Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of diabetes mellitus and diabetes complications

Abstract

Diabetes is one of the fastest growing diseases worldwide, projected to affect 693 million adults by 2045. Devastating macrovascular complications (cardiovascular disease) and microvascular complications (such as diabetic kidney disease, diabetic retinopathy and neuropathy) lead to increased mortality, blindness, kidney failure and an overall decreased quality of life in individuals with diabetes. Clinical risk factors and glycaemic control alone cannot predict the development of vascular complications; numerous genetic studies have demonstrated a clear genetic component to both diabetes and its complications. Early research aimed at identifying genetic determinants of diabetes complications relied on familial linkage analysis suited to strong-effect loci, candidate gene studies prone to false positives, and underpowered genome-wide association studies limited by sample size. The explosion of new genomic datasets, both in terms of biobanks and aggregation of worldwide cohorts, has more than doubled the number of genetic discoveries for both diabetes and diabetes complications. We focus herein on genetic discoveries for diabetes and diabetes complications, empowered primarily through genome-wide association studies, and emphasize the gaps in research for taking genomic discovery to the next level.

Key points

  • A moderate genetic component and significant genetic overlap exists for diabetes and microvascular and macrovascular diabetes complications.

  • Large biobanks and aggregation of diabetes cohorts have more than doubled the number of genetic associations with diabetes and diabetes complications discovered in genome-wide association studies.

  • Sequencing studies remain limited by sample size, although work in type 2 diabetes mellitus highlights their use in gene variant characterization.

  • Future genetic discovery of diabetes and its complications will rely on large sample sizes, interrogation of sequencing datasets, diverse populations and improved phenotyping and sub-phenotyping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenotypic complexity of diabetic kidney disease.
Fig. 2: Manhattan plot of data from the GWAS on DKD from the DNCRI, which included >19,000 patients.
Fig. 3: A missense coding SNP, rs55703767, in COL4A3 is associated with DKD.

Similar content being viewed by others

References

  1. Cho, N. H. et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Morrish, N. J. et al. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 44 (Suppl. 2), 14–21 (2001).

    Article  Google Scholar 

  3. da Rocha Fernandes, J. et al. IDF diabetes atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res. Clin. Pract. 117, 48–54 (2016).

    Article  PubMed  Google Scholar 

  4. American Diabetes Association. Economic costs of diabetes in the US in 2017. Diabetes Care, 41, 917–928 (2018).

    Article  PubMed Central  Google Scholar 

  5. Liyanage, T. et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 385, 1975–1982 (2015).

    Article  PubMed  Google Scholar 

  6. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes Care 41, S13–S27 (2018).

    Article  Google Scholar 

  8. Udler, M. S. et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 15, e1002654 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    Article  PubMed  Google Scholar 

  10. Anders, H. J., Huber, T. B., Isermann, B. & Schiffer, M. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat. Rev. Nephrol. 14, 361–377 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Deckert, T. & Poulsen, J. Diabetic nephropathy: fault or destiny? Diabetologia 21, 178–183 (1981).

    CAS  PubMed  Google Scholar 

  12. Quinn, M., Angelico, M. C., Warram, J. H. & Krolewski, A. S. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 39, 940–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Seaquist, E. R., Goetz, F. C., Rich, S. & Barbosa, J. Familial clustering of diabetic kidney disease. N. Engl. J. Med. 320, 1161–1165 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Earle, K., Walker, J., Hill, C. & Viberti, G. Familial clustering of cardiovascular disease in patients with insulin-dependent diabetes and nephropathy. N. Engl. J. Med. 326, 673–677 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Tuomilehto, J. et al. Incidence of cardiovascular disease in type 1 (insulin-dependent) diabetic subjects with and without diabetic nephropathy in Finland. Diabetologia 41, 784–790 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Redondo, M. J., Jeffrey, J., Fain, P. R., Eisenbarth, G. S. & Orban, T. Concordance for islet autoimmunity among monozygotic twins. N. Engl. J. Med. 359, 2849–2850 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Fajans, S. S. & Bell, G. I. MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care 34, 1878–1884 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Udler, M. S. Type 2 diabetes: multiple genes, multiple diseases. Curr. Diab. Rep. 19, 55 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Robertson, C. C. & Rich, S. S. Genetics of type 1 diabetes. Curr. Opin. Genet. Dev. 50, 7–16 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Noble, J. A. & Erlich, H. A. Genetics of type 1 diabetes. Cold Spring Harb. Perspect. Med. 2, a007732 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barrett, J. C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooper, N. J. et al. Type 1 diabetes genome-wide association analysis with imputation identifies five new risk regions. bioRxiv https://doi.org/10.1101/120022 (2017).

    Article  Google Scholar 

  24. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ge, Y. et al. Targeted deep sequencing in multiple-affected sibships of European ancestry identifies rare deleterious variants in PTPN22 that confer risk for type 1 diabetes. Diabetes 65, 794–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Ingelsson, E. & McCarthy Mark, I. Human genetics of obesity and type 2 diabetes mellitus. Circ. Genom. Precis. Med. 11, e002090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prasad, R. B. & Groop, L. Genetics of type 2 diabetes — pitfalls and possibilities. Genes 6, 87–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Florez, J. C. The Genetics of Type 2 Diabetes and Related Traits (Springer, 2016).

  29. Chen, J. et al. Genome-wide association study of type 2 diabetes in Africa. Diabetologia 62, 1204–1211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ng, M. C. Y. et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 10, e1004517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Imamura, M. et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nat. Commun. 7, 10531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qi, Q. et al. Genetics of type 2 diabetes in U.S. Hispanic/Latino individuals: results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes 66, 1419–1425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho, Y. S. et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in East Asians. Nat. Genet. 44, 67 (2012).

    Article  CAS  Google Scholar 

  34. Kooner, J. S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Williams, A. L. et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Estrada, K. et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 311, 2305–2314 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Spracklen, C. N. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. bioRxiv https://doi.org/10.1101/685172 (2019).

    Article  Google Scholar 

  39. Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahajan, A. et al. 303-OR: ADA Presidents’ select abstract: transethnic association study of type 2 diabetes in more than a million individuals. Diabetes 68 (Suppl. 1), 303-OR (2019).

    Article  Google Scholar 

  41. Vujkovic, M. et al. Discovery of 318 novel loci for type-2 diabetes and related micro- and macrovascular outcomes among 1.4 million participants in a multi-ethnic meta-analysis. medRxiv https://doi.org/10.1101/19012690 (2019).

    Article  Google Scholar 

  42. Andersen, M. K. et al. Genetics of type 2 diabetes: the power of isolated populations. Curr. Diab. Rep. 16, 65 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. Langenberg, C. & Lotta, L. A. Genomic insights into the causes of type 2 diabetes. Lancet 391, 2463–2474 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Flannick, J. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570, 71–76 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dwivedi, O. P. et al. Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat. Genet. 51, 1596–1606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA 111, E455–464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deshpande, A. D., Harris-Hayes, M. & Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 88, 1254–1264 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Martínez-Castelao, A., Navarro-González, J., Górriz, J. & de Alvaro, F. The concept and the epidemiology of diabetic nephropathy have changed in recent years. J. Clin. Med. 4, 1207–1216 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tuttle, K. R. et al. Diabetic kidney disease: a report from an ADA consensus conference. Am. J. Kidney Dis. 64, 510–533 (2014).

    Article  PubMed  Google Scholar 

  50. Pettitt, D. J., Saad, M. F., Bennett, P. H., Nelson, R. G. & Knowler, W. C. Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 33, 438–443 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Harjutsalo, V., Katoh, S., Sarti, C., Tajima, N. & Tuomilehto, J. Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes 53, 2449–2454 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Borch-Johnsen, K. et al. Is diabetic nephropathy an inherited complication? Kidney Int. 41, 719–722 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Sandholm, N. et al. The genetic landscape of renal complications in type 1 diabetes. J. Am. Soc. Nephrol. 28, 557–574 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sandholm, N. et al. Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes. Diabetologia 57, 1143–1153 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. van Zuydam, N. R. et al. A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes 67, 1414–1427 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Imperatore, G. et al. Pima Diabetes Genes Group. Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Diabetes 47, 821–830 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Iyengar, S. K. et al. Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations. Diabetes 56, 1577–1585 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Schelling, J. R. et al. Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations. Diabetes 57, 235–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Vardarli, I. et al. Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3-23. Kidney Int. 62, 2176–2183 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Janssen, B. et al. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54, 2320–2327 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Mooyaart, A. L. et al. Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 54, 544–553 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Tong, Z. et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc. Natl Acad. Sci. USA 105, 6998–7003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reutens, A. T. Epidemiology of diabetic kidney disease. Med. Clin. 97, 1–18 (2013).

    Google Scholar 

  64. Pezzolesi, M. G. et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes 58, 1403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martini, S. et al. From single nucleotide polymorphism to transcriptional mechanism: a model for FRMD3 in diabetic nephropathy. Diabetes 62, 2605–2612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sandholm, N. et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 8, e1002921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sandholm, N. et al. Chromosome 2q31. 1 associates with ESRD in women with type 1 diabetes. J. Am. Soc. Nephrol. 24, 1537–1543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salem, R. M. et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J. Am. Soc. Nephrol. 30, 2000–2016 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Longo, I. et al. COL4A3/COL4A4 mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome. Kidney Int. 61, 1947–1956 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Taira, M. et al. A variant within the FTO confers susceptibility to diabetic nephropathy in Japanese patients with type 2 diabetes. PLoS One 13, e0208654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sandholm, N. & Groop, P. H. Genetic basis of diabetic kidney disease and other diabetic complications. Curr. Opin. Genet. Dev. 50, 17–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Ahlqvist, E., Van Zuydam, N. R., Groop, L. C. & McCarthy, M. I. The genetics of diabetic complications. Nat. Rev. Nephrol. 11, 277 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Sandholm, N. et al. Confirmation of GLRA3 as a susceptibility locus for albuminuria in Finnish patients with type 1 diabetes. Sci. Rep. 8, 12408 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Iyengar, S. K. et al. Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: family investigation of nephropathy and diabetes (FIND). PLoS Genet. 11, e1005352 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Guan, M. et al. Genome-wide association study identifies novel loci for type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum. Genomics 13, 21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Köttgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–217 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Köttgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Böger, C. A. et al. CUBN is a gene locus for albuminuria. J. Am. Soc. Nephrol. 22, 555–570 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Pattaro, C. et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet. 8, e1002584 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gorski, M. et al. Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int. 87, 1017–1029 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Teumer, A. et al. Genome-wide association studies identify genetic loci associated with albuminuria in diabetes. Diabetes 65, 803–817 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, M. et al. SOS2 and ACP1 loci identified through large-scale exome chip analysis regulate kidney development and function. J. Am. Soc. Nephrol. 28, 981–994 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Gorski, M. et al. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function. Sci. Rep. 7, 45040 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Haas, M. E. et al. Genetic association of albuminuria with cardiometabolic disease and blood pressure. Am. J. Hum. Genet. 103, 461–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ahluwalia, T. S. et al. A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes: results from an exome-wide association study of albuminuria. Diabetologia 62, 292–305 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Teumer, A. et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat. Commun. 10, 4130 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hellwege, J. N. et al. Mapping eGFR loci to the renal transcriptome and phenome in the VA million veteran program. Nat. Commun. 10, 1–11 (2019).

    Article  CAS  Google Scholar 

  91. Chu, J. & Ali, Y. Diabetic retinopathy: a review. Drug. Dev. Res. 69, 1–14 (2008).

    Article  CAS  Google Scholar 

  92. Yau, J. W. Y. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35, 556–564 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sivaprasad, S., Gupta, B., Crosby-Nwaobi, R. & Evans, J. Prevalence of diabetic retinopathy in various ethnic groups: a worldwide perspective. Surv. Ophthalmol. 57, 347–370 (2012).

    Article  PubMed  Google Scholar 

  94. United States Department of Health and Human Services. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011 (CDC, 2011).

  95. Bunce, C. & Wormald, R. Causes of blind certifications in England and Wales: April 1999–March 2000. Eye 22, 905–911 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Klein, R., Klein, B. E. & Moss, S. E. Visual impairment in diabetes. Ophthalmology 91, 1–9 (1984).

    Article  CAS  PubMed  Google Scholar 

  97. Leslie, R. & Pyke, D. Diabetic retinopathy in identical twins. Diabetes 31, 19–21 (1982).

    Article  CAS  PubMed  Google Scholar 

  98. The Diabetes Control and Complications Trial Research Group. Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes 46, 1829–1839 (1997).

    Article  Google Scholar 

  99. Looker, H. C. et al. Genome-wide linkage analyses to identify loci for diabetic retinopathy. Diabetes 56, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Arar, N. H. et al. Heritability of the severity of diabetic retinopathy: the FIND-eye study. Invest. Ophthalmol. Vis. Sci. 49, 3839–3845 (2008).

    Article  PubMed  Google Scholar 

  101. Hietala, K., Forsblom, C., Summanen, P. & Groop, P. H. Heritability of proliferative diabetic retinopathy. Diabetes 57, 2176–2180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hallman, D. M. et al. Familial aggregation of severity of diabetic retinopathy in Mexican Americans from Starr County, Texas. Diabetes Care 28, 1163–1168 (2005).

    Article  PubMed  Google Scholar 

  103. Hampton, B. M., Schwartz, S. G., Brantley, M. A. Jr. & Flynn, H. W. Jr. Update on genetics and diabetic retinopathy. Clin. Ophthalmol. 9, 2175–2193 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cho, H. & Sobrin, L. Genetics of diabetic retinopathy. Curr. Diab. Rep. 14, 515 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Burdon, K. P. et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia 58, 2288–2297 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Meng, W. et al. A genome-wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmol. 96, e811–e819 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, J., Wang, J. J. & Zhang, S. X. NADPH oxidase4-derived H2O2 promotes aberrant retinal neovascularization via activation of VEGF receptor 2 pathway in oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 55, 2955–2955 (2014).

    Google Scholar 

  108. Wang, H., Yang, Z., Jiang, Y. & Hartnett, M. E. Endothelial NADPH oxidase 4 mediates vascular endothelial growth factor receptor 2-induced intravitreal neovascularization in a rat model of retinopathy of prematurity. Mol. Vis. 20, 231–241 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pollack, S. et al. Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control. Diabetes 68, 441–456 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Shtir, C. et al. Exome-based case–control association study using extreme phenotype design reveals novel candidates with protective effect in diabetic retinopathy. Hum. Genet. 135, 193–200 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Ung, C. et al. Whole exome sequencing identification of novel candidate genes in patients with proliferative diabetic retinopathy. Vis. Res. 139, 168–176 (2017).

    Article  PubMed  Google Scholar 

  112. Johannsen, L. et al. Evaluation of patients with symptoms suggestive of chronic polyneuropathy. J. Clin. Neuromuscul. Dis. 3, 47–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Pop-Busui, R. et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care 40, 136–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Singh, N., Armstrong, D. G. & Lipsky, B. A. Preventing foot ulcers in patients with diabetes. JAMA 293, 217–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Most, R. S. & Sinnock, P. The epidemiology of lower extremity amputations in diabetic individuals. Diabetes Care 6, 87–91 (1983).

    Article  CAS  PubMed  Google Scholar 

  116. Young, M. J., Boulton, A. J. M., Macleod, A. F., Williams, D. R. R. & Sonksen, P. H. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia 36, 150–154 (1993).

    Article  CAS  PubMed  Google Scholar 

  117. Maser, R. E. et al. Epidemiological correlates of diabetic neuropathy: report from pittsburgh epidemiology of diabetes complications study. Diabetes 38, 1456–1461 (1989).

    Article  CAS  PubMed  Google Scholar 

  118. Tesfaye, S. et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM complications study. Diabetologia 39, 1377–1384 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Tesfaye, S. et al. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 352, 341–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Monti, M. C. et al. Familial risk factors for microvascular complications and differential male-female risk in a large cohort of American families with type 1 diabetes. J. Clin. Endocrinol. Metab. 92, 4650–4655 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Meng, W. et al. A genome-wide association study provides evidence of sex-specific involvement of Chr1p35.1 (ZSCAN20-TLR12P) and Chr8p23.1 (HMGB1P46) with diabetic neuropathic pain. EBioMedicine 2, 1386–1393 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Meng, W. et al. A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur. J. Pain. 19, 392–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Meng, W. et al. A genome-wide association study suggests that MAPK14 is associated with diabetic foot ulcers. Br. J. Dermatol. 177, 1664–1670 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Politi, C. et al. Recent advances in exploring the genetic susceptibility to diabetic neuropathy. Diabetes Res. Clin. Pract. 120, 198–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Witzel, I. I. et al. Identifying common genetic risk factors of diabetic neuropathies. Front. Endocrinol. 6, 88 (2015).

    Article  Google Scholar 

  126. Tang, Y. et al. A genetic locus on chromosome 2q24 predicting peripheral neuropathy risk in type 2 diabetes: results from the ACCORD and BARI 2D studies. Diabetes 68, 1649–1662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Blesneac, I. et al. Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy. Pain 159, 469–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Stamler, J., Vaccaro, O., Neaton, J. D. & Wentworth, D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care 16, 434–444 (1993).

    Article  CAS  PubMed  Google Scholar 

  129. Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Soedamah-Muthu, S. S. et al. High risk of cardiovascular disease in patients with type 1 diabetes in the UK. Diabetes Care 29, 798–804 (2006).

    Article  PubMed  Google Scholar 

  131. Turnbull, F. M. et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 52, 2288–2298 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Parry, H. M. et al. Both high and low HbA1c predict incident heart failure in type 2 diabetes mellitus. Circ. Heart Fail. 8, 236–242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fall, T. et al. The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLoS Med. 10, e1001474 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. De Ferranti, S. D. et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation 130, 1110–1130 (2014).

    Article  PubMed  Google Scholar 

  135. Klein, B. E. K. et al. Cardiovascular disease, mortality, and retinal microvascular characteristics in type 1 diabetes: Wisconsin epidemiologic study of diabetic retinopathy. Arch. Intern. Med. 164, 1917–1924 (2004).

    Article  PubMed  Google Scholar 

  136. Zdravkovic, S. et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J. Intern. Med. 252, 247–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Simonson, M. A., Wills, A. G., Keller, M. C. & McQueen, M. B. Recent methods for polygenic analysis of genome-wide data implicate an important effect of common variants on cardiovascular disease risk. BMC Med. Genet. 12, 146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wagenknecht Lynne, E. et al. Familial aggregation of coronary artery calcium in families with type 2 diabetes. Circulation 103, 1353–1353 (2001).

    Google Scholar 

  140. Lange, L. A. et al. Heritability and expression of C-reactive protein in type 2 diabetes in the diabetes heart study. Ann. Hum. Genet. 70, 717–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Lange, L. A. et al. Heritability of carotid artery intima-medial thickness in type 2 diabetes. Stroke 33, 1876–1881 (2002).

    Article  PubMed  Google Scholar 

  142. Erdmann, J., Kessler, T., Munoz Venegas, L. & Schunkert, H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc. Res. 114, 1241–1257 (2018).

    CAS  PubMed  Google Scholar 

  143. Qi, L. et al. Genetic susceptibility to coronary heart disease in type 2 diabetes. J. Am. Coll. Cardiol. 58, 2675–2682 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Parry, H. M. et al. Genetic variants predicting left ventricular hypertrophy in a diabetic population: a Go-DARTS study including meta-analysis. Cardiovasc. Diabetol. 12, 109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cox, A. J. et al. Genetic risk score associations with cardiovascular disease and mortality in the Diabetes Heart Study. Diabetes Care 37, 1157–1164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Doria, A. et al. Interaction between poor glycemic control and 9p21 locus on risk of coronary artery disease in type 2 diabetes. JAMA 300, 2389–2397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, L. W. et al. Interaction of type 2 diabetes mellitus with chromosome 9p21 rs10757274 polymorphism on the risk of myocardial infarction: a case–control study in Chinese population. BMC Cardiovasc. Disord. 14, 170 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Qi, L. et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310, 821–828 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Prudente, S. et al. Genetic variant at the GLUL locus predicts all-cause mortality in patients with type 2 diabetes. Diabetes 64, 2658–2663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. The Look AHEAD Research Group. Prospective association of GLUL rs10911021 with cardiovascular morbidity and mortality among individuals with type 2 diabetes: the look AHEAD study. Diabetes 65, 297–302 (2016).

    Google Scholar 

  151. Shah, H. S. et al. Genetic predictors of cardiovascular mortality during intensive glycemic control in type 2 diabetes: findings from the ACCORD clinical trial. Diabetes Care 39, 1915–1924 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Shah, H. S. et al. Modulation of GLP-1 levels by a genetic variant that regulates the cardiovascular effects of intensive glycemic control in ACCORD. Diabetes Care 41, 348–355 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nathan, D. M. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643–2653 (2005).

    Article  PubMed  Google Scholar 

  156. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

    Article  Google Scholar 

  157. The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  Google Scholar 

  158. Gerstein, H. C. et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Investigators, O. T. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 367, 319–328 (2012).

    Article  CAS  Google Scholar 

  160. Gerstein, H. C. et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 367, 319–328 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Ray, K. K. et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 373, 1765–1772 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Tkac, I. Effect of intensive glycemic control on cardiovascular outcomes and all-cause mortality in type 2 diabetes: overview and metaanalysis of five trials. Diabetes Res. Clin. Pract. 86 (Suppl. 1), S57–S62 (2009).

    Article  PubMed  Google Scholar 

  163. Boussageon, R. et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 343, d4169 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. W. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Gerstein, H. C. et al. Effects of intensive glycaemic control on ischaemic heart disease: analysis of data from the randomised, controlled ACCORD trial. Lancet 384, 1936–1941 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hayward, R. A., Reaven, P. D. & Emanuele, N. V. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 373, 978 (2015).

    PubMed  Google Scholar 

  167. Zinman, B., Lachin, J. M. & Inzucchi, S. E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 374, 1094 (2016).

    Article  PubMed  Google Scholar 

  168. Merino, J. et al. Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. Diabetes Care 40, 687–693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rani, P. K. et al. Albuminuria and diabetic retinopathy in type 2 diabetes mellitus Sankara nethralaya diabetic retinopathy epidemiology and molecular genetic study (SN-DREAMS, report 12). Diabetol. Metab. Syndr. 3, 9 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Groop, P. H. et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58, 1651–1658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chavers, B. M., Mauer, S. M., Ramsay, R. C. & Steffes, M. W. Relationship between retinal and glomerular lesions in IDDM patients. Diabetes 43, 441–446 (1994).

    Article  CAS  PubMed  Google Scholar 

  172. Klein, R. et al. The relationship of diabetic retinopathy to preclinical diabetic glomerulopathy lesions in type 1 diabetic patients. Diabetes 54, 527–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Dyck, P. J. et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population – based cohort. Neurology 43, 817–817 (1993).

    Article  CAS  PubMed  Google Scholar 

  174. Hill, M. N. et al. Risk of foot complications in long-term diabetic patients with and without ESRD: a preliminary study. ANNA J. 23, 381–389 (1996).

    CAS  PubMed  Google Scholar 

  175. Eggers, P. W., Gohdes, D. & Pugh, J. Nontraumatic lower extremity amputations in the Medicare end-stage renal disease population. Kidney Int. 56, 1524–1533 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Drury, P. L. et al. Estimated glomerular filtration rate and albuminuria are independent predictors of cardiovascular events and death in type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia 54, 32–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Nichols, G. A., Déruaz-Luyet, A., Hauske, S. J. & Brodovicz, K. G. The association between estimated glomerular filtration rate, albuminuria, and risk of cardiovascular hospitalizations and all-cause mortality among patients with type 2 diabetes. J. Diabetes Complications 32, 291–297 (2018).

    Article  PubMed  Google Scholar 

  178. Fuller, J. H., Stevens, L. K. & Wang, S. L., and the WHO Multinational Study Group. Risk factors for cardiovascular mortality and morbidity: the WHO multinational study of vascular disease in diabetes. Diabetologia 44, S54 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Cheung, N. et al. Is diabetic retinopathy an independent risk factor for ischemic stroke? Stroke 38, 398–401 (2007).

    Article  PubMed  Google Scholar 

  180. Cheung, N. et al. Diabetic retinopathy and the risk of coronary heart disease: the Atherosclerosis risk in communities study. Diabetes Care 30, 1742–1746 (2007).

    Article  PubMed  Google Scholar 

  181. Mukhopadhyay, N., Noble, J. A., Govil, M., Marazita, M. L. & Greenberg, D. A. Identifying genetic risk loci for diabetic complications and showing evidence for heterogeneity of type 1 diabetes based on complications risk. PLoS One 13, e0192696 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nathan, D. M. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article  CAS  PubMed  Google Scholar 

  185. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317, 703–713 (1998).

    Article  PubMed Central  Google Scholar 

  186. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  187. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  188. Zelniker, T. A. et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation 139, 2022–2031 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Mahaffey Kenneth, W. et al. Canagliflozin and cardiovascular and renal outcomes in type 2 diabetes mellitus and chronic kidney disease in primary and secondary cardiovascular prevention groups. Circulation 140, 739–750 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Santer, R. et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J. Am. Soc. Nephrol. 14, 2873–2882 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.B.C. is supported by an American Diabetes Postdoctoral Fellowship (1-19-PDF-028). J.C.F. is supported by NIDDK K24 DK110550 and R01 DK105154.

Author information

Authors and Affiliations

Authors

Contributions

J.B.C. researched data for the article, made a substantial contribution to discussion of the content and wrote and reviewed/edited the manuscript before submission. J.C.F. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Jose C. Florez.

Ethics declarations

Competing interests

J.C.F. has received consulting honoraria from Janssen Pharmaceuticals and Goldfinch Bio, and a speaker honorarium from Novo Nordisk. J.B.C. declares no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks Peter Rossing, Marcus Pezzolesi and Carol Forsblom for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, J.B., Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16, 377–390 (2020). https://doi.org/10.1038/s41581-020-0278-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0278-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing