Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant-based diets to manage the risks and complications of chronic kidney disease

Abstract

Traditional dietary recommendations for patients with chronic kidney disease (CKD) focus on the quantity of nutrients consumed. Without appropriate dietary counselling, these restrictions can result in a low intake of fruits and vegetables and a lack of diversity in the diet. Plant nutrients and plant-based diets could have beneficial effects in patients with CKD: increased fibre intake shifts the gut microbiota towards reduced production of uraemic toxins; plant fats, particularly olive oil, have anti-atherogenic effects; plant anions might mitigate metabolic acidosis and slow CKD progression; and as plant phosphorus has a lower bioavailability than animal phosphorus, plant-based diets might enable better control of hyperphosphataemia. Current evidence suggests that promoting the adoption of plant-based diets has few risks but potential benefits for the primary prevention of CKD, as well as for delaying progression in patients with CKD G3–5. These diets might also help to manage and prevent some of the symptoms and metabolic complications of CKD. We suggest that restriction of plant foods as a strategy to prevent hyperkalaemia or undernutrition should be individualized to avoid depriving patients with CKD of these potential beneficial effects of plant-based diets. However, research is needed to address knowledge gaps, particularly regarding the relevance and extent of diet-induced hyperkalaemia in patients undergoing dialysis.

Key points

  • The idea that animal protein has ‘high biological value’ is not relevant in the context of a mixed diet and is not an a priori reason to consider plant protein inferior to animal protein for people with or without chronic kidney disease (CKD).

  • Plants are the only dietary source of fibre, which shifts the gut microbiota profile towards increased production of anti-inflammatory compounds and reduced production of uraemic toxins.

  • Plant fats, particularly olive oil, are anti-inflammatory and anti-atherogenic.

  • Plant-based diets have low net endogenous acid load, which could mitigate metabolic acidosis in patients with CKD and potentially slow the progression of kidney disease.

  • Plant phosphorus is bound to phytate and is less bioavailable than animal phosphorus; consequently, many plant-based foods have a favourable protein to phosphorus ratio.

  • Restriction of plant foods as a strategy to prevent hyperkalaemia deprives patients with CKD of the potential beneficial effects of these foods; plants with low potassium content provide choice for those who need to restrict their potassium intake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effects of animal proteins and fibre on the gut microbiota and uraemic milieu in chronic kidney disease.
Fig. 2: Plant food intake and acid-base homeostasis in people with low glomerular filtration rate.

Similar content being viewed by others

References

  1. Kopple, J., Massry, S. & Kalantar-Zadeh, K. Nutritional Management of Renal Disease. 3rd edn, 1–48 (Lippincott Williams & Wilkins, 2012).

  2. de Wardener, H. E. The control of sodium excretion. Am. J. Physiol. 235, F163–F173 (1978).

    PubMed  Google Scholar 

  3. Weiner, I. D., Mitch, W. E. & Sands, J. M. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol. 10, 1444–1458 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Triplitt, C. L. Understanding the kidneys’ role in blood glucose regulation. Am. J. Manag. Care 18, S11–S16 (2012).

    PubMed  Google Scholar 

  5. Gerich, J. E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet. Med. 27, 136–142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weiner, I. D. & Verlander, J. W. Renal ammonia metabolism and transport. Compr. Physiol. 3, 201–220 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Maack, T., Johnson, V., Kau, S. T., Figueiredo, J. & Sigulem, D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int. 16, 251–270 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Waldmann, T. A., Strober, W. & Mogielnicki, R. P. The renal handling of low molecular weight proteins. II. Disorders of serum protein catabolism in patients with tubular proteinuria, the nephrotic syndrome, or uremia. J. Clin. Invest. 51, 2162–2174 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Badr, W. & Martin, K. J. Vitamin D and kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1555–1560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kopple, J. D. National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 37, S66–S70 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Fouque, D. et al. EBPG guideline on nutrition. Nephrol. Dial. Transplant. 22 (Suppl 2), ii45–ii87 (2007).

    PubMed  Google Scholar 

  12. Cupisti, A. et al. Nutritional treatment of advanced CKD: twenty consensus statements. J. Nephrol. 31, 457–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campbell, K. L. & Carrero, J. J. Diet for the management of patients with chronic kidney disease; it is not the quantity, but the quality that matters. J. Ren. Nutr. 26, 279–281 (2016).

    Article  PubMed  Google Scholar 

  14. Fernandes, A. S., Ramos, C. I., Nerbass, F. B. & Cuppari, L. Diet quality of chronic kidney disease patients and the impact of nutritional counseling. J. Ren. Nutr. 28, 403–410 (2018).

    Article  PubMed  Google Scholar 

  15. Martins, A. M. et al. Elderly patients on hemodialysis have worse dietary quality and higher consumption of ultraprocessed food than elderly without chronic kidney disease. Nutrition 41, 73–79 (2017).

    Article  PubMed  Google Scholar 

  16. Luis, D. et al. Dietary quality and adherence to dietary recommendations in patients undergoing hemodialysis. J. Ren. Nutr. 26, 190–195 (2016).

    Article  PubMed  Google Scholar 

  17. Therrien, M., Byham-Gray, L., Denmark, R. & Beto, J. Comparison of dietary intake among women on maintenance dialysis to a Women’s Health Initiative cohort: results from the NKF-CRN second national research question collaborative study. J. Ren. Nutr. 24, 72–80 (2014).

    Article  PubMed  Google Scholar 

  18. Williams, K. A. Sr. & Patel, H. Healthy plant-based diet: what does it really mean? J. Am. Coll. Cardiol. 70, 423–425 (2017).

    Article  PubMed  Google Scholar 

  19. Muraki, I. et al. Potato consumption and risk of type 2 diabetes: results from three prospective cohort studies. Diabetes Care 39, 376–384 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, Q. et al. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern. Med. 174, 516–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Biological value http://www.wikidoc.org/index.php/Biological_value (2002)

  22. [No author]. Nitrogen retention in man in relation to the level and pattern of essential amino acids. Nutr. Rev. 27, 111–113 (1969).

  23. WHO/FAO/ONU. Protein and amino acid requirements in human nutrition: report of a joint WHO/FAO/ONU Expert Consultation (2007).

  24. Chan, M., Kelly, J. & Tapsell, L. Dietary modeling of foods for advanced CKD based on general healthy eating guidelines: what should be on the plate? Am. J. Kidney Dis. 69, 436–450 (2017).

    Article  PubMed  Google Scholar 

  25. Millward, D. J. Identifying recommended dietary allowances for protein and amino acids: a critique of the 2007 WHO/FAO/UNU report. Br. J. Nutr. 108 (Suppl 2), S3–S21 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Rand, W. M., Pellett, P. L. & Young, V. R. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am. J. Clin. Nutr. 77, 109–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Millward, D. J. The nutritional value of plant-based diets in relation to human amino acid and protein requirements. Proc. Nutr. Soc. 58, 249–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Young, V. R. & Pellett, P. L. Plant proteins in relation to human protein and amino acid nutrition. Am. J. Clin. Nutr. 59, 1203s–1212s (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Oosterwijk, M. M. et al. High dietary intake of vegetable protein is associated with lower prevalence of renal function impairment: results of the Dutch DIALECT-1 cohort. Kidney Int. Rep. 4, 710–719 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Haring, B. et al. Dietary protein sources and risk for incident chronic kidney disease: results from the atherosclerosis risk in communities (ARIC) study. J. Renal Nutr. 27, 233–242 (2017).

    Article  CAS  Google Scholar 

  31. Chen, X. et al. The associations of plant protein intake with all-cause mortality in CKD. Am. J. Kidney Dis. 67, 423–430 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Kelly, J. T. & Carrero, J. J. Dietary sources of protein and chronic kidney disease progression: the proof may be in the pattern. J. Ren. Nutr. 27, 221–224 (2017).

    Article  PubMed  Google Scholar 

  33. Frigolet, M. E., Torres, N. & Tovar, A. R. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats. Br. J. Nutr. 107, 36–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Iwasaki, K. et al. The influence of dietary protein source on longevity and age-related disease processes of Fischer rats. J. Gerontol. 43, B5–B12 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura, H., Ito, S., Ebe, N. & Shibata, A. Renal effects of different types of protein in healthy volunteer subjects and diabetic patients. Diabetes Care 16, 1071–1075 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Woods, L. L. Mechanisms of renal hemodynamic regulation in response to protein feeding. Kidney Int. 44, 659–675 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Kontessis, P. et al. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 38, 136–144 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Kontessis, P. A. et al. Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients. Diabetes Care 18, 1233 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Johnson, R. J. et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 86, 899–906 (2007).

    CAS  PubMed  Google Scholar 

  40. Medicine Institute. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty acids, Cholesterol, Protein and Amino acids (Institute of Medicine, 2002).

  41. Bozzetto, L. et al. Dietary fibre as a unifying remedy for the whole spectrum of obesity-associated cardiovascular risk. Nutrients 10, 943 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  42. Anderson, J. W. et al. Postprandial serum glucose, insulin, and lipoprotein responses to high- and low-fiber diets. Metabolism 44, 848–854 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Stephen, A. M. & Cummings, J. H. Mechanism of action of dietary fibre in the human colon. Nature 284, 283–284 (1980).

    Article  CAS  PubMed  Google Scholar 

  44. Chiavaroli, L., Mirrahimi, A., Sievenpiper, J. L., Jenkins, D. J. & Darling, P. B. Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 69, 761–768 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Diaz-Lopez, A. et al. Cross-sectional associations between macronutrient intake and chronic kidney disease in a population at high cardiovascular risk. Clin. Nutr. 32, 606–612 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, H. et al. Dietary fiber, kidney function, inflammation, and mortality risk. Clin. J. Am. Soc. Nephrol. 9, 2104–2110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gopinath, B. et al. Carbohydrate nutrition is associated with the 5-year incidence of chronic kidney disease. J. Nutr. 141, 433–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Fujii, H. et al. Impact of dietary fiber intake on glycemic control, cardiovascular risk factors and chronic kidney disease in Japanese patients with type 2 diabetes mellitus: the Fukuoka diabetes registry. Nutr. J. 12, 159 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Krishnamurthy, V. M. et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 81, 300–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Erthal Leinig, C. et al. Low-fiber intake is associated with high production of intraperitoneal inflammation biomarkers. J. Ren. Nutr. 29, 322–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Demirci, B. G., Tutal, E., Eminsoy, I. O., Kulah, E. & Sezer, S. Dietary fiber intake: its relation with glycation end products and arterial stiffness in end-stage renal disease patients. J. Ren. Nutr. 29, 136–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, A. Y. et al. Dietary fiber intake, myocardial injury, and major adverse cardiovascular events among end-stage kidney disease patients: a prospective cohort study. Kidney Int. Rep. 4, 814–823 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xu, X., Li, Z., Chen, Y., Liu, X. & Dong, J. Dietary fiber and mortality risk in patients on peritoneal dialysis. Br J Nutr 122, 996–1005 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Noori, N. et al. Dietary intakes of fiber and magnesium and incidence of metabolic syndrome in first year after renal transplantation. J. Ren. Nutr. 20, 101–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Sirich, T. L., Plummer, N. S., Gardner, C. D., Hostetter, T. H. & Meyer, T. W. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 9, 1603–1610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xie, L. M., Ge, Y. Y., Huang, X., Zhang, Y. Q. & Li, J. X. Effects of fermentable dietary fiber supplementation on oxidative and inflammatory status in hemodialysis patients. Int. J. Clin. Exp. Med. 8, 1363–1369 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Salmean, Y. A., Segal, M. S., Palii, S. P. & Dahl, W. J. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J. Ren. Nutr. 25, 316–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Salmean, Y. A. et al. Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J. Ren. Nutr. 23, e29–e32 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. De Filippis, F. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65, 1812–1821 (2016).

    Article  PubMed  CAS  Google Scholar 

  60. Mitsou, E. K. et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br. J. Nutr. 117, 1645–1655 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Garcia-Mantrana, I., Selma-Royo, M., Alcantara, C. & Collado, M. C. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol. 9, 890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Duranton, F. et al. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 23, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Niwa, T. Role of indoxyl sulfate in the progression of chronic kidney disease and cardiovascular disease: experimental and clinical effects of oral sorbent AST-120. Ther. Apher. Dial. 15, 120–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Rossi, M. et al. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr. Metab. Cardiovasc. Dis. 25, 860–865 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Xu, H. et al. Excess protein intake relative to fiber and cardiovascular events in elderly men with chronic kidney disease. Nutr. Metab. Cardiovasc. Dis. 26, 597–602 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Ferdowsian, H. R. & Barnard, N. D. Effects of plant-based diets on plasma lipids. Am. J. Cardiol. 104, 947–956 (2009).

    Article  PubMed  CAS  Google Scholar 

  67. Tonstad, S., Butler, T., Yan, R. & Fraser, G. E. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32, 791–796 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Severson, T., Kris-Etherton, P. M., Robinson, J. G. & Guyton, J. R. Roundtable discussion: dietary fats in prevention of atherosclerotic cardiovascular disease. J. Clin. Lipidol. 12, 574–582 (2018).

    Article  PubMed  Google Scholar 

  69. Huang, X., Lindholm, B., Stenvinkel, P. & Carrero, J. J. Dietary fat modification in patients with chronic kidney disease: n-3 fatty acids and beyond. J. Nephrol. 26, 960–974 (2013).

    Article  PubMed  CAS  Google Scholar 

  70. Sales-Campos, H., Souza, P. R., Peghini, B. C., da Silva, J. S. & Cardoso, C. R. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 13, 201–210 (2013).

    CAS  PubMed  Google Scholar 

  71. Massaro, M. & De Caterina, R. Vasculoprotective effects of oleic acid: epidemiological background and direct vascular antiatherogenic properties. Nutr. Metab. Cardiovasc. Dis. 12, 42–51 (2002).

    CAS  PubMed  Google Scholar 

  72. Dos Santos, A. L. T. et al. Low linolenic and linoleic acid consumption are associated with chronic kidney disease in patients with type 2 diabetes. PLoS One 13, e0195249 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Huang, X. et al. Serum fatty acid patterns, insulin sensitivity and the metabolic syndrome in individuals with chronic kidney disease. J. Intern. Med. 275, 71–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Huang, X. et al. Essential polyunsaturated fatty acids, inflammation and mortality in dialysis patients. Nephrol. Dial. Transplant. 27, 3615–3620 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Lin, J. et al. Associations of dietary fat with albuminuria and kidney dysfunction. Am. J. Clin. Nutr. 92, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, X. et al. Clinical determinants and mortality predictability of stearoyl-CoA desaturase-1 activity indices in dialysis patients. J. Intern. Med. 273, 263–272 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Lin, J., Hu, F. B. & Curhan, G. C. Associations of diet with albuminuria and kidney function decline. Clin. J. Am. Soc. Nephrol. 5, 836–843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wesson, D. E. Endogenous endothelins mediate increased acidification in remnant kidneys. J. Am. Soc. Nephrol. 12, 1826–1835 (2001).

    CAS  PubMed  Google Scholar 

  79. Wesson, D. E. & Simoni, J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 78, 1128–1135 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Nath, K. A., Hostetter, M. K. & Hostetter, T. H. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J. Clin. Invest. 76, 667–675 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yuan, Y. et al. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: long-term effect of temperature. Bioresour. Technol. 211, 685–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xu, C., Cheng, C., Zhang, X. & Peng, J. Inclusion of soluble fiber in the gestation diet changes the gut microbiota, affects plasma propionate and odd-chain fatty acids levels, and improves insulin sensitivity in sows. Int. J. Mol. Sci. 21, 635 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  84. Sakata, T. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br. J. Nutr. 58, 95–103 (1987).

    Article  CAS  PubMed  Google Scholar 

  85. Esgalhado, M., Kemp, J. A., Rt Damasceno, N., Fouque, D. & Mafra, D. Short-chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease. Future Microbiol. 12, 1413–1425 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Banerjee, T. et al. Dietary acid load and chronic kidney disease among adults in the United States. BMC Nephrol. 15, 137 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ko, B. J. et al. Dietary acid load and chronic kidney disease in elderly adults: protein and potassium intake. PLoS One 12, e0185069 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Rebholz, C. M. et al. Dietary acid load and incident chronic kidney disease: results from the ARIC study. Am. J. Nephrol. 42, 427–435 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Banerjee, T. et al. Dietary potential renal acid load and risk of albuminuria and reduced kidney function in the Jackson heart study. J. Ren. Nutr. 28, 251–258 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Kanda, E., Ai, M., Kuriyama, R., Yoshida, M. & Shiigai, T. Dietary acid intake and kidney disease progression in the elderly. Am. J. Nephrol. 39, 145–152 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Banerjee, T. et al. High dietary acid load predicts ESRD among adults with CKD. J. Am. Soc. Nephrol. 26, 1693–1700 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Scialla, J. J. et al. Net endogenous acid production is associated with a faster decline in GFR in African Americans. Kidney Int. 82, 106–112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Crews, D. C. et al. Race/ethnicity, dietary acid load, and risk of end-stage renal disease among US adults with chronic kidney disease. Am. J. Nephrol. 47, 174–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Scialla, J. J. et al. Higher net acid excretion is associated with a lower risk of kidney disease progression in patients with diabetes. Kidney Int. 91, 204–215 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Khairallah, P. et al. Acid load and phosphorus homeostasis in CKD. Am. J. Kidney Dis. 70, 541–550 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Passey, C. Reducing the dietary acid load: how a more alkaline diet benefits patients with chronic kidney disease. J. Ren. Nutr. 27, 151–160 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Glew, R. H. et al. Nephropathy in dietary hyperoxaluria: a potentially preventable acute or chronic kidney disease. World J. Nephrol. 3, 122–142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Karp, H. J., Vaihia, K. P., Karkkainen, M. U., Niemisto, M. J. & Lamberg-Allardt, C. J. Acute effects of different phosphorus sources on calcium and bone metabolism in young women: a whole-foods approach. Calcif. Tissue Int. 80, 251–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Janmaat, C. J. et al. Lower serum calcium is independently associated with CKD progression. Sci. Rep. 8, 5148 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. KDOQI. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 42, S1–201 (2003).

    Google Scholar 

  101. KDIGO. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 7, 1–59 (2017).

    Article  Google Scholar 

  102. Ketteler, M. et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 92, 26–36 (2017).

    Article  PubMed  Google Scholar 

  103. Moe, S. M. et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 257–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Moorthi, R. N. et al. The effect of a diet containing 70% protein from plants on mineral metabolism and musculoskeletal health in chronic kidney disease. Am. J. Nephrol. 40, 582–591 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Scialla, J. J. et al. Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: the chronic renal insufficiency cohort study. J. Ren. Nutr. 22, 379–388.e371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Macdonald-Clarke, C. J. et al. Bioavailability of potassium from potatoes and potassium gluconate: a randomized dose response trial. Am. J. Clin. Nutr. 104, 346–353 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Holbrook, J. T. et al. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 40, 786–793 (1984).

    Article  CAS  PubMed  Google Scholar 

  108. Bechgaard, H. & Shephard, N. W. Bioavailability of potassium from controlled-release tablets with and without water loading. Eur. J. Clin. Pharmacol. 21, 143–147 (1981).

    Article  CAS  PubMed  Google Scholar 

  109. Betlach, C. J., Arnold, J. D., Frost, R. W., Leese, P. T. & Gonzalez, M. A. Bioavailability and pharmacokinetics of a new sustained-release potassium chloride tablet. Pharm. Res. 4, 409–411 (1987).

    Article  CAS  PubMed  Google Scholar 

  110. Prajapati, K. & Modi, H. A. The importance of potassium in plant growth — a review. Indian. J. Plant. Sci. 1, 177–186 (2012).

    Google Scholar 

  111. St-Jules, D. E., Goldfarb, D. S. & Sevick, M. A. Nutrient non-equivalence: does restricting high-potassium plant foods help to prevent hyperkalemia in hemodialysis patients? J. Ren. Nutr. 26, 282–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Palmer, S. C. et al. Dietary and fluid restrictions in CKD: a thematic synthesis of patient views from qualitative studies. Am. J. Kidney Dis. 65, 559–573 (2015).

    Article  PubMed  Google Scholar 

  113. Carlisle, E. J. et al. Modulation of the secretion of potassium by accompanying anions in humans. Kidney Int. 39, 1206–1212 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Cupisti, A., Kovesdy, C. P., D’Alessandro, C. & Kalantar-Zadeh, K. Dietary approach to recurrent or chronic hyperkalaemia in patients with decreased kidney function. Nutrients 10, 261 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  115. Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Naismith, D. J. & Braschi, A. An investigation into the bioaccessibility of potassium in unprocessed fruits and vegetables. Int. J. Food Sci. Nutr. 59, 438–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Birukov, A. et al. Ultra-long-term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion. Am. J. Clin. Nutr. 104, 49–57 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gritter, M. et al. Rationale and design of a randomized placebo-controlled clinical trial assessing the renoprotective effects of potassium supplementation in chronic kidney disease. Nephron 140, 48–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. He, J. et al. Urinary sodium and potassium excretion and CKD progression. J. Am. Soc. Nephrol. 27, 1202–1212 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Kim, H. W. et al. Urinary potassium excretion and progression of CKD. Clin. J. Am. Soc. Nephrol. 14, 330–340 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Leonberg-Yoo, A. K., Tighiouart, H., Levey, A. S., Beck, G. J. & Sarnak, M. J. Urine potassium excretion, kidney failure, and mortality in CKD. Am. J. Kidney Dis. 69, 341–349 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Arnold, R. et al. Randomized, controlled trial of the effect of dietary potassium restriction on nerve function in CKD. Clin. J. Am. Soc. Nephrol. 12, 1569–1577 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Noori, N. et al. Dietary potassium intake and mortality in long-term hemodialysis patients. Am. J. Kidney Dis. 56, 338–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eisenga, M. F. et al. Urinary potassium excretion, renal ammoniagenesis, and risk of graft failure and mortality in renal transplant recipients. Am. J. Clin. Nutr. 104, 1703–1711 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Tepel, M., van der Giet, M., Statz, M., Jankowski, J. & Zidek, W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 107, 992–995 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Scholze, A. et al. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure. Circulation 109, 369–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Holden, R. M., Ki, V., Morton, A. R. & Clase, C. Fat-soluble vitamins in advanced CKD/ESKD: a review. Semin. Dial. 25, 334–343 (2012).

    Article  PubMed  Google Scholar 

  128. Clase, C. M., Ki, V. & Holden, R. M. Water-soluble vitamins in people with low glomerular filtration rate or on dialysis: a review. Semin. Dial. 26, 546–567 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Silaghi, C. N. et al. Vitamin K dependent proteins in kidney disease. Int. J. Mol. Sci. 20, 1571 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  130. Cozzolino, M. et al. Vitamin K in chronic kidney disease. Nutrients 10, 1076 (2019).

    Google Scholar 

  131. Zeraatkar, D. et al. Red and processed meat consumption and risk for all-cause mortality and cardiometabolic outcomes: a systematic review and meta-analysis of cohort studies. Ann. Intern. Med. https://doi.org/10.7326/m19-0655 (2019).

    Article  PubMed  Google Scholar 

  132. Johnston, B. C. et al. Unprocessed red meat and processed meat consumption: dietary guideline recommendations from the nutritional recommendations (NutriRECS) consortium. Ann. Intern. Med. https://doi.org/10.7326/m19-1621 (2019).

    Article  PubMed  Google Scholar 

  133. Neuhouser, M. L. Red and processed meat: more with less? Am. J. Clin. Nutr. 111, 252–255 (2019).

    Article  Google Scholar 

  134. Qian, F., Riddle, M. C., Wylie-Rosett, J. & Hu, F. B. Red and processed meats and health risks: how strong is the evidence? Diabetes Care 43, 265–271 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Jhee, J. H. et al. A diet rich in vegetables and fruit and incident CKD: a community-based prospective cohort study. Am. J. Kidney Dis. 74, 491–500 (2019).

    Article  PubMed  Google Scholar 

  136. Dunkler, D. et al. Dietary risk factors for incidence or progression of chronic kidney disease in individuals with type 2 diabetes in the European Union. Nephrol. Dialysis Transplant. 30 (Suppl 4), iv76–iv85 (2015).

    Article  Google Scholar 

  137. Dunkler, D. et al. Population-attributable fractions of modifiable lifestyle factors for CKD and mortality in individuals with type 2 diabetes: a cohort study. Am. J. Kidney Dis. 68, 29–40 (2016).

    Article  PubMed  Google Scholar 

  138. Ajjarapu, A. S. et al. Nut consumption and renal function among women with a history of gestational diabetes. J. Renal Nutr. https://doi.org/10.1053/j.jrn.2019.10.005 (2020).

    Article  Google Scholar 

  139. Herber-Gast, G. M. et al. Consumption of whole grains, fruit and vegetables is not associated with indices of renal function in the population-based longitudinal Doetinchem study. Br. J. Nutr. 118, 375–382 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Ma, J. et al. Dietary guideline adherence index and kidney measures in the Framingham Heart Study. Am. J. Kidney Dis. 68, 703–715 (2016).

    Article  PubMed  Google Scholar 

  141. Goraya, N., Simoni, J., Jo, C. & Wesson, D. E. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 81, 86–93 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Goraya, N., Simoni, J., Jo, C. H. & Wesson, D. E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 8, 371–381 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Goraya, N., Simoni, J., Jo, C. H. & Wesson, D. E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 86, 1031–1038 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Goraya, N., Munoz-Maldonado, Y., Simoni, J. & Wesson, D. E. Fruit and vegetable treatment of chronic kidney disease-related metabolic acidosis reduces cardiovascular risk better than sodium bicarbonate. Am. J. Nephrol. 49, 438–448 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Fanti, P., Asmis, R., Stephenson, T. J., Sawaya, B. P. & Franke, A. A. Positive effect of dietary soy in ESRD patients with systemic inflammation-correlation between blood levels of the soy isoflavones and the acute-phase reactants. Nephrol. Dialysis Transplant. 21, 2239–2246 (2006).

    Article  CAS  Google Scholar 

  146. Tabibi, H., Imani, H., Hedayati, M., Atabak, S. & Rahmani, L. Effects of soy consumption on serum lipids and apoproteins in peritoneal dialysis patients: a randomized controlled trial. Perit. Dialysis Int. 30, 611–618 (2010).

    Article  CAS  Google Scholar 

  147. Cupisti, A. et al. Effect of a soy protein diet on serum lipids of renal transplant patients. J. Ren. Nutr. 14, 31–35 (2004).

    Article  PubMed  Google Scholar 

  148. Chauveau, P. et al. Mediterranean diet as the diet of choice for patients with chronic kidney disease. Nephrol. Dialysis Transplant. 33, 725–735 (2018).

    Article  CAS  Google Scholar 

  149. Bach, K. E. et al. Healthy dietary patterns and incidence of CKD: a meta-analysis of cohort studies. Clin. J. Am. Soc. Nephrol. 14, 1441–1449, https://doi.org/10.2215/cjn.00530119 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kelly, J. T. et al. Healthy dietary patterns and risk of mortality and ESRD in CKD: a meta-analysis of cohort studies. Clin. J. Am. Soc. Nephrol. 12, 272–279 (2017).

    Article  PubMed  Google Scholar 

  151. Mekki, K., Bouzidi-bekada, N., Kaddous, A. & Bouchenak, M. Mediterranean diet improves dyslipidemia and biomarkers in chronic renal failure patients. Food Funct. 1, 110–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Tyson, C. C. et al. Short-term effects of the DASH diet in adults with moderate chronic kidney disease: a pilot feeding study. Clin. Kidney J. 9, 592–598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Joshi, S., Shah, S. & Kalantar-Zadeh, K. Adequacy of plant-based proteins in chronic kidney disease. J. Ren. Nutr. 29, 112–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Piccoli, G. B. et al. Low-protein diets in CKD: how can we achieve them? A narrative, pragmatic review. Clin. Kidney J. 8, 61–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Piccoli, G. B. et al. Low protein diets in patients with chronic kidney disease: a bridge between mainstream and complementary-alternative medicines? BMC Nephrol. 17, 76 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Barsotti, G. et al. A low-nitrogen low-phosphorus vegan diet for patients with chronic renal failure. Nephron 74, 390–394 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Soroka, N. et al. Comparison of a vegetable-based (soya) and an animal-based low-protein diet in predialysis chronic renal failure patients. Nephron 79, 173–180 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Marzocco, S. et al. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 35, 196–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Black, A. P. et al. Does low-protein diet influence the uremic toxin serum levels from the gut microbiota in nondialysis chronic kidney disease patients? J. Ren. Nutr. 28, 208–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Nafar, M. et al. Mediterranean diets are associated with a lower incidence of metabolic syndrome one year following renal transplantation. Kidney Int. 76, 1199–1206 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Oste, M. C. J. et al. Dietary Approach to Stop Hypertension (DASH) diet and risk of renal function decline and all-cause mortality in renal transplant recipients. Am. J. Transplant. 18, 2523–2533 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Saglimbene, V. M. et al. Fruit and vegetable intake and mortality in adults undergoing maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 14, 250–260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Saglimbene, V. M. et al. The association of Mediterranean and DASH diets with mortality in adults on hemodialysis: the DIET-HD multinational cohort study. J. Am. Soc. Nephrol. 29, 1741–1751 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Saglimbene, V. M. et al. Dietary patterns and mortality in a multinational cohort of adults receiving hemodialysis. Am. J. Kidney Dis. 75, 361–372 (2019).

    Article  PubMed  Google Scholar 

  165. Davey, G. K. et al. EPIC-Oxford: lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public. Health Nutr. 6, 259–269 (2003).

    Article  PubMed  Google Scholar 

  166. Schmidt, J. A. et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 70, 306–312 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Setchell, K. D. & Lydeking-Olsen, E. Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am. J. Clin. Nutr. 78, 593s–609s (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Rizzo, N. S., Jaceldo-Siegl, K., Sabate, J. & Fraser, G. E. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J. Acad. Nutr. Diet. 113, 1610–1619 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Huang, C. J., Fan, Y. C., Liu, J. F. & Tsai, P. S. Characteristics and nutrient intake of Taiwanese elderly vegetarians: evidence from a national survey. Br. J. Nutr. 106, 451–460 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Patel, K. P., Luo, F. J., Plummer, N. S., Hostetter, T. H. & Meyer, T. W. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 7, 982–988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kandouz, S., Mohamed, A. S., Zheng, Y., Sandeman, S. & Davenport, A. Reduced protein bound uraemic toxins in vegetarian kidney failure patients treated by haemodiafiltration. Hemodialysis international. Int. Symposium Home Hemodial. 20, 610–617 (2016).

    Article  Google Scholar 

  172. Wu, T. T. et al. Nutritional status of vegetarians on maintenance haemodialysis. Nephrology 16, 582–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Chiu, S. et al. Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial. Am. J. Clin. Nutr. 103, 341–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Du, S. et al. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am. J. Clin. Nutr. 99, 334–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Mente, A. et al. Association of urinary sodium and potassium excretion with blood pressure. N. Engl. J. Med. 371, 601–611 (2014).

    Article  PubMed  CAS  Google Scholar 

  176. [No authors listed]. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297, 319–328 (1988).

    Article  Google Scholar 

  177. Aburto, N. J. et al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346, f1378 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kovesdy, C. P. et al. Potassium homeostasis in health and disease: a scientific workshop cosponsored by the National Kidney Foundation and the American Society of Hypertension. J. Am. Soc. Hypertens. 11, 783–800 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. De Nicola, L., Di Lullo, L., Paoletti, E., Cupisti, A. & Bianchi, S. Chronic hyperkalemia in non-dialysis CKD: controversial issues in nephrology practice. J. Nephrol. 31, 653–664 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Clase, C. M. et al. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 97, 42–61 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. St-Jules, D. E., Woolf, K., Pompeii, M. L. & Sevick, M. A. Exploring problems in following the hemodialysis diet and their relation to energy and nutrient intakes: the balancewise study. J. Ren. Nutr. 26, 118–124 (2016).

    Article  PubMed  Google Scholar 

  182. Smyth, A. et al. The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int. 86, 1205–1212 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Jones, W. L. Demineralization of a wide variety of foods for the renal patient. J. Ren. Nutr. 11, 90–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Palmer, B. F. Regulation of potassium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1050–1060 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Hayes, C. P. Jr., McLeod, M. E. & Robinson, R. R. An extravenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans. Assoc. Am. Physicians 80, 207–216 (1967).

    PubMed  Google Scholar 

  186. Mathialahan, T., Maclennan, K. A., Sandle, L. N., Verbeke, C. & Sandle, G. I. Enhanced large intestinal potassium permeability in end-stage renal disease. J. Pathol. 206, 46–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Sterns, R. H., Feig, P. U., Pring, M., Guzzo, J. & Singer, I. Disposition of intravenous potassium in anuric man: a kinetic analysis. Kidney Int. 15, 651–660 (1979).

    Article  CAS  PubMed  Google Scholar 

  188. Blumberg, A., Weidmann, P. & Ferrari, P. Effect of prolonged bicarbonate administration on plasma potassium in terminal renal failure. Kidney Int. 41, 369–374 (1992).

    Article  CAS  PubMed  Google Scholar 

  189. Alvestrand, A., Wahren, J., Smith, D. & DeFronzo, R. A. Insulin-mediated potassium uptake is normal in uremic and healthy subjects. Am. J. Physiol. 246, E174–E180 (1984).

    CAS  PubMed  Google Scholar 

  190. Allon, M., Dansby, L. & Shanklin, N. Glucose modulation of the disposal of an acute potassium load in patients with end-stage renal disease. Am. J. Med. 94, 475–482 (1993).

    Article  PubMed  Google Scholar 

  191. Winkler, A. W., Hoff, H. E. & Smith, P. K. The toxicity of orally administered potassium salts in renal insufficiency. J. Clin. Invest. 20, 119–126 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Keith, N. M. & Osterberg, A. E. The tolerance for potassium in severe renal insufficiency; a study of 10 cases. J. Clin. Invest. 26, 773–783 (1947).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Khair, K. Compliance, concordance and adherence: what are we talking about? Haemophilia 20, 601–603 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  195. Kelly, J. T. et al. Feasibility and acceptability of telehealth coaching to promote healthy eating in chronic kidney disease: a mixed-methods process evaluation. BMJ Open. 9, e024551 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Warner, M. M., Tong, A., Campbell, K. L. & Kelly, J. T. Patients’ experiences and perspectives of telehealth coaching with a dietitian to improve diet quality in chronic kidney disease: a qualitative interview study. J. Acad. Nutr. Diet. 119, 1362–1374 (2019).

    Article  PubMed  Google Scholar 

  197. Katz, I. J. et al. iConnect CKD - virtual medical consulting: a web-based chronic kidney disease, hypertension and diabetes integrated care program. Nephrology 23, 646–652 (2018).

    Article  PubMed  Google Scholar 

  198. Sherman, R. A. & Mehta, O. Phosphorus and potassium content of enhanced meat and poultry products: implications for patients who receive dialysis. Clin. J. Am. Soc. Nephrol. 4, 1370–1373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Parpia, A. S. et al. The impact of additives on the phosphorus, potassium, and sodium content of commonly consumed meat, poultry, and fish products among patients with chronic kidney disease. J. Ren. Nutr. 28, 83–90 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Parpia, A. S. et al. Sodium-reduced meat and poultry products contain a significant amount of potassium from food additives. J. Acad. Nutr. Diet. 118, 878–885 (2018).

    Article  PubMed  Google Scholar 

  201. Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Threapleton, D. E. et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 347, f6879 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Veronese, N. et al. Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 107, 436–444 (2018).

    Article  PubMed  Google Scholar 

  204. D’Alessandro, C. et al. “Dietaly”: practical issues for the nutritional management of CKD patients in Italy. BMC Nephrol. 17, 102 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Melina, V., Craig, W. & Levin, S. Position of the Academy of Nutrition and Dietetics: vegetarian diets. J. Acad. Nutr. Diet. 116, 1970–1980 (2016).

    Article  PubMed  Google Scholar 

  206. Agnoli, C. et al. Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 27, 1037–1052 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. St-Jules, D. E., Goldfarb, D. S., Popp, C. J., Pompeii, M. L. & Liebman, S. E. Managing protein-energy wasting in hemodialysis patients: a comparison of animal- and plant-based protein foods. Semin. Dial. 32, 41–46 (2019).

    Article  PubMed  Google Scholar 

  208. Berman, T. et al. Urinary concentrations of organophosphate and carbamate pesticides in residents of a vegetarian community. Environ. Int. 96, 34–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Sari, Y. W., Mulder, W. J., Sanders, J. P. & Bruins, M. E. Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnol. J. 10, 1138–1157 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Welte, A. L., Harpel, T., Schumacher, J. & Barnes, J. L. Registered dietitian nutritionists and perceptions of liberalizing the hemodialysis diet. Nutr. Res. Pract. 13, 310–315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Austel, A., Ranke, C., Wagner, N., Gorge, J. & Ellrott, T. Weight loss with a modified Mediterranean-type diet using fat modification: a randomized controlled trial. Eur. J. Clin. Nutr. 69, 878–884 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. de Almeida Alvarenga, L. et al. Cranberries — potential benefits in patients with chronic kidney disease. Food Funct. 10, 3103–3112 (2019).

    Article  PubMed  Google Scholar 

  213. Vargas, F. et al. Flavonoids in kidney health and disease. Front. Physiol. 9, 394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Li, W. et al. Lycopene ameliorates renal function in rats with streptozotocin-induced diabetes. Int. J. Clin. Exp. Pathol. 7, 5008–5015 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Deicher, R., Ziai, F., Bieglmayer, C., Schillinger, M. & Horl, W. H. Low total vitamin C plasma level is a risk factor for cardiovascular morbidity and mortality in hemodialysis patients. J. Am. Soc. Nephrol. 16, 1811–1818 (2005).

    Article  CAS  PubMed  Google Scholar 

  216. Heinz, J., Kropf, S., Luley, C. & Dierkes, J. Homocysteine as a risk factor for cardiovascular disease in patients treated by dialysis: a meta-analysis. Am. J. Kidney Dis. 54, 478–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  217. Capelli, I. et al. Folic acid and vitamin B12 administration in CKD, why not? Nutrients 11, 383 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  218. Heinz, J. et al. Washout of water-soluble vitamins and of homocysteine during haemodialysis: effect of high-flux and low-flux dialyser membranes. Nephrology 13, 384–389 (2008).

    Article  PubMed  Google Scholar 

  219. Russo, G. et al. Monitoring oral iron therapy in children with iron deficiency anemia: an observational, prospective, multicenter study of AIEOP patients (Associazione Italiana Emato-Oncologia Pediatrica). Ann. Hematol. 99, 413–420 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Floege, J. Magnesium in CKD: more than a calcification inhibitor? J. Nephrol. 28, 269–277 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Van Laecke, S., Nagler, E. V., Verbeke, F., Van Biesen, W. & Vanholder, R. Hypomagnesemia and the risk of death and GFR decline in chronic kidney disease. Am. J. Med. 126, 825–831 (2013).

    Article  PubMed  CAS  Google Scholar 

  222. Damianaki, K. et al. Renal handling of zinc in chronic kidney disease patients and the role of circulating zinc levels in renal function decline. Nephrol. Dialysis Transplant. https://doi.org/10.1093/ndt/gfz065 (2019).

    Article  Google Scholar 

  223. Liu, H. W., Tsai, W. H., Liu, J. S. & Kuo, K. L. Association of vegetarian diet with chronic kidney disease. Nutrients 11, 279 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  224. Asghari, G., Yuzbashian, E., Mirmiran, P. & Azizi, F. The association between dietary approaches to stop hypertension and incidence of chronic kidney disease in adults: the Tehran lipid and glucose study. Nephrol. Dialysis Transplant. 32, ii224–ii230 (2017).

    Article  CAS  Google Scholar 

  225. Asghari, G., Momenan, M., Yuzbashian, E., Mirmiran, P. & Azizi, F. Dietary pattern and incidence of chronic kidney disease among adults: a population-based study. Nutr. Metab. 15, 88 (2018).

    Article  CAS  Google Scholar 

  226. Kim, H. et al. Plant-based diets and incident CKD and kidney function. Clin. J. Am. Soc. Nephrol. 14, 682–691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hu, E. A. et al. Dietary patterns and risk of incident chronic kidney disease: the atherosclerosis risk in communities study. Am. J. Clin. Nutr. 110, 713–721 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Gutierrez, O. M. et al. Dietary patterns and risk of death and progression to ESRD in individuals with CKD: a cohort study. Am. J. Kidney Dis. 64, 204–213 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Banerjee, T. et al. Poor accordance to a DASH dietary pattern is associated with higher risk of ESRD among adults with moderate chronic kidney disease and hypertension. Kidney Int. 95, 1433–1442 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. National Kidney Foundation. Dietary guidelines for adults starting on haemodialysis. https://www.kidney.org/atoz/content/dietary_hemodialysis (2019).

  231. United States Department of Agriculture. USDA national nutrient database for standard, https://ndb.nal.usda.gov/nd (2013).

  232. Fujii, H., Goto, S. & Fukagawa, M. Role of uremic toxins for kidney, cardiovascular, and bone dysfunction. Toxins 10, 202 (2018).

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are members of the European Renal Nutrition (ERN) Working Group, an initiative of and supported by the European Renal Association–European Dialysis Transplant Association (ERA–EDTA). Further information on this Working Group and its activities can be found at https://www.era-edtaworkinggroups.org/en-US/group/european-renal-nutrition. A.G.O. was supported by The National Council of Science and Technology (CONACYT), CVU 373297, School of Medicine, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud. J.J.C. acknowledges support from the Swedish Research Council (grant number 2019-01059) and the Swedish Heart and Lung Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, made substantial contributions to discussions of the content, wrote the text and reviewed or edited the manuscript before submission. J.J.C., A.G.O. and C.M.C. brought the manuscript to its final form.

Corresponding author

Correspondence to Juan J. Carrero.

Ethics declarations

Competing interests

J.J.C. has received consultation, speaker fees or research funding from Abbott, Nutricia, Dr Schär, Laboratorios Rubio, Baxter, AstraZeneca, ViforPharma, Astellas, Novartis and MSD, all outside the submitted work. P.C. is advisory board member at Fresenius Kabi. V.B. acknowledges speaker honoraria from Shire and Fresenius Kabi. P.M. acknowledges consultation or speaker honoraria from Abbott Nutrition, Amgen, Nutricia, Palex and ViforPharma, all outside the submitted work. S.S. acknowledges speaker honoraria from Sanofi Aventis and Abbie. D.F. received honoraria from Fresenius Medical Care, Fresenius Kabi, Sanofi and Vifor. A.C. received speaker honoraria from Shire, Fresenius Kabi, Vifor and Dr Shär. A.E.-C. acknowledges speaker honoraria from Abbott Laboratories and AbbVie. C.C. has received consultation honoraria, advisory board membership or research funding from the Ontario Ministry of Health, Sanofi, Johnson & Johnson, Pfizer, Leo Pharma, Astellas, Janssen, Amgen, Boehringer-Ingelheim and Baxter outside the submitted work. The other authors report no conflicts of interest.

Additional information

Peer review information

Nature Reviews Nephrology thanks the anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary terms

Vegan diet

A diet that excludes meat, fish, seafood, eggs and dairy.

Vegetarian diets

Diets that exclude meat, fish and seafood, but not eggs or dairy.

Dietary Approaches to Stop Hypertension

(DASH). A diet that was designed to help treat or prevent hypertension. This diet encourages reduced sodium consumption and increased intake of potassium, calcium and magnesium through the high consumption of fruit, vegetables, legumes and nuts and low consumption of meat, fish, seafood, eggs and dairy.

Mediterranean diet

A traditional diet from countries surrounding the Mediterranean sea that emphasizes large numbers of servings of fruit, vegetables, legumes, nuts, olive oil and fish, and low numbers of servings of meat, seafood, eggs, dairy and processed food (including bread and pastries).

Okinawan diet

A traditional diet from the island of Okinawa in Japan, which has a population with exceptional longevity. This diet is low in calories and fat and high in carbohydrates. It emphasizes vegetables and soy products alongside occasional, and small, amounts of noodles, rice, pork and fish.

Healthy eating diet

A diet that exemplifies the US recommended dietary targets 2015–2020. This diet emphasizes fruits, vegetables, whole grains and fat-free or low-fat milk and milk products. It includes lean meats, poultry, fish, beans, eggs and nuts. It is low in saturated fats, trans fats, cholesterol, salt (sodium) and added sugars, and stays within daily calorie needs.

Essential amino acids

Amino acids that cannot be synthesized by an organism from other nitrogen sources.

Interdialytic weight gain

Change in body weight between two dialysis sessions. It is routinely assessed and used together with clinical symptoms and signs and predialysis blood pressure readings to make decisions regarding the amount of fluid removal during a dialysis session. It is also used as a basis for fluid and salt intake recommendations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrero, J.J., González-Ortiz, A., Avesani, C.M. et al. Plant-based diets to manage the risks and complications of chronic kidney disease. Nat Rev Nephrol 16, 525–542 (2020). https://doi.org/10.1038/s41581-020-0297-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0297-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing