., Pais, V. M. & Rule, A. D. Leave no stone unturned: defining recurrence in kidney stone formers. Curr. Opin. Nephrol. Hypertens. 28, 148–153 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Sternberg, K. M. et al. Ultrasonography significantly overestimates stone size when compared to low-dose, noncontrast computed tomography. Urology 95, 67–71 (2016).

    PubMed  Article  Google Scholar 

  79. 79.

    Williams, R. E. Long-term survey of 538 patients with upper urinary tract stone. Br. J. Urol. 35, 416–437 (1963).

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Marshall, V., White, R. H., De Saintonge, M. C., Tresidder, G. C. & Blandy, J. P. The natural history of renal and ureteric calculi. Br. J. Urol. 47, 117–124 (1975).

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Sutherland, J. W., Parks, J. H. & Coe, F. L. Recurrence after a single renal stone in a community practice. Min. Electrolyte Metab. 11, 267–269 (1985).

    CAS  Google Scholar 

  82. 82.

    Steyerberg, E. W. et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21, 128–138 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Iremashvili, V. et al. External validation of the recurrence of kidney stone nomogram in a surgical cohort. J. Endourol. 33, 475–479 (2019).

    PubMed  Article  Google Scholar 

  84. 84.

    Emmott, A. S., Brotherhood, H. L., Paterson, R. F., Lange, D. & Chew, B. H. Complications, re-intervention rates, and natural history of residual stone fragments after percutaneous nephrolithotomy. J. Endourol. 32, 28–32 (2018).

    PubMed  Article  Google Scholar 

  85. 85.

    Chew, B. H. et al. Natural history, complications and re-intervention rates of asymptomatic residual stone fragments after ureteroscopy: a report from the EDGE research consortium. J. Urol. 195, 982–986 (2016).

    PubMed  Article  Google Scholar 

  86. 86.

    Alexander, C. E., Gowland, S., Cadwallader, J., Reynard, J. M. & Turney, B. W. Shock wave lithotripsy (SWL): outcomes from a national SWL database in New Zealand. BJU Int. 117 (Suppl. 4), 76–81 (2016).

    PubMed  Article  Google Scholar 

  87. 87.

    Javanmard, B., Kashi, A. H., Mazloomfard, M. M., Ansari Jafari, A. & Arefanian, S. Retrograde intrarenal surgery versus shock wave lithotripsy for renal stones smaller than 2 cm: a randomized clinical trial. Urol. J. 13, 2823–2828 (2016).

    PubMed  Google Scholar 

  88. 88.

    Albala, D. M. et al. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J. Urol. 166, 2072–2080 (2001).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Bozzini, G. et al. A prospective randomized comparison among SWL, PCNL and RIRS for lower calyceal stones less than 2 cm: a multicenter experience: a better understanding on the treatment options for lower pole stones. World J. Urol. 35, 1967–1975 (2017).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Ferraro, P. M., Curhan, G. C., D’Addessi, A. & Gambaro, G. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature. J. Nephrol. 30, 227–233 (2017).

    PubMed  Article  Google Scholar 

  91. 91.

    Fink, H. A. et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians clinical guideline. Ann. Intern. Med. 158, 535–543 (2013).

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

C.T. and A.D.R. researched data for the article. All authors contributed to discussion of the article’s content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Andrew D. Rule.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks D. Goldfarb and R. Pálsson for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Recurrence of Kidney Stone (ROKS) tool: https://qxmd.com/calculate/calculator_438/roks-recurrence-of-kidney-stone-2018

Glossary

Shockwave lithotripsy

A procedure for treating stones in the kidney or ureter using a high-energy shock wave from outside the body to break stones into fragments that are small enough to spontaneously pass in urine.

Ureteroscopy

A procedure in which a small scope is inserted into the ureter via the urethra and bladder to diagnose and treat a variety of problems in the urinary tract. In the case of urinary stones, it allows the urologist to actually look into the ureter or kidney, find the stone and remove or fragment the stone.

Nephrolithotomy

A procedure used to remove kidney stones from the body when they cannot pass spontaneously.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thongprayoon, C., Krambeck, A.E. & Rule, A.D. Determining the true burden of kidney stone disease. Nat Rev Nephrol 16, 736–746 (2020). https://doi.org/10.1038/s41581-020-0320-7

Download citation

Further reading

Search

Quick links