Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The tubular hypothesis of nephron filtration and diabetic kidney disease

Abstract

Kidney size and glomerular filtration rate (GFR) often increase with the onset of diabetes, and elevated GFR is a risk factor for the development of diabetic kidney disease. Hyperfiltration mainly occurs in response to signals passed from the tubule to the glomerulus: high levels of glucose in the glomerular filtrate drive increased reabsorption of glucose and sodium by the sodium–glucose cotransporters SGLT2 and SGLT1 in the proximal tubule. Passive reabsorption of chloride and water also increases. The overall capacity for proximal reabsorption is augmented by growth of the proximal tubule, which (alongside sodium–glucose cotransport) further limits urinary glucose loss. Hyperreabsorption of sodium and chloride induces tubuloglomerular feedback from the macula densa to increase GFR. In addition, sodium–glucose cotransport by SGLT1 on macula densa cells triggers the production of nitric oxide, which also contributes to glomerular hyperfiltration. Although hyperfiltration restores sodium and chloride excretion it imposes added physical stress on the filtration barrier and increases the oxygen demand to drive reabsorption. Tubular growth is associated with the development of a senescence-like molecular signature that sets the stage for inflammation and fibrosis. SGLT2 inhibitors attenuate the proximal reabsorption of sodium and glucose, normalize tubuloglomerular feedback signals and mitigate hyperfiltration. This tubule-centred model of diabetic kidney physiology predicts the salutary effect of SGLT2 inhibitors on hard renal outcomes, as shown in large-scale clinical trials.

Key points

  • Rising blood glucose levels drive increased delivery of glucose into the Bowman’s space by glomerular filtration and cause increased reabsorption of glucose and sodium by the proximal tubule sodium–glucose cotransporters, SGLT2 and SGLT1, up to a transport maximum.

  • Diabetes mellitus causes the kidney tubule to grow and increase its capacity for transport; most of this growth occurs in the proximal tubule, which increases glucose reabsorption and contributes to hyperglycaemia, and induces abnormally high reabsorption of filtered sodium chloride (NaCl).

  • The increase in proximal reabsorption reduces NaCl and fluid delivery to the macula densa and induces glomerular hyperfiltration through tubuloglomerular feedback and a decline in tubular back pressure, which helps to normalize renal NaCl and fluid excretion.

  • Glomerular hyperfiltration places physical stress on the filtration barrier and increases the demand for oxygen to reabsorb the filtered load; hypertrophic tubular cells exhibit a senescence-like phenotype, with pro-inflammatory and pro-fibrotic consequences that might promote the development of diabetic kidney disease (DKD).

  • Not all patients with diabetes develop DKD, suggesting that the tubular growth and hyperreabsorption response must be subject to genetic or environmental influences; one such environmental factor is dietary NaCl, which mitigates hyperfiltration in diabetes by suppressing proximal reabsorption and thereby increasing the tubuloglomerular feedback signal.

  • The clinical relevance of increased proximal reabsorption and hyperfiltration in diabetes is demonstrated by the ability of SGLT2 to improve renal outcomes in patients with diabetes, which has been verified in large-scale clinical trials.

  • SGLT1 is a positive regulator of NOS1 in the macula densa, and acts as a glucose sensor to stimulate hyperfiltration and potentially regulate tubule growth in the diabetic kidney.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tubular hypothesis of glomerular filtration and nephropathy in diabetes mellitus.
Fig. 2: Primary tubular hyperreabsorption drives hyperfiltration in diabetes.
Fig. 3: Renal glucose reabsorption in the proximal tubule.
Fig. 4: Diabetes induces the hyperreabsorption of glucose and sodium in the proximal tubule.
Fig. 5: Mechanisms of kidney protection in response to SGLT2 inhibition.
Fig. 6: The role of SGLT1 in the diabetic kidney.
Fig. 7: Mechanisms and consequences of tubular growth in diabetes.

Similar content being viewed by others

References

  1. United States Renal Data System. 2015 Annual Data Report: Epidemiology of kidney disease in the United States, Bethesda, MD. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases 2015, https://www.usrds.org/2015/view/ (2015).

  2. Thomas, M. C. et al. Diabetic kidney disease. Nat. Rev. Dis. Prim. 1, 15018 (2015).

    Article  PubMed  Google Scholar 

  3. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  4. Papademetriou, V. et al. Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes. Kidney Int. 87, 649–659 (2015).

    Article  PubMed  Google Scholar 

  5. Lanting, L. C., Joung, I. M., Mackenbach, J. P., Lamberts, S. W. & Bootsma, A. H. Ethnic differences in mortality, end-stage complications, and quality of care among diabetic patients: a review. Diabetes Care 28, 2280–2288 (2005).

    Article  PubMed  Google Scholar 

  6. Salem, R. M. et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J. Am. Soc. Nephrol. 30, 2000–2016 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Zuydam, N. R. et al. A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes 67, 1414–1427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gheith, O., Farouk, N., Nampoory, N., Halim, M. A. & Al-Otaibi, T. Diabetic kidney disease: world wide difference of prevalence and risk factors. J. Nephropharmacol. 5, 49–56 (2016).

    PubMed  Google Scholar 

  9. Vallon, V. & Komers, R. Pathophysiology of the diabetic kidney. Compr. Physiol. 1, 1175–1232 (2011).

    PubMed  PubMed Central  Google Scholar 

  10. Reidy, K., Kang, H. M., Hostetter, T. & Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333–2340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu, J., Lee, K., Chuang, P. Y., Liu, Z. & He, J. C. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am. J. Physiol. Renal Physiol. 308, F287–F297 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Kanwar, Y. S., Sun, L., Xie, P., Liu, F. Y. & Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol. 6, 395–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ziyadeh, F. N. & Wolf, G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr. Diabetes Rev. 4, 39–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Hostetter, T. H. Diabetic nephropathy. Metabolic versus hemodynamic considerations. Diabetes Care 15, 1205–1215 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Vallon, V. & Thomson, S. C. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu. Rev. Physiol. 74, 351–375 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Vallon, V., Richter, K., Blantz, R. C., Thomson, S. & Osswald, H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J. Am. Soc. Nephrol. 10, 2569–2576 (1999).

    CAS  PubMed  Google Scholar 

  17. Thomson, S. C., Vallon, V. & Blantz, R. C. Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am. J. Physiol. Renal Physiol. 286, F8–F15 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Macisaac, R. J. et al. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 27, 195–200 (2004).

    Article  PubMed  Google Scholar 

  19. Mogensen, C. E., Christensen, C. K. & Vittinghus, E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 32, 64–78 (1983).

    Article  PubMed  Google Scholar 

  20. Kramer, H. J., Nguyen, Q. D., Curhan, G. & Hsu, C. Y. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289, 3273–3277 (2003).

    Article  PubMed  Google Scholar 

  21. Magee, G. M. et al. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia 52, 691–697 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Tonneijck, L. et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 28, 1023–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vallon, V. & Thomson, S. C. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60, 215–225 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Hallow, K. M., Gebremichael, Y., Helmlinger, G. & Vallon, V. Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis. Am. J. Physiol. Renal Physiol. 312, F819–F835 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vallon, V. & Osswald, H. Dipyridamole prevents diabetes-induced alterations of kidney function in rats. Naunyn Schmiedebergs Arch. Pharmacol. 349, 217–222 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Thomson, S., Bao, D., Deng, A. & Vallon, V. Adenosine formed by 5ʹ-nucleotidase mediates tubuloglomerular feedback. J. Clin. Invest. 106, 289–298 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pollock, C. A., Lawrence, J. R. & Field, M. J. Tubular sodium handling and tubuloglomerular feedback in experimental diabetes mellitus. Am. J. Physiol. 260, F946–F952 (1991).

    CAS  PubMed  Google Scholar 

  28. Vallon, V. et al. Salt-sensitivity of proximal reabsorption alters macula densa salt and explains the paradoxical effect of dietary salt on glomerular filtration rate in diabetes mellitus. J. Am. Soc. Nephrol. 13, 1865–1871 (2002).

    Article  PubMed  Google Scholar 

  29. Vallon, V., Blantz, R. C. & Thomson, S. Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats. Am. J. Physiol. 269, F876–F883 (1995).

    CAS  PubMed  Google Scholar 

  30. Ditzel, J., Lervang, H. H. & Brochner-Mortensen, J. Renal sodium metabolism in relation to hypertension in diabetes. Diabete Metab. 15, 292–295 (1989).

    CAS  PubMed  Google Scholar 

  31. Mbanya, J. C., Thomas, T. H., Taylor, R., Alberti, K. G. & Wilkinson, R. Increased proximal tubular sodium reabsorption in hypertensive patients with type 2 diabetes. Diabet. Med. 6, 614–620 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Brochner-Mortensen, J., Stockel, M., Sorensen, P. J., Nielsen, A. H. & Ditzel, J. Proximal glomerulo-tubular balance in patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 27, 189–192 (1984).

    CAS  PubMed  Google Scholar 

  33. Thomson, S. C. et al. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am. J. Physiol. Regul. Integr. Comp. Physiol 302, R75–R83 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Blantz, R. C., Singh, P., Deng, A., Thomson, S. C. & Vallon, V. Acute saline expansion increases nephron filtration and distal flow rate but maintains tubuloglomerular feedback responsiveness: role of adenosine A(1) receptors. Am. J. Physiol. Renal Physiol. 303, F405–F411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woods, L. L., Mizelle, H. L. & Hall, J. E. Control of renal hemodynamics in hyperglycemia: possible role of tubuloglomerular feedback. Am. J. Physiol. 252, F65–F73 (1987).

    CAS  PubMed  Google Scholar 

  36. Vallon, V. et al. Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus. Nephron Physiol. 111, 30–38 (2009).

    Article  CAS  Google Scholar 

  37. Vallon, V., Muhlbauer, B. & Osswald, H. Adenosine and kidney function. Physiol. Rev. 86, 901–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Ren, Y., Garvin, J. L., Liu, R. & Carretero, O. A. Possible mechanism of efferent arteriole (Ef-Art) tubuloglomerular feedback. Kidney Int. 71, 861–866 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Sallstrom, J. et al. Diabetes-induced hyperfiltration in adenosine A(1)-receptor deficient mice lacking the tubuloglomerular feedback mechanism. Acta Physiol. 190, 253–259 (2007).

    Article  CAS  Google Scholar 

  40. Faulhaber-Walter, R. et al. Lack of A1 adenosine receptors augments diabetic hyperfiltration and glomerular injury. J. Am. Soc. Nephrol. 19, 722–730 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weinstein, A. M. Osmotic diuresis in a mathematical model of the rat proximal tubule. Am. J. Physiol. 250, F874–F884 (1986).

    CAS  PubMed  Google Scholar 

  42. Skrtic, M. et al. Influence of sex on hyperfiltration in patients with uncomplicated type 1 diabetes. Am. J. Physiol. Renal Physiol. 312, F599–F606 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Vervoort, G., Veldman, B., Berden, J. H., Smits, P. & Wetzels, J. F. Glomerular hyperfiltration in type 1 diabetes mellitus results from primary changes in proximal tubular sodium handling without changes in volume expansion. Eur. J. Clin. Invest. 35, 330–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hannedouche, T. P. et al. Renal hemodynamics and segmental tubular reabsorption in early type 1 diabetes. Kidney Int. 37, 1126–1133 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Pruijm, M. et al. Glomerular hyperfiltration and increased proximal sodium reabsorption in subjects with type 2 diabetes or impaired fasting glucose in a population of the African region. Nephrol. Dial. Transplant. 25, 2225–2231 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Thomson, S. C. et al. Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J. Clin. Invest. 107, 217–224 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barfuss, D. W. & Schafer, J. A. Differences in active and passive glucose transport along the proximal nephron. Am. J. Physiol. 241, F322–F332 (1981).

    CAS  PubMed  Google Scholar 

  48. Turner, R. J. & Moran, A. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am. J. Physiol. 242, F406–F414 (1982).

    CAS  PubMed  Google Scholar 

  49. Wright, E. M., Loo, D. D. & Hirayama, B. A. Biology of human sodium glucose transporters. Physiol. Rev. 91, 733–794 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Vrhovac, I. et al. Localizations of Na-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 467, 1881–1898 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Vallon, V. et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 22, 104–112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sabolic, I. et al. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am. J. Physiol. Cell Physiol. 302, C1174–C1188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balen, D. et al. Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am. J. Physiol. Cell Physiol. 295, C475–C489 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Rieg, T. et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am. J. Physiol. Renal Physiol. 306, F188–F193 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Gorboulev, V. et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Santer, R. & Calado, J. Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol. 5, 133–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Martin, M. G., Turk, E., Lostao, M. P., Kerner, C. & Wright, E. M. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat. Genet. 12, 216–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. DeFronzo, R. A. et al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care 36, 3169–3176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Farber, S. J., Berger, E. Y. & Earle, D. P. Effect of diabetes and insulin of the maximum capacity of the renal tubules to reabsorb glucose. J. Clin. Invest. 30, 125–129 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mogensen, C. E. Maximum tubular reabsorption capacity for glucose and renal hemodynamcis during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand. J. Clin. Lab. Invest. 28, 101–109 (1971).

    Article  CAS  PubMed  Google Scholar 

  61. Vallon, V., Blantz, R. C. & Thomson, S. Glomerular hyperfiltration and the salt paradox in early type 1 diabetes mellitus: a tubulo-centric view. J. Am. Soc. Nephrol. 14, 530–537 (2003).

    Article  PubMed  Google Scholar 

  62. Vallon, V. et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Renal Physiol. 304, F156–F167 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Vallon, V. et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol. 306, F194–F204 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Kamran, M., Peterson, R. G. & Dominguez, J. H. Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats. J. Am. Soc. Nephrol. 8, 943–948 (1997).

    CAS  PubMed  Google Scholar 

  65. Freitas, H. S. et al. SLC2A2 gene expression in kidney of diabetic rats is regulated by HNF-1alpha and HNF-3beta. Mol. Cell Endocrinol. 305, 63–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Chin, E. et al. Changes in facilitative glucose transporter messenger ribonucleic acid levels in the diabetic rat kidney. Endocrinol. 138, 1267–1275 (1997).

    Article  CAS  Google Scholar 

  67. Dominguez, J. H., Camp, K., Maianu, L., Feister, H. & Garvey, W. T. Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. Am. J. Physiol. 266, F283–F290 (1994).

    CAS  PubMed  Google Scholar 

  68. Marks, J., Carvou, N. J., Debnam, E. S., Srai, S. K. & Unwin, R. J. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J. Physiol. 553, 137–145 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hinden, L. et al. Modulation of renal GLUT2 by the cannabinoid-1 receptor: implications for the treatment of diabetic nephropathy. J. Am. Soc. Nephrol. 29, 434–448 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Goestemeyer, A. K., Marks, J., Srai, S. K., Debnam, E. S. & Unwin, R. J. GLUT2 protein at the rat proximal tubule brush border membrane correlates with protein kinase C (PKC)-betal and plasma glucose concentration. Diabetologia 50, 2209–2217 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Song, P. et al. Knockout of Na-glucose-cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase-1 in macula densa and glomerular hyperfiltration. Am. J. Physiol. Renal Physiol. 317, F207–F217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kellett, G. L., Brot-Laroche, E., Mace, O. J. & Leturque, A. Sugar absorption in the intestine: the role of GLUT2. Annu. Rev. Nutr. 28, 35–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Rahmoune, H. et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54, 3427–3434 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, X. X. et al. SGLT2 expression is increased in human diabetic nephropathy: SGLT2 inhibition decreases renal lipid accumulation, inflammation and the development of nephropathy in diabetic mice. J. Biol. Chem. 292, 5335–5348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seyer-Hansen, K. Renal hypertrophy in experimental diabetes: some functional aspects. J. Diabet. Complications 1, 7–10 (1987).

    Article  CAS  PubMed  Google Scholar 

  76. Vallon, V. The proximal tubule in the pathophysiology of the diabetic kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1009–R1022 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Weinstein, A. M. et al. Flow-dependent transport in a mathematical model of rat proximal tubule. Am. J. Physiol. Renal Physiol. 292, F1164–F1181 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Fattah, H., Layton, A. & Vallon, V. How do kidneys adapt to a deficit or loss in nephron number? Physiol. 34, 189–197 (2019).

    Article  CAS  Google Scholar 

  79. Osorio, H. et al. Effect of treatment with losartan on salt sensitivity and SGLT2 expression in hypertensive diabetic rats. Diabetes Res. Clin. Pract. 86, e46–e49 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Freitas, H. S. et al. Na(+)-glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinol. 149, 717–724 (2008).

    Article  CAS  Google Scholar 

  81. Ghezzi, C. & Wright, E. M. Regulation of the human Na+dependent glucose cotransporter hSGLT2. Am. J. Physiol. Cell Physiol. 303, C348–C354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tiwari, S., Riazi, S. & Ecelbarger, C. A. Insulin’s impact on renal sodium transport and blood pressure in health, obesity, and diabetes. Am. J. Physiol. Renal Physiol. 293, F974–F984 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Toyoki, D. et al. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. Am. J. Physiol. Renal Physiol. 313, F826–F834 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Novikov, A. et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am. J. Physiol. Renal Physiol. 316, F173–F185 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Pessoa, T. D., Campos, L. C., Carraro-Lacroix, L., Girardi, A. C. & Malnic, G. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+exchanger isoform 3 activity in the renal proximal tubule. J. Am. Soc. Nephrol. 25, 2028–2039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, W. et al. Tubular NHE3 is a determinant of the acute natriuretic and chronic blood pressure lowering effect of the SGLT2 inhibitor empagliflozin. FASEB J. 32, (Supplement No 1), 620.17 (2018).

    Google Scholar 

  87. Coady, M. J. et al. MAP17 is a necessary activator of renal Na+/glucose cotransporter SGLT2. J. Am. Soc. Nephrol. 28, 85–93 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Fu, Y., Gerasimova, M., Mayoux, E., Masuda, T. & Vallon, V. SGLT2 inhibitor empagliflozin increases renal NHE3 phosphorylation in diabetic Akita mice: possible implications for the prevention of glomerular hyperfiltration. Diabetes 63, (supplement 1), A132 (2014).

    Google Scholar 

  89. Onishi, A. et al. Effect of renal tubule-specific knockdown of the Na(+)/H(+) exchanger NHE3 in Akita diabetic mice. Am. J. Physiol. Renal Physiol. 317, F419–F434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin, R. et al. D-glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+exchange regulatory factor 2-dependent process. Gastroenterology 140, 560–571 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Masuda, T. et al. Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat. Am. J. Physiol. Renal Physiol. 315, F653–F664 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vallon, V. Tubular transport in acute kidney injury: relevance for diagnosis, prognosis and intervention. Nephron 134, 160–166 (2016).

    Article  PubMed  Google Scholar 

  93. Zapata-Morales, J. R., Galicia-Cruz, O. G., Franco, M. & Martinez, Y. M. Hypoxia-inducible factor-1alpha (HIF-1alpha) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. J. Biol. Chem. 289, 346–357 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Schmidt, C., Hocherl, K., Schweda, F., Kurtz, A. & Bucher, M. Regulation of renal sodium transporters during severe inflammation. J. Am. Soc. Nephrol. 18, 1072–1083 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Ghezzi, C. et al. SGLT2 inhibitors act from the extracellular surface of the cell membrane. Physiol. Rep. 2, e12058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fu, Y. et al. The organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin. Am. J. Physiol. Renal Physiol. 315, F386–F394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qiu, H., Novikov, A. & Vallon, V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: basic mechanisms and therapeutic perspectives. Diabetes Metab. Res. Rev. 33, 5 (2017).

    Article  Google Scholar 

  98. Ferrannini, E., Mark, M. & Mayoux, E. CV Protection in the EMPA-REG OUTCOME trial: a “Thrifty Substrate” hypothesis. Diabetes Care 39, 1108–1114 (2016).

    Article  PubMed  Google Scholar 

  99. Jurczak, M. J. et al. SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function. Diabetes 60, 890–898 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Merovci, A. et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Invest. 124, 509–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124, 499–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hansen, H. H. et al. The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves beta-cell mass and restores glucose homeostasis in the male zucker diabetic fatty rat. J. Pharmacol. Exp. Ther. 350, 657–664 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Macdonald, F. R. et al. The novel sodium glucose transporter 2 inhibitor dapagliflozin sustains pancreatic function and preserves islet morphology in obese, diabetic rats. Diabetes Obes. Metab. 12, 1004–1012 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Nespoux, J. & Vallon, V. SGLT2 inhibition and kidney protection. Clin. Sci. 132, 1329–1339 (2018).

    Article  CAS  Google Scholar 

  105. Kidokoro, K. et al. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging. Circulation 140, 303–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Cherney, D. Z. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129, 587–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. van Bommel, E. J., Muskiet, M. H., & van Baar, M. J. B. Dapagliflozin reduces measured GFR by reducing renal efferent arteriolar resistance in type 2 diabetes. Diabetes American Diabetes Association 79th Scientific Sessions, S-157 (Abstract) (2019).

  108. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Perkovic, V., Jardine, M., Vijapurkar, U. & Meininger, G. Renal effects of canagliflozin in type 2 diabetes mellitus. Curr. Med. Res. Opin. 31, 2219–2231 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Heerspink, H. J. et al. Canagliflozin slows progression of renal function decline independently of glycemic effects. J. Am. Soc. Nephrol. 28, 368–375 (2018).

    Article  Google Scholar 

  111. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Kohan, D. E. et al. The effect of dapagliflozin on renal function in patients with type 2 diabetes. J. Nephrol. 29, 391–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Yale, J. F. et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. 15, 463–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Barnett, A. H. et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2, 369–384 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Zelniker, T. A. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393, 31–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Thomson, S. C. & Vallon, V. Renal effects of sodium-glucose Co-transporter inhibitors. Am. J. Cardiol. 124, S28–S35 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Foote, C., Perkovic, V. & Neal, B. Effects of SGLT2 inhibitors on cardiovascular outcomes. Diab. Vasc. Dis. Res. 9, 117–123 (2012).

    Article  PubMed  Google Scholar 

  119. Lambers Heerspink, H. J., de, Z. D., Wie, L., Leslie, B. & List, J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab. 15, 853–862 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Kato, E. T. et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 139, 2528–2536 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Kanbay, M. et al. Uric acid in metabolic syndrome: from an innocent bystander to a central player. Eur. J. Intern. Med. 29, 3–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Lytvyn, Y. et al. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am. J. Physiol. Renal Physiol. 308, F77–F83 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Chino, Y. et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm. Drug. Dispos. 35, 391–404 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vaduganathan, M. & Januzzi, J. L. Jr. Preventing and treating heart failure with sodium-glucose co-transporter 2 inhibitors. Am. J. Cardiol. 124, S20–S27 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Cannon, C. P. et al. Evaluating the effects of canagliflozin on cardiovascular and renal events in patients with type 2 diabetes and chronic kidney disease according to baseline HbA1c, Including those with HbA1c<7%: results from the CREDENCE trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.119.044359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ishizawa, K. et al. Inhibition of sodium glucose cotransporter 2 attenuates the dysregulation of Kelch-Like 3 and NaCl cotransporter in obese diabetic mice. J. Am. Soc. Nephrol. 30, 782–794 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Monami, M., Nardini, C. & Mannucci, E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes. Metab. 16, 457–466 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Layton, A. T., Vallon, V. & Edwards, A. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am. J. Physiol. Renal Physiol. 308, F1343–F1357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Neill, O. et al. Acute SGLT inhibition normalizes oxygen tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am. J. Physiol. Renal Physiol. 309, F227–F234 (2015).

    Article  CAS  Google Scholar 

  132. Layton, A. T., Vallon, V. & Edwards, A. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am. J. Physiol. Renal Physiol. 310, F1269–F1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sano, M., Takei, M., Shiraishi, Y. & Suzuki, Y. Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J. Clin. Med. Res. 8, 844–847 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Inzucchi, S. E. et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41, 356–363 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Layton, A. T. & Vallon, V. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism. Am. J. Physiol. Renal Physiol. 314, F969–F984 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nadkarni, G. N. et al. Acute kidney injury in patients on SGLT2 inhibitors: a propensity-matched analysis. Diabetes Care 40, 1479–1485 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Song, P., Onishi, A., Koepsell, H. & Vallon, V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert. Opin. Ther. Targets. 20, 1109–1125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vallon, V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu. Rev. Med. 66, 255–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Powell, D. R. et al. Improved glycemic control in mice lacking Sglt1 and Sglt2. Am. J. Physiol. Endocrinol. Metab. 304, E117–E130 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Gallo, L. A., Wright, E. M. & Vallon, V. Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diab. Vasc. Dis. Res. 12, 78–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Gembardt, F. et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am. J. Physiol. Renal Physiol. 307, F317–F325 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Han, H. J., Lee, Y. J., Park, S. H., Lee, J. H. & Taub, M. High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 288, F988–F996 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Nespoux, J. et al. Gene deletion of the Na-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion. Am. J. Physiol. Renal Physiol. 316, F1201–F1210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wilcox, C. S. et al. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc. Natl Acad. Sci. USA 89, 11993–11997 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, R., Carretero, O. A., Ren, Y. & Garvin, J. L. Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback. Kidney Int. 67, 1837–1843 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Vallon, V. et al. Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice. J. Am. Soc. Nephrol. 12, 1599–1606 (2001).

    CAS  PubMed  Google Scholar 

  147. Komers, R., Lindsley, J. N., Oyama, T. T., Allison, K. M. & Anderson, S. Role of neuronal nitric oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes. Am. J. Physiol. Renal Physiol. 279, F573–F583 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Tolins, J. P., Shultz, P. J., Raij, L., Brown, D. M. & Mauer, S. M. Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats: role of NO. Am. J. Physiol. 265, F886–F895 (1993).

    CAS  PubMed  Google Scholar 

  149. Zhang, J. et al. Macula densa SGLT1-NOS1-TGF pathway — a new mechanism for glomerular hyperfiltration during hyperglycemia. J. Am. Soc. Nephrol. 30, 578–593 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Thomson, S. C. et al. Early diabetes as a model for testing the regulation of juxtaglomerular NOS I. Am. J. Physiol. Renal Physiol. 287, F732–F738 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Guyton, A. C. Blood pressure control — special role of the kidneys and body fluids. Science 252, 1813–1816 (1991).

    Article  CAS  PubMed  Google Scholar 

  152. Lu, D. et al. Salt-sensitive splice variant of nNOS expressed in the macula densa cells. Am. J. Physiol. Renal Physiol 298, F1465–F1471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lu, Y. et al. Macula Densa nitric oxide synthase 1beta protects against salt-sensitive hypertension. J. Am. Soc. Nephrol. 27, 2346–2356 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Wang, X. et al. Inhibition of nitric oxide synthase 1 induces salt-sensitive hypertension in nitric oxide synthase 1alpha knockout and wild-type mice. Hypertension 67, 792–799 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Welch, W. J. & Wilcox, C. S. Role of nitric oxide in tubuloglomerular feedback: effects of dietary salt. Clin. Exp. Pharmacol. Physiol. 24, 582–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  156. Thomson, S. C. Nitric oxide mediates anomalous tubuloglomerular feedback in rats fed high-NaCl diet after subtotal nephrectomy. Am. J. Physiol. Renal Physiol. 316, F223–F230 (2019).

    Article  PubMed  Google Scholar 

  157. Thomson, S. C. et al. Temporal adjustment of the juxtaglomerular apparatus during sustained inhibition of proximal reabsorption. J. Clin. Invest. 104, 1149–1158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rieg, T. & Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61, 2079–2086 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sims, H., Smith, K. H., Bramlage, P. & Minguet, J. Sotagliflozin: a dual sodium-glucose co-transporter-1 and -2 inhibitor for the management of Type 1 and Type 2 diabetes mellitus. Diabet. Med. 35, 1037–1048 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Cefalo, C. M. A. et al. Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives. Cardiovasc. Diabetol. 18, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zerbini, G. et al. Persistent renal hypertrophy and faster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes 55, 2620–2625 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Rigalleau, V. et al. Large kidneys predict poor renal outcome in subjects with diabetes and chronic kidney disease. BMC. Nephrol. 11, 3 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lawson, M. L., Sochett, E. B., Chait, P. G., Balfe, J. W. & Daneman, D. Effect of puberty on markers of glomerular hypertrophy and hypertension in IDDM. Diabetes 45, 51–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  164. Bognetti, E., Zoja, A., Meschi, F., Paesano, P. L. & Chiumello, G. Relationship between kidney volume, microalbuminuria and duration of diabetes mellitus. Diabetologia 39, 1409 (1996).

    CAS  PubMed  Google Scholar 

  165. Baumgartl, H. J., Sigl, G., Banholzer, P., Haslbeck, M. & Standl, E. On the prognosis of IDDM patients with large kidneys. Nephrol. Dial. Transplant. 13, 630–634 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Wolf, G. & Ziyadeh, F. N. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 56, 393–405 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Chiarelli, F., Gaspari, S. & Marcovecchio, M. L. Role of growth factors in diabetic kidney disease. Horm. Metab. Res. 41, 585–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Kamesaki, H., Nishizawa, K., Michaud, G. Y., Cossman, J. & Kiyono, T. TGF-beta 1 induces the cyclin-dependent kinase inhibitor p27Kip1 mRNA and protein in murine B cells. J. Immunol. 160, 770–777 (1998).

    CAS  PubMed  Google Scholar 

  169. Wolf, G. et al. High glucose stimulates expression of p27Kip1 in cultured mouse mesangial cells: relationship to hypertrophy. Am. J. Physiol. 273, F348–F356 (1997).

    CAS  PubMed  Google Scholar 

  170. Huang, J. S., Chuang, L. Y., Guh, J. Y. & Huang, Y. J. Effects of nitric oxide and antioxidants on advanced glycation end products-induced hypertrophic growth in human renal tubular cells. Toxicol. Sci. 111, 109–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Chen, J. K., Chen, J., Thomas, G., Kozma, S. C. & Harris, R. C. S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy. Am. J. Physiol. Renal Physiol 297, F585–F593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yang, D. et al. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol. Life Sci. 75, 669–688 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Satriano, J. et al. Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. Am. J. Physiol. Cell Physiol. 299, C374–C380 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Verzola, D. et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol 295, F1563–F1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Phillips, A. O., Steadman, R., Morrisey, K. & Williams, J. D. Polarity of stimulation and secretion of transforming growth factor-beta 1 by cultured proximal tubular cells. Am. J. Pathol. 150, 1101–1111 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Phillips, A. O. & Steadman, R. Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histol. Histopathol. 17, 247–252 (2002).

    CAS  PubMed  Google Scholar 

  177. Sokolovska, J. et al. Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model. Arch. Physiol. Biochem. 116, 137–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Lee, M. J. et al. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am. J. Physiol. Renal Physiol. 292, F617–F627 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Lan, R. et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356–3367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Farsijani, N. M. et al. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. J. Clin. Invest. 126, 1425–1437 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Heilig, C. W. et al. GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. Am. J. Nephrol. 38, 39–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Pedersen, S. B., Flyvbjerg, A. & Richelsen, B. Inhibition of renal ornithine decarboxylase activity prevents kidney hypertrophy in experimental diabetes. Am. J. Physiol. 264, C453–C456 (1993).

    Article  CAS  PubMed  Google Scholar 

  183. Noh, H. & King, G. L. The role of protein kinase C activation in diabetic nephropathy. Kidney Int. Suppl. S49-S53 https://doi.org/10.1038/sj.ki.5002386 (2007).

    Article  CAS  Google Scholar 

  184. Meier, M. et al. Deletion of protein kinase C-beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model. Diabetes 56, 346–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Efendiev, R., Bertorello, A. M. & Pedemonte, C. H. PKC-beta and PKC-zeta mediate opposing effects on proximal tubule Na+,K+-ATPase activity. FEBS Lett. 456, 45–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  186. Vallon, V., Wead, L. M. & Blantz, R. C. Renal hemodynamics and plasma and kidney angiotensin II in established diabetes mellitus in rats: effect of sodium and salt restriction. J. Am. Soc. Nephrol. 5, 1761–1767 (1995).

    CAS  PubMed  Google Scholar 

  187. Vallon, V. et al. Effect of chronic salt loading on kidney function in early and established diabetes mellitus in rats. J. Lab. Clin. Med. 130, 76–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  188. Lau, C. et al. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol 296, R1761–R1770 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Miller, J. A. Renal responses to sodium restriction in patients with early diabetes mellitus. J. Am. Soc. Nephrol. 8, 749–755 (1997).

    CAS  PubMed  Google Scholar 

  190. Miracle, C. M., Rieg, T., Mansoury, H., Vallon, V. & Thomson, S. C. Ornithine decarboxylase inhibitor eliminates hyperresponsiveness of the early diabetic proximal tubule to dietary salt. Am. J. Physiol. Renal Physiol 295, F995–F1002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Birk, C. et al. The salt paradox of the early diabetic kidney is independent of renal innervation. Kidney Blood Press. Res. 26, 344–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Ekinci, E. I. et al. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care 34, 703–709 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Thomas, M. C. et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34, 861–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Holtkamp, F. A. et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 80, 282–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. O’Bryan, G. T. & Hostetter, T. H. The renal hemodynamic basis of diabetic nephropathy. Semin. Nephrol. 17, 93–100 (1997).

    PubMed  Google Scholar 

  196. Pruijm, M. et al. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int. 93, 932–940 (2018).

    Article  PubMed  Google Scholar 

  197. Singh, D. K., Winocour, P. & Farrington, K. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat. Clin. Pract. Nephrol. 4, 216–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Magri, C. J. & Fava, S. The role of tubular injury in diabetic nephropathy. Eur. J. Intern. Med. 20, 551–555 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Thomas, M. C., Burns, W. C. & Cooper, M. E. Tubular changes in early diabetic nephropathy. Adv. Chronic. Kidney Dis. 12, 177–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Ren, J. L., Pan, J. S., Lu, Y. P., Sun, P. & Han, J. Inflammatory signaling and cellular senescence. Cell Signal. 21, 378–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Ziyadeh, F. N. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc. Natl Acad. Sci. USA 97, 8015–8020 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Brosius, F. C., Tuttle, K. R. & Kretzler, M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 59, 1624–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Velagapudi, C. et al. The tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes. J. Am. Soc. Nephrol. 22, 262–273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lee, Y. H. et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am. J. Physiol. Renal Physiol 317, F767–F780 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Vallon, V. Do tubular changes in the diabetic kidney affect the susceptibility to acute kidney injury? Nephron Clin. Pract. 127, 133–138 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by NIH grants R01DK112042 (V.V., S.C.T.), R01DK106102, R01HL142814, RF1AG061296 (V.V.), the UAB/UCSD O’Brien Center of Acute Kidney Injury NIH-P30DK079337 (V.V., S.C.T.) and the Department of Veterans Affairs (V.V., S.C.T.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Volker Vallon.

Ethics declarations

Competing interests

V.V. declares that he has served as a consultant and received honoraria from Astra-Zeneca, Bayer, Boehringer Ingelheim, Janssen Pharmaceutical, Eli Lilly, Merck and Retrophin, and has received grant support for investigator-initiated research from Astra-Zeneca, Bayer, Boehringer Ingelheim, Fresenius and Janssen. S.C.T. declares that he has received grant support for investigator-initiated research from Merck.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Glomerular ultrafiltration coefficient

A measure of the glomerular capillary membrane’s permeability to water; specifically, the volume of fluid filtered in unit time through a unit area of glomerular capillary membrane per unit pressure difference.

Tubuloglomerular feedback

A mechanism that inversely relates single nephron glomerular filtration rate to the NaCl concentration at the macula densa of the same nephron.

Tubular back pressure

The hydrostatic pressure in the Bowman’s space.

Filtration fraction

The fraction of renal plasma flow that is filtered by the glomeruli.

Gibbs free energy

The thermodynamic potential (or available energy) associated with a chemical reaction that can be used to do reversible work at a constant temperature and pressure.

Electrogenic

A type of transport process that leads to the translocation of net charge across the membrane and produces a change in the electrical potential of a cell.

Facilitated diffusion

The process of spontaneous passive transport of molecules or ions across a biological membrane along their electrochemical gradient, usually via a transmembrane integral protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallon, V., Thomson, S.C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 16, 317–336 (2020). https://doi.org/10.1038/s41581-020-0256-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0256-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing