Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunology of renal cell carcinoma

Abstract

Renal cell carcinoma (RCC) is the most common type of kidney cancer and comprises several subtypes with unique characteristics. The most common subtype (~70% of cases) is clear-cell RCC. RCC is considered to be an immunogenic tumour but is known to mediate immune dysfunction in large part by eliciting the infiltration of immune-inhibitory cells, such as regulatory T cells and myeloid-derived suppressor cells, into the tumour microenvironment. Several possible mechanisms have been proposed to explain how these multiple tumour-infiltrating cell types block the development of an effective anti-tumour immune response, including inhibition of the activity of effector T cells and of antigen presenting cells via upregulation of suppressive factors such as checkpoint molecules. Targeting immune suppression using checkpoint inhibition has resulted in clinical responses in some patients with RCC and combinatorial approaches involving checkpoint blockade are now standard of care in patients with advanced RCC. However, a substantial proportion of patients do not benefit from checkpoint blockade. The identification of reliable biomarkers of response to checkpoint blockade is crucial to facilitate improvements in the clinical efficacy of these therapies. In addition, there is a need for the development of other immune-based strategies that address the shortcomings of checkpoint blockade, such as adoptive cell therapies.

Key points

  • Renal cell carcinoma (RCC) tumours are heavily infiltrated by T cells and myeloid cells; however, the tumour-infiltrating T cells do not mount effective anti-tumour responses, probably owing to the suppressive activity of regulatory T cells and myeloid cells.

  • The immunosuppressed state of RCC tumours provides an opportunity to restore anti-tumour immune responses by targeting negative regulators such as immune checkpoint molecules

  • Single and double agent immune checkpoint inhibition (ICI) and combinations of immune checkpoint inhibitors (ICIs) with vascular endothelial growth factor tyrosine kinase inhibitors are now the standard of care in patients with advanced RCC.

  • Despite these important developments, only a minority of patients with RCC will obtain durable benefit from ICI therapies, underscoring the need for reliable biomarkers of response to these therapies

  • Elucidation of the mechanisms that underlie responses or resistance to ICIs will enable the rational development of combinatorial strategies aimed at improving the efficacy of these therapies

  • A better understanding of the functions of immune mediators within the tumour microenvironment in RCC could lead to the development of novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inflammation and immunosuppressive networks in renal cell carcinoma.
Fig. 2: Mechanisms of action of CTL4 blockade and PD1 blockade.
Fig. 3: Rationale for combining anti-VEGF therapy with immune checkpoint inhibition.

Similar content being viewed by others

References

  1. Wagner, R. P. Anecdotal, historical and critical commentaries on genetics. Rudolph Virchow and the genetic basis of somatic ecology. Genetics 151, 917–920 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    CAS  PubMed  Google Scholar 

  3. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  4. O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).

    PubMed  Google Scholar 

  5. Lee, S. & Margolin, K. Cytokines in cancer immunotherapy. Cancers 3, 3856–3893 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheever, M. A. & Higano, C. S. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17, 3520–3526 (2011).

    PubMed  Google Scholar 

  7. Hargadon, K. M., Johnson, C. E. & Williams, C. J. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 62, 29–39 (2018).

    CAS  PubMed  Google Scholar 

  8. Conry, R. M., Westbrook, B., McKee, S. & Norwood, T. G. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum. Vaccin. Immunother. 14, 839–846 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    CAS  PubMed  Google Scholar 

  10. Keir, M. E. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203, 883–895 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Raedler, L. A. Keytruda (pembrolizumab): first PD-1 inhibitor approved for previously treated unresectable or metastatic melanoma. Am. Health Drug. Benefits 8, 96–100 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Gong, J., Chehrazi-Raffle, A., Reddi, S. & Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer 6, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Amin, A. & Hammers, H. The evolving landscape of immunotherapy-based combinations for frontline treatment of advanced renal cell carcinoma. Front. Immunol. 9, 3120 (2018).

    CAS  PubMed  Google Scholar 

  14. Escudier, B. Combination therapy as first-line treatment in metastatic renal-cell carcinoma. N. Engl. J. Med. 380, 1176–1178 (2019).

    PubMed  Google Scholar 

  15. Cohen, H. T. & McGovern, F. J. Renal-cell carcinoma. N. Engl. J. Med. 353, 2477–2490 (2005).

    CAS  PubMed  Google Scholar 

  16. Choueiri, T. K. Renal cell carcinoma. Hematol. Oncol. Clin. North. Am. 25, xiii–xiv (2011).

    PubMed  Google Scholar 

  17. Linehan, W. M., Srinivasan, R. & Garcia, J. A. Non-clear cell renal cancer: disease-based management and opportunities for targeted therapeutic approaches. Semin. Oncol. 40, 511–520 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    CAS  PubMed  Google Scholar 

  20. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Google Scholar 

  21. Kaelin, W. G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    CAS  PubMed  Google Scholar 

  22. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx Renal. Cell 173, 595–610.e11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell 173, 611–623.e17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brannon, A. R. et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 1, 152–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Beuselinck, B. et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin. Cancer Res. 21, 1329–1339 (2015).

    CAS  PubMed  Google Scholar 

  26. Beuselinck, B. et al. Pro-angiogenic gene expression is associated with better outcome on sunitinib in metastatic clear-cell renal cell carcinoma. Acta Oncol. 57, 498–508 (2018).

    CAS  PubMed  Google Scholar 

  27. Verbiest, A. et al. Molecular subtypes of clear cell renal cell carcinoma are associated with outcome during pazopanib therapy in the metastatic setting. Clin. Genitourin. Cancer 16, e605–e612 (2018).

    PubMed  Google Scholar 

  28. Cowey, C. L. & Rathmell, W. K. VHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacy. Curr. Oncol. Rep. 11, 94–101 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. D’Avella, C., Abbosh, P., Pal, S. K. & Geynisman, D. M. Mutations in renal cell carcinoma. Urol. Oncol. https://doi.org/10.1016/j.urolonc.2018.10.027 (2018).

    Article  PubMed  Google Scholar 

  30. Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Prim. 3, 17009 (2017).

    PubMed  Google Scholar 

  31. Chen, F. et al. Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep. 14, 2476–2489 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47, 13–21 (2015).

    CAS  PubMed  Google Scholar 

  33. Cancer Genome Atlas Research Network et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    Google Scholar 

  34. Ji, S., Xiong, Y., Zhao, X., Liu, Y. & Yu, L. Q. Effect of the Nrf2-ARE signaling pathway on biological characteristics and sensitivity to sunitinib in renal cell carcinoma. Oncol. Lett. 17, 5175–5186 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Malouf, G. G., Joseph, R. W., Shah, A. Y. & Tannir, N. M. Non-clear cell renal cell carcinomas: biological insights and therapeutic challenges and opportunities. Clin. Adv. Hematol. Oncol. 15, 409–418 (2017).

    PubMed  Google Scholar 

  36. Blankenstein, T., Coulie, P. G., Gilboa, E. & Jaffee, E. M. The determinants of tumour immunogenicity. Nat. Rev. Cancer 12, 307–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirkwood, J. M. & Ernstoff, M. S. Interferons in the treatment of human cancer. J. Clin. Oncol. 2, 336–352 (1984).

    CAS  PubMed  Google Scholar 

  38. McDermott, D. F. Immunotherapy of metastatic renal cell carcinoma. Cancer 115, 2298–2305 (2009).

    CAS  PubMed  Google Scholar 

  39. Kopecky, O. et al. Phenotype analysis of tumour-infiltrating lymphocytes and lymphocytes in peripheral blood in patients with renal carcinoma. Acta Medica 50, 207–212 (2007).

    PubMed  Google Scholar 

  40. Komohara, Y. et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci. 102, 1424–1431 (2011).

    CAS  PubMed  Google Scholar 

  41. Nakano, O. et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 61, 5132–5136 (2001).

    CAS  PubMed  Google Scholar 

  42. Seliger, B. et al. Characterization of human lymphocyte antigen class I antigen-processing machinery defects in renal cell carcinoma lesions with special emphasis on transporter-associated with antigen-processing down-regulation. Clin. Cancer Res. 9, 1721–1727 (2003).

    CAS  PubMed  Google Scholar 

  43. Atkins, D., Ferrone, S., Schmahl, G. E., Storkel, S. & Seliger, B. Down-regulation of HLA class I antigen processing molecules: an immune escape mechanism of renal cell carcinoma? J. Urol. 171, 885–889 (2004).

    CAS  PubMed  Google Scholar 

  44. Dunker, K. et al. Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens 72, 137–148 (2008).

    CAS  PubMed  Google Scholar 

  45. Alegre, E. et al. Some basic aspects of HLA-G biology. J. Immunol. Res. 2014, 657625 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Kochan, G., Escors, D., Breckpot, K. & Guerrero-Setas, D. Role of non-classical MHC class I molecules in cancer immunosuppression. Oncoimmunology 2, e26491 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Kren, L. et al. HLA-G and HLA-E specific mRNAs connote opposite prognostic significance in renal cell carcinoma. Diagn. Pathol. 7, 58 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Seliger, B. et al. HLA-E expression and its clinical relevance in human renal cell carcinoma. Oncotarget 7, 67360–67372 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Zhang, S. et al. Immune infiltration in renal cell carcinoma. Cancer Sci. 110, 1564–1572 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Choueiri, T. K. et al. PD-L1 expression in nonclear-cell renal cell carcinoma. Ann. Oncol. 25, 2178–2184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749.e18 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Baine, M. K. et al. Characterization of tumor infiltrating lymphocytes in paired primary and metastatic renal cell carcinoma specimens. Oncotarget 6, 24990–25002 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Zhang, X. et al. Differential expression of TIM-3 between primary and metastatic sites in renal cell carcinoma. BMC Cancer 19, 49 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Porta, C. et al. Renal cell carcinoma-induced immunosuppression: an immunophenotypic study of lymphocyte subpopulations and circulating dendritic cells. Anticancer. Res. 27, 165–173 (2007).

    CAS  PubMed  Google Scholar 

  55. Remark, R. et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin. Cancer Res. 19, 4079–4091 (2013).

    CAS  PubMed  Google Scholar 

  56. Giraldo, N. A. et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin. Cancer Res. 21, 3031–3040 (2015).

    CAS  PubMed  Google Scholar 

  57. Finke, J. H. et al. Characterization of tumor-infiltrating lymphocyte subsets from human renal cell carcinoma: specific reactivity defined by cytotoxicity, interferon-gamma secretion, and proliferation. J. Immunother. Emphas. Tumor Immunol. 15, 91–104 (1994).

    CAS  Google Scholar 

  58. Finke, J. H. et al. Characterization of the cytolytic activity of CD4+ and CD8+ tumor-infiltrating lymphocytes in human renal cell carcinoma. Cancer Res. 50, 2363–2370 (1990).

    CAS  PubMed  Google Scholar 

  59. Schoof, D. D. et al. CD4+ T cell clones isolated from human renal cell carcinoma possess the functional characteristics of Th2 helper cells. Cell Immunol. 150, 114–123 (1993).

    CAS  PubMed  Google Scholar 

  60. Angevin, E., Kremer, F., Gaudin, C., Hercend, T. & Triebel, F. Analysis of T-cell immune response in renal cell carcinoma: polarization to type 1-like differentiation pattern, clonal T-cell expansion and tumor-specific cytotoxicity. Int. J. Cancer 72, 431–440 (1997).

    CAS  PubMed  Google Scholar 

  61. Giraldo, N. A. et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res. 23, 4416–4428 (2017).

    CAS  PubMed  Google Scholar 

  62. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  64. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    PubMed  Google Scholar 

  67. Khattri, R., Auger, J. A., Griffin, M. D., Sharpe, A. H. & Bluestone, J. A. Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol. 162, 5784–5791 (1999).

    CAS  PubMed  Google Scholar 

  68. Paterson, A. M. et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J. Exp. Med. 212, 1603–1621 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11 3887–3895 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    CAS  PubMed  Google Scholar 

  71. Chen, S. et al. Mechanisms regulating PD-L1 expression on tumor and immune cells. J. Immunother. Cancer 7, 305 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Barsoum, I. B., Smallwood, C. A., Siemens, D. R. & Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74, 665–674 (2014).

    CAS  PubMed  Google Scholar 

  74. Palsson-McDermott, E. M. et al. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front. Immunol. 8, 1300 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Zhang, C. et al. TFEB mediates immune evasion and resistance to mTOR inhibition of renal cell carcinoma via induction of PD-L1. Clin. Cancer Res. 25, 6827–6838 (2019).

    CAS  PubMed  Google Scholar 

  76. Lu, D. et al. Beyond T cells: understanding the role of PD-1/PD-L1 in tumor-associated macrophages. J. Immunol. Res. 2019, 1919082 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Tatsumi, T. et al. Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J. Exp. Med. 196, 619–628 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tatsumi, T. et al. MAGE-6 encodes HLA-DRbeta1*0401-presented epitopes recognized by CD4+ T cells from patients with melanoma or renal cell carcinoma. Clin. Cancer Res. 9, 947–954 (2003).

    CAS  PubMed  Google Scholar 

  79. Li, L. et al. Skewed T-helper (Th)1/2- and Th17/T regulatory cell balances in patients with renal cell carcinoma. Mol. Med. Rep. 11, 947–953 (2015).

    CAS  PubMed  Google Scholar 

  80. DeNardo, D. G. et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Cozar, J. M. et al. Analysis of NK cells and chemokine receptors in tumor infiltrating CD4 T lymphocytes in human renal carcinomas. Cancer Immunol. Immunother. 54, 858–866 (2005).

    CAS  PubMed  Google Scholar 

  83. Schleypen, J. S. et al. Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin. Cancer Res. 12, 718–725 (2006).

    CAS  PubMed  Google Scholar 

  84. Eckl, J. et al. Transcript signature predicts tissue NK cell content and defines renal cell carcinoma subgroups independent of TNM staging. J. Mol. Med. 90, 55–66 (2012).

    CAS  PubMed  Google Scholar 

  85. Donskov, F. et al. Intratumoural and peripheral blood lymphocyte subsets in patients with metastatic renal cell carcinoma undergoing interleukin-2 based immunotherapy: association to objective response and survival. Br. J. Cancer 87, 194–201 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Toliou, T., Stravoravdi, P., Polyzonis, M. & Vakalikos, J. Natural killer cell activation after interferon administration in patients with metastatic renal cell carcinoma: an ultrastructural and immunohistochemical study. Eur. Urol. 29, 252–256 (1996).

    CAS  PubMed  Google Scholar 

  87. Trotta, A. M. et al. Mutated von Hippel-Lindau-renal cell carcinoma (RCC) promotes patients specific natural killer (NK) cytotoxicity. J. Exp. Clin. Cancer Res. 37, 297 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    CAS  PubMed  Google Scholar 

  89. Soos, T. J. et al. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int. 70, 591–596 (2006).

    CAS  PubMed  Google Scholar 

  90. Toma, M. et al. Accumulation of tolerogenic human 6-sulfo LacNAc dendritic cells in renal cell carcinoma is associated with poor prognosis. Oncoimmunology 4, e1008342 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Hamada, I. et al. Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer. Res. 22, 4281–4284 (2002).

    PubMed  Google Scholar 

  92. Toge, H., Inagaki, T., Kojimoto, Y., Shinka, T. & Hara, I. Angiogenesis in renal cell carcinoma: the role of tumor-associated macrophages. Int. J. Urol. 16, 801–807 (2009).

    CAS  PubMed  Google Scholar 

  93. Kovaleva, O. V., Samoilova, D. V., Shitova, M. S. & Gratchev, A. Tumor associated macrophages in kidney cancer. Anal. Cell Pathol. 2016, 9307549 (2016).

    Google Scholar 

  94. Roumenina, L. T. et al. Tumor cells hijack macrophage-produced complement C1q to promote tumor growth. Cancer Immunol. Res. 7, 1091–1105 (2019).

    CAS  PubMed  Google Scholar 

  95. Ko, J. S. et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 70, 3526–3536 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

    CAS  PubMed  Google Scholar 

  97. Najjar, Y. G. et al. Myeloid-derived suppressor cell subset accumulation in renal cell carcinoma parenchyma is associated with intratumoral expression of IL1β, IL8, CXCL5, and Mip-1α. Clin. Cancer Res. 23, 2346–2355 (2017).

    CAS  PubMed  Google Scholar 

  98. Diaz-Montero, C. M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).

    CAS  PubMed  Google Scholar 

  99. Peranzoni, E. et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol. 22, 238–244 (2010).

    CAS  PubMed  Google Scholar 

  100. Tannenbaum, C. S. et al. Mediators of inflammation-driven expansion, trafficking, and function of tumor-infiltrating MDSCs. Cancer Immunol. Res. 7, 1687–1699 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Feng, S. et al. Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers. Proc. Natl Acad. Sci. USA 115, 10094–10099 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Najjar, Y. G. & Finke, J. H. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front. Oncol. 3, 49 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Finke, J. et al. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int. Immunopharmacol. 11, 856–861 (2011).

    CAS  PubMed  Google Scholar 

  104. Corzo, C. A. et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182, 5693–5701 (2009).

    CAS  PubMed  Google Scholar 

  105. Serafini, P., Mgebroff, S., Noonan, K. & Borrello, I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 68, 5439–5449 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rodriguez, P. C. et al. Regulation of T cell receptor CD3ζ chain expression by L-arginine. J. Biol. Chem. 277, 21123–21129 (2002).

    CAS  PubMed  Google Scholar 

  108. Rodriguez, P. C. & Ochoa, A. C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol. Rev. 222, 180–191 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ostrand-Rosenberg, S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol. Immunother. 59, 1593–1600 (2010).

    PubMed  PubMed Central  Google Scholar 

  110. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Condamine, T., Ramachandran, I., Youn, J. I. & Gabrilovich, D. I. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu. Rev. Med. 66, 97–110 (2015).

    CAS  PubMed  Google Scholar 

  112. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  113. Shalapour, S. & Karin, M. Immunity, inflammation, and cancer: an eternal fight between good and evil. J. Clin. Invest. 125, 3347–3355 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Petrella, B. L. & Vincenti, M. P. Interleukin-1β mediates metalloproteinase-dependent renal cell carcinoma tumor cell invasion through the activation of CCAAT enhancer binding protein β. Cancer Med. 1, 17–27 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chittezhath, M. et al. Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression. Immunity 41, 815–829 (2014).

    CAS  PubMed  Google Scholar 

  116. Kaminska, K., Czarnecka, A. M., Escudier, B., Lian, F. & Szczylik, C. Interleukin-6 as an emerging regulator of renal cell cancer. Urol. Oncol. 33, 476–485 (2015).

    CAS  PubMed  Google Scholar 

  117. Fu, Q. et al. Prognostic value of interleukin-6 and interleukin-6 receptor in organ-confined clear-cell renal cell carcinoma: a 5-year conditional cancer-specific survival analysis. Br. J. Cancer 113, 1581–1589 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Harrison, M. L. et al. Tumor necrosis factor α as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J. Clin. Oncol. 25, 4542–4549 (2007).

    CAS  PubMed  Google Scholar 

  119. Ho, M. Y. et al. TNF-α induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3β-dependent mechanism. Mol. Cancer Res. 10, 1109–1119 (2012).

    CAS  PubMed  Google Scholar 

  120. Sun, K. H. et al. TNF-α augments CXCR2 and CXCR3 to promote progression of renal cell carcinoma. J. Cell Mol. Med. 20, 2020–2028 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed  Google Scholar 

  122. Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

    CAS  PubMed  Google Scholar 

  123. Triner, D. & Shah, Y. M. Hypoxia-inducible factors: a central link between inflammation and cancer. J. Clin. Invest. 126, 3689–3698 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free. Radic. Biol. Med. 49, 1603–1616 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, Y., Patel, S. P., Roszik, J. & Qin, Y. Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front. Immunol. 9, 1591 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Fahey, E. & Doyle, S. L. IL-1 family cytokine regulation of vascular permeability and angiogenesis. Front. Immunol. 10, 1426 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim, J. Regulation of immune cell functions by metabolic reprogramming. J. Immunol. Res. 2018, 8605471 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Li, H. et al. Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat. Commun. 10, 4346 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. Lameirinhas, A., Miranda-Goncalves, V., Henrique, R. & Jeronimo, C. The complex interplay between metabolic reprogramming and epigenetic alterations in renal cell carcinoma. Genes 10, 264 (2019).

    CAS  PubMed Central  Google Scholar 

  132. Wettersten, H. I. et al. Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res. 75, 2541–2552 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lucarelli, G. et al. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urol. Oncol. 35, 461.e15–461.e27 (2017).

    CAS  Google Scholar 

  134. Li, L. & Kaelin, W. G. Jr New insights into the biology of renal cell carcinoma. Hematol. Oncol. Clin. North. Am. 25, 667–686 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    CAS  PubMed  Google Scholar 

  137. Yang, J. C. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30, 825–830 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hammers, H. J. et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J. Clin. Oncol. 35, 3851–3858 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cella, D. et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. Lancet Oncol. 20, 297–310 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Motzer, R. J. et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J. Clin. Oncol. 33, 1430–1437 (2015).

    CAS  PubMed  Google Scholar 

  144. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Choueiri, T. K. et al. Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma. Clin. Cancer Res. 22, 5461–5471 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. McDermott, D. F. et al. Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma (accRCC): results from cohort A of KEYNOTE-427 [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 4500 (2018).

    Google Scholar 

  147. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Vaishampayan, U. et al. Avelumab monotherapy as first-line or second-line treatment in patients with metastatic renal cell carcinoma: phase Ib results from the JAVELIN Solid Tumor trial. J. Immunother. Cancer 7, 275 (2019).

    PubMed  PubMed Central  Google Scholar 

  149. Takyar, S., Diaz, J., Sehgal, M., Sapunar, F. & Pandha, H. First-line therapy for treatment-naive patients with advanced/metastatic renal cell carcinoma: a systematic review of published randomized controlled trials. Anticancer Drugs 27, 383–397 (2016).

    CAS  PubMed  Google Scholar 

  150. Duran, I. et al. Resistance to targeted therapies in renal cancer: the importance of changing the mechanism of action. Target. Oncol. 12, 19–35 (2017).

    CAS  PubMed  Google Scholar 

  151. Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    CAS  PubMed  Google Scholar 

  152. Yang, J., Yan, J. & Liu, B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol. 9, 978 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Escudier, B. et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370, 2103–2111 (2007).

    PubMed  Google Scholar 

  154. Rini, B. I. et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 2137–2143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Considine, B. & Hurwitz, M. E. Current status and future directions of immunotherapy in renal cell carcinoma. Curr. Oncol. Rep. 21, 34 (2019).

    PubMed  Google Scholar 

  156. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    CAS  PubMed  Google Scholar 

  158. de Velasco, G. et al. Comprehensive analysis of survival outcomes in non-clear cell renal cell carcinoma patients treated in clinical trials. Clin. Genitourin. Cancer 15, 652–660.e1 (2017).

    PubMed  Google Scholar 

  159. Koshkin, V. S. et al. Clinical activity of nivolumab in patients with non-clear cell renal cell carcinoma. J. Immunother. Cancer 6, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  160. McKay, R. R. et al. The clinical activity of PD-1/PD-L1 inhibitors in metastatic non-clear cell renal cell carcinoma. Cancer Immunol. Res. 6, 758–765 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Lee, J.-L. et al. KEYNOTE-427 cohort B: first-line pembrolizumab (pembro) monotherapy for advanced non‒clear cell renal cell carcinoma (NCC-RCC) [abstract]. J. Clin. Oncol. 37(Suppl. 15), 4569 (2019).

    Google Scholar 

  162. Ravaud, A. et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N. Engl. J. Med. 375, 2246–2254 (2016).

    CAS  PubMed  Google Scholar 

  163. Wang, J. et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 25, 656–666 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03665285 (2019).

  165. Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).

    CAS  PubMed  Google Scholar 

  166. Basu, A., Yearley, J. H., Annamalai, L., Pryzbycin, C. & Rini, B. Association of PD-L1, PD-L2, and immune response markers in matched renal clear cell carcinoma primary and metastatic tissue specimens. Am. J. Clin. Pathol. 151, 217–225 (2019).

    CAS  PubMed  Google Scholar 

  167. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  168. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Lemery, S., Keegan, P., Pazdur, R. & First, F. D. A. Approval agnostic of cancer site – when a biomarker defines the indication. N. Engl. J. Med. 377, 1409–1412 (2017).

    PubMed  Google Scholar 

  172. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    CAS  PubMed  Google Scholar 

  173. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    CAS  PubMed  Google Scholar 

  175. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Rini., B. et al. Molecular correlates differentiate response to atezolizumab (atezo) + bevacizumab (bev) vs sunitinib (sun): results from a phase III study (IMmotion151) in untreated metastatic renal cell carcinoma (mRCC) [abstract]. Ann. Oncol. 29, viii724–viii725 (2018).

    Google Scholar 

  177. Kim, H. Y. et al. Discovery of potential biomarkers in human melanoma cells with different metastatic potential by metabolic and lipidomic profiling. Sci. Rep. 7, 8864 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Tanimine, N., Turka, L. A. & Priyadharshini, B. Navigating T-cell immunometabolism in transplant. Transplantation 102, 230–239 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Mock, A. et al. Serum very long-chain fatty acid-containing lipids predict response to immune checkpoint inhibitors in urological cancers. Cancer Immunol. Immunother. 68, 2005–2014 (2019).

    CAS  PubMed  Google Scholar 

  180. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  PubMed  Google Scholar 

  181. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8, 299–308 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Rosenberg, S. A. et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J. Natl Cancer Inst. 85, 622–632 (1993).

    CAS  PubMed  Google Scholar 

  183. Figlin, R. A. et al. Multicenter, randomized, phase III trial of CD8(+) tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J. Clin. Oncol. 17, 2521–2529 (1999).

    CAS  PubMed  Google Scholar 

  184. Andersen, R. et al. T-cell responses in the microenvironment of primary renal cell carcinoma–implications for adoptive cell therapy. Cancer Immunol. Res. 6, 222–235 (2018).

    CAS  PubMed  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02830724 (2020).

  186. Shaffer, D. R. et al. T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies. Blood 117, 4304–4314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Li, H. et al. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis. 9, 177 (2018).

    PubMed  PubMed Central  Google Scholar 

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03618381 (2020).

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03696030 (2020).

  190. Zhang, J. & Wang, L. The emerging world of TCR-T cell trials against cancer: a systematic review. Technol. Cancer Res. Treat. 18, 1533033819831068 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Habif, G., Crinier, A., Andre, P., Vivier, E. & Narni-Mancinelli, E. Targeting natural killer cells in solid tumors. Cell Mol. Immunol. 16, 415–422 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Burger, M. C. et al. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy. Front. Immunol. 10, 2683 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhang, Q. et al. Synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells in renal cell carcinoma. J. Immunol. Res. 2017, 6915912 (2017).

    PubMed  PubMed Central  Google Scholar 

  194. Boissel, L. et al. Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. Oncoimmunology 2, e26527 (2013).

    PubMed  PubMed Central  Google Scholar 

  195. Romanski, A. et al. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J. Cell Mol. Med. 20, 1287–1294 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    PubMed  Google Scholar 

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02811861 (2020).

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03141177 (2020).

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03055013 (2020).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03138512 (2020).

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03142334 (2020).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03024996 (2020).

Download references

Acknowledgements

The work of J.H.F. is supported by NIH grant R01 CA168488. The work of C.M.D.-M. is supported by NIH grant R21 CA188767.

Author information

Authors and Affiliations

Authors

Contributions

C.M.D.-M. and J.H.F researched the data for the article. C.M.D.-M. and B.I.R. made substantial contributions to discussions of the content. All authors wrote the article and edited or reviewed the manuscript before submission.

Corresponding authors

Correspondence to C. Marcela Díaz-Montero or James H. Finke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks J. Bedke, W. Fridman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Type 2 T helper

A subset of CD4+ T cells that promotes innate immune responses, particularly antibody production.

Type 1 T helper

A subset of CD4+ T cells that mediates cellular immune responses.

Objective response rate

The proportion of patients with a reduction in tumour size of a predefined amount and for a minimum time period.

Microsatellite instability

(MSI). A predisposition to mutation owing to deficient mismatch repair.

Deficient mismatch repair

(dMMR). Loss of function of the mismatch repair pathway, which corrects DNA mismatches generated during DNA replication and thus prevents mutations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Montero, C.M., Rini, B.I. & Finke, J.H. The immunology of renal cell carcinoma. Nat Rev Nephrol 16, 721–735 (2020). https://doi.org/10.1038/s41581-020-0316-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0316-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing