Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrated multi-omics approaches to improve classification of chronic kidney disease

Abstract

Chronic kidney diseases (CKDs) are currently classified according to their clinical features, associated comorbidities and pattern of injury on biopsy. Even within a given classification, considerable variation exists in disease presentation, progression and response to therapy, highlighting heterogeneity in the underlying biological mechanisms. As a result, patients and clinicians experience uncertainty when considering optimal treatment approaches and risk projection. Technological advances now enable large-scale datasets, including DNA and RNA sequence data, proteomics and metabolomics data, to be captured from individuals and groups of patients along the genotype–phenotype continuum of CKD. The ability to combine these high-dimensional datasets, in which the number of variables exceeds the number of clinical outcome observations, using computational approaches such as machine learning, provides an opportunity to re-classify patients into molecularly defined subgroups that better reflect underlying disease mechanisms. Patients with CKD are uniquely poised to benefit from these integrative, multi-omics approaches since the kidney biopsy, blood and urine samples used to generate these different types of molecular data are frequently obtained during routine clinical care. The ultimate goal of developing an integrated molecular classification is to improve diagnostic classification, risk stratification and assignment of molecular, disease-specific therapies to improve the care of patients with CKD.

Key points

  • Classifying kidney diseases according to their molecular mechanisms has the potential to improve patient outcomes through the identification and development of more targeted therapeutic approaches.

  • Omics data derived from kidney biopsy tissue not only have the potential to enable identification of disease mechanisms but might also enable the identification of prognostic and predictive biomarkers; this approach might be extended to enable the use of non-invasive surrogate urinary markers that reflect molecular pathways activated in the kidney.

  • The success of targeting molecular pathways identified through approaches that involve the integration of various datasets has been demonstrated in clinical trials.

  • Combining targeted therapies with predictive biomarkers puts nephrology in a position to test the concept of precision medicine, enabling trials to identify the right trial for the right patient at the right time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integration of varied data types can help to address clinically relevant questions.
Fig. 2: Interrogation of public databases to provide insights into disease pathways.

Similar content being viewed by others

References

  1. Baigent, C. et al. Challenges in conducting clinical trials in nephrology: conclusions from a Kidney Disease-Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 92, 297–305 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Inker, L. A. et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 63, 713–735 (2014).

    Article  PubMed  Google Scholar 

  3. Isakova, T. et al. KDOQI US commentary on the 2017 KDIGO clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Am. J. Kidney Dis. 70, 737–751 (2017).

    Article  PubMed  Google Scholar 

  4. Lamb, E. J., Levey, A. S. & Stevens, P. E. The kidney disease improving global outcomes (KDIGO) guideline update for chronic kidney disease: evolution not revolution. Clin. Chem. 59, 462–465 (2020).

    Article  CAS  Google Scholar 

  5. Levey, A. S., Becker, C. & Inker, L. A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA 313, 837–846 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lombel, R. M., Gipson, D. S. & Hodson, E. M. Kidney Disease: Improving Global Outcomes. Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr. Nephrol. 28, 415–426 (2013).

    Article  PubMed  Google Scholar 

  7. Lombel, R. M., Hodson, E. M. & Gipson, D. S. Kidney Disease: Improving Global Outcomes. Treatment of steroid-resistant nephrotic syndrome in children: new guidelines from KDIGO. Pediatr. Nephrol. 28, 409–414 (2013).

    Article  PubMed  Google Scholar 

  8. Inrig, J. K. et al. The landscape of clinical trials in nephrology: a systematic review of Clinicaltrials.gov. Am. J. Kidney Dis. 63, 771–780 (2014).

    Article  PubMed  Google Scholar 

  9. Haring, R. & Wallaschofski, H. Diving through the “-omics”: the case for deep phenotyping and systems epidemiology. OMICS 16, 231–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gadegbeku, C. A. et al. Design of the nephrotic syndrome study network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 83, 749–756 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nair, V. et al. A molecular morphometric approach to diabetic kidney disease can link structure to function and outcome. Kidney Int. 93, 439–449 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Townsend, R. R. et al. Rationale and design of the transformative research in diabetic nephropathy (TRIDENT) study. Kidney Int. 97, 10–13 (2020).

    Article  PubMed  Google Scholar 

  13. Groopman, E. E. et al. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hellwege, J. N. et al. Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nat. Commun. 10, 3842 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chu, A. Y. et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat. Commun. 8, 1286 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Coit, P. et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naïve CD4+ T cells. J. Autoimmun. 61, 29–35 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen, C. D., Frach, K., Schlondorff, D. & Kretzler, M. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int. 61, 133–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J. W., Chou, C.-L. & Knepper, M. A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rinschen, M. M., Limbutara, K., Knepper, M. A., Payne, D. M. & Pisitkun, T. From molecules to mechanisms: functional proteomics and its application to renal tubule physiology. Physiol. Rev. 98, 2571–2606 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalim, S. & Rhee, E. P. Metabolomics and kidney precision medicine. Clin. J. Am. Soc. Nephrol. 12, 1726–1727 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saez-Rodriguez, J., Rinschen, M. M., Floege, J. & Kramann, R. Big science and big data in nephrology. Kidney Int. 95, 1326–1337 (2019).

    Article  PubMed  Google Scholar 

  26. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  27. Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 940–953 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232–244 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiu, C. et al. Renal compartment–specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martini, S. et al. Integrative biology identifies shared transcriptional networks in CKD. J. Am. Soc. Nephrol. 25, 2559–2572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03550443 (2019).

  32. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03749447 (2019).

  33. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03019185 (2019).

  34. Tuttle, K. R. et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a phase 2 randomized controlled clinical trial. Nephrol. Dialysis Transplant. 33, 1950–1959 (2018).

    Article  CAS  Google Scholar 

  35. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00098020 (2017).

  36. Hodgin, J. B. et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Berthier, C. C. et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, H. et al. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. 92, 909–921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tao, J. L. et al. JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney Int. 94, 795–808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hewitson, T. D. Renal tubulointerstitial fibrosis: common but never simple. Am. J. Physiol.-Renal Physiol. 296, F1239–F1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Farris, A. B. & Colvin, R. B. Renal interstitial fibrosis: mechanisms and evaluation. Curr. Opin. Nephrol. Hypertens. 21, 289–300 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Schroppel, B., Huber, S., Horster, M., Schlondorff, D. & Kretzler, M. Analysis of mouse glomerular podocyte mRNA by single-cell reverse transcription-polymerase chain reaction. Kidney Int. 53, 119–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Ju, W. et al. Defining cell-type specificity at the transcriptional level in human disease. Genome Res. 23, 1862–1873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Potter, S. S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 14, 479–492 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Menon, R. et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight 5, e133267 (2020).

    Article  PubMed Central  Google Scholar 

  47. Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA 116, 19619–19625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Narain, S. & Furie, R. Update on clinical trials in systemic lupus erythematosus. Curr. Opin. Rheumatol. 28, 477–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Thanou, A. & Merrill, J. T. Treatment of systemic lupus erythematosus: new therapeutic avenues and blind alleys. Nat. Rev. Rheumatol. 10, 23–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Pennisi, E. Development cell by cell. Science 362, 1344–1345 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Nishinakamura, R. Human kidney organoids: progress and remaining challenges. Nat. Rev. Nephrol. 15, 613–624 (2019).

    Article  PubMed  Google Scholar 

  53. Little, M. H. & Combes, A. N. Kidney organoids: accurate models or fortunate accidents. Genes. Dev. 33, 1319–1345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harder, J. L. et al. Organoid single cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight 4, pii: 122697 (2019).

    Article  Google Scholar 

  55. Lemos, D. R. et al. Interleukin-1beta activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beckerman, P. & Susztak, K. APOL1: the balance imposed by infection, selection, and kidney disease. Trends Mol. Med. 24, 682–695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmidt-Ott, K. M. How to grow a kidney: patient-specific kidney organoids come of age. Nephrol. Dial. Transpl. 32, 17–23 (2016).

    Google Scholar 

  58. Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Borestrom, C. et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery. Kidney Int. 94, 1099–1110 (2018).

    Article  PubMed  CAS  Google Scholar 

  60. Soo, J. Y. C., Jansen, J., Masereeuw, R. & Little, M. H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat. Rev. Nephrol. 14, 378–393 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. KDIGO. KDIGO Guidelines. CKD Evaluation and Management https://kdigo.org/guidelines/ckd-evaluation-and-management/ (2012).

  62. KDIGO. KDIGO Guidelines. Glomerulonephritis https://kdigo.org/guidelines/gn/ (2012).

  63. Himmelfarb, J. Kidney precision medicine project: hope for the future. ASN Kidney N. 11(March), 16 https://www.asn-online.org/publications/kidneynews/archives/2019/KN_2019_03_mar.pdf (2019).

    Google Scholar 

  64. Mariani, L. Perspectives from a junior investigator in the kidney precision medicine project. ASN Kidney N. 11(March), 16–17, https://www.asn-online.org/publications/kidneynews/archives/2019/KN_2019_03_mar.pdf (2019).

    Google Scholar 

  65. Amezquita, R. A. et al. Orchestrating single-cell analysis with bioconductor. Nat. Methods 17, 137–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Glassock, R. J. & Winearls, C. Screening for CKD with eGFR: doubts and dangers. Clin. J. Am. Soc. Nephrol. 3, 1563–1568 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ju, W. et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci. Transl. Med. 7, 316ra193 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Satirapoj, B., Pooluea, P., Nata, N. & Supasyndh, O. Urinary biomarkers of tubular injury to predict renal progression and end stage renal disease in type 2 diabetes mellitus with advanced nephropathy: a prospective cohort study. J. Diabetes Complicat. 33, 675–681 (2019).

    Article  Google Scholar 

  69. Pontillo, C. & Mischak, H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease. Clin. Kidney J. 10, 192–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Siwy, J., Klein, T., Rosler, M. & von Eynatten, M. Urinary proteomics as a tool to identify kidney responders to dipeptidyl peptidase-4 inhibition: a hypothesis-generating analysis from the MARLINA-T2D Trial. Proteom. Clin. Appl. 13, 1800144 (2019).

    Article  CAS  Google Scholar 

  71. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04009668 (2019).

  72. Mariani, L. H. et al. Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies. Nephrol. Dial. Transpl. 33, 310–318 (2018).

    Article  CAS  Google Scholar 

  73. Wu, L. et al. Urinary epidermal growth factor predicts renal prognosis in antineutrophil cytoplasmic antibody-associated vasculitis. Ann. Rheum. Dis. 77, 1339–1344 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Li, B. et al. Urinary epidermal growth factor as a prognostic marker for the progression of Alport syndrome in children. Pediatr. Nephrol. 33, 1731–1739 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Azukaitis, K. et al. Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney Int. 96, 214–221 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Yepes-Calderón, M. et al. Urinary epidermal growth factor/creatinine ratio and graft failure in renal transplant recipients: a prospective cohort study. J. Clin. Med. 8, 1673 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  77. Boustany, R. N., Kaye, E. & Alroy, J. Ultrastructural findings in skin from patients with Niemann-Pick disease, type C. Pediatr. Neurol. 6, 177–183 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. Argilés, À. et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One 8, e62837 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Critselis, E. & Lambers Heerspink, H. Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression. Nephrol. Dial. Transpl. 31, 249–254 (2015).

    Google Scholar 

  80. Pontillo, C. et al. Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. Kidney Int. Rep. 2, 1066–1075 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T. & Lee, D. Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4, e1000217 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Grayson, P. C. et al. Metabolic pathways and immunometabolism in rare kidney diseases. Ann. Rheum. Dis. 77, 1226–1233 (2018).

    PubMed  Google Scholar 

  87. Taroni, J. N. et al. MultiPLIER: a transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell Syst. 8, 380–394 e384 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mao, W., Zaslavsky, E., Hartmann, B. M., Sealfon, S. C. & Chikina, M. Pathway-level information extractor (PLIER) for gene expression data. Nat. Methods 16, 607–610 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thomas, P. D. in The Gene Ontology Handbook (eds Christophe Dessimoz & Nives Škunca) 15–24 (Springer, 2017).

  90. Lewis, S. E. in The Gene Ontology Handbook (eds Christophe Dessimoz & Nives Škunca) 291–302 (Springer, 2017).

  91. The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 45, D331–D338 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  92. The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 47, D330–D338 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  93. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma, J. et al. Differential network enrichment analysis reveals novel lipid pathways in chronic kidney disease. Bioinformatics 35, 3441–3452 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Afshinnia, F. et al. Impaired beta-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. J. Am. Soc. Nephrol. 29, 295–306 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Afshinnia, F. et al. Lipidomic signature of progression of chronic kidney disease in the chronic renal insufficiency cohort. Kidney Int. Rep. 1, 256–268 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sealfon, R. S. G., Mariani, L. H., Kretzler, M. & Troyanskaya, O. G. Machine learning, the kidney, and genotype-phenotype analysis. Kidney Int. 14, 162 (2020).

    Google Scholar 

  98. Martini, S., Eichinger, F., Nair, V. & Kretzler, M. Defining human diabetic nephropathy on the molecular level: integration of transcriptomic profiles with biological knowledge. Rev. Endocr. Metab. Disord. 9, 267–274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Greene, C. S. et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47, 569–576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Krishnan, A. et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 19, 1454–1462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McMahon, A. P. et al. GUDMAP: the genitourinary developmental molecular anatomy project. J. Am. Soc. Nephrol. 19, 667–671 (2008).

    Article  PubMed  Google Scholar 

  104. Harding, S. D. et al. The GUDMAP database — an online resource for genitourinary research. Development 138, 2845–2853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Oxburgh, L. et al. (Re)building a kidney. J. Am. Soc. Nephrol. 28, 1370–1378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Athey, B. D., Braxenthaler, M., Haas, M. & Guo, Y. tranSMART: an open source and community-driven informatics and data sharing platform for clinical and translational research. AMIA Jt. Summits Transl. Sci. Proc. 2013, 6–8 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Connor, E. Translating expertise: the Librarian’s role in translational research. JMLA 106, 137–137 (2018).

    Article  PubMed Central  Google Scholar 

  108. Dankar, F. K., Ptitsyn, A. & Dankar, S. K. The development of large-scale de-identified biomedical databases in the age of genomics-principles and challenges. Hum. Genomics 12, 19 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Salerno, J., Knoppers, B. M., Lee, L. M., Hlaing, W. M. & Goodman, K. W. Ethics, big data and computing in epidemiology and public health. Ann. Epidemiol. 27, 297–301 (2017).

    Article  PubMed  Google Scholar 

  110. Zarate, O. A. et al. Balancing benefits and risks of immortal data. Hastings Cent. Rep. 46, 36–45 (2016).

    Article  PubMed  Google Scholar 

  111. Gymrek, M., McGuire, A. L., Golan, D., Halperin, E. & Erlich, Y. Identifying personal genomes by surname inference. Science 339, 321–324 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Chico, V. The impact of the general data protection regulation on health research. Br. Med. Bull. 128, 109–118 (2018).

    Article  PubMed  Google Scholar 

  113. Sarkar, H., Srivastava, A. & Patro, R. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level. Bioinformatics 35, i136–i144 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chung, R.-H. & Kang, C.-Y. A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification. GigaScience 8, giz045 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Argelaguet, R. et al. Multi-omics factor analysis — a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Pedigo, C. E. et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J. Clin. Invest. 126, 3336–3350 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mitrofanova, A. et al. Hydroxypropyl-beta-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney Int. 94, 1151–1159 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Keenan, A. B. et al. The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst. 6, 13–24 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for the work described in this Review is provided by the George M. O’Brien Michigan Kidney Translational Core Center, funded by NIH/National Institute of Diabetes and Digestive and Kidney Diseases grant 2P30-DK-081943. Nephroseq is supported as part of the applied systems biology core by the University of Michigan George M. O’Brien Michigan Kidney Translational Core Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussing the article’s content, writing and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Matthias Kretzler.

Ethics declarations

Competing interests

M.K. holds a US patent, PCT/EP2014/073413 “Biomarkers and methods for progression prediction for chronic kidney disease”. S.E. and L.H.M. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Attack Diabetic Kidney Disease: www.beat-dkd.eu

Connectivity Map: clue.io

Lincs Consortium: lincsproject.org

Rhapsody: www.imi-rhapsody.eu

The Kidney Precision Medicine Project: www.kpmp.org

Glossary

In cis

Located on the same strand of DNA as the gene or variant in question and in the case of eQTLs, located in relatively close proximity to the transcriptional start site of a gene.

Co-expression networks

Sets of genes that display similar trends in their direction of regulation across patients and are thus presumed to be co-regulated and therefore functionally related.

Weighted gene co-expression network analysis

A computational method of assessing global co-expression of genes across a dataset resulting in distinct sets of co-expression networks and modules.

Quantitative pathway score

An aggregate of individual pathway components in a single quantitative measure.

MultiPLIER

A bioinformatics approach to inferring pathway or cell-type levels leveraging bulk tissue profiles across multiple datasets.

Pathway-level information extractor

A bioinformatics method of inferring pathway or cell-type levels from a bulk tissue profile.

Latent variables

Variables that are not directly measured but are inferred from a set of observations in a dataset.

Federated databases

Database management systems in which data can be securely stored while allowing users and applications to access the data through plugins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eddy, S., Mariani, L.H. & Kretzler, M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol 16, 657–668 (2020). https://doi.org/10.1038/s41581-020-0286-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0286-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing