Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

WNT–β-catenin signalling — a versatile player in kidney injury and repair

Abstract

The WNT–β-catenin system is an evolutionary conserved signalling pathway that is of particular importance for morphogenesis and cell organization during embryogenesis. The system is usually suppressed in adulthood; however, it can be re-activated in organ injury and regeneration. WNT-deficient mice display severe kidney defects at birth. Transient WNT–β-catenin activation stimulates tissue regeneration after acute kidney injury, whereas sustained (uncontrolled) WNT–β-catenin signalling promotes kidney fibrosis in chronic kidney disease (CKD), podocyte injury and proteinuria, persistent tissue damage during acute kidney injury and cystic kidney diseases. Additionally, WNT–β-catenin signalling is involved in CKD-associated vascular calcification and mineral bone disease. The WNT–β-catenin pathway is tightly regulated, for example, by proteins of the Dickkopf (DKK) family. In particular, DKK3 is released by ‘stressed’ tubular epithelial cells; DKK3 drives kidney fibrosis and is associated with short-term risk of CKD progression and acute kidney injury. Thus, targeting the WNT–β-catenin pathway might represent a promising therapeutic strategy in kidney injury and associated complications.

Key points

  • WNT–β-catenin is key regulator of embryogenesis and tissue organization.

  • WNT–β-catenin can be re-expressed in adult life in a variety of disease conditions.

  • Transient WNT–β-catenin signalling induces repair and regeneration during acute kidney injury, whereas sustained (uncontrolled) WNT–β-catenin signalling promotes kidney fibrosis, podocyte damage and mineral bone disease associated with chronic kidney disease.

  • Dickkopf 3 is a WNT–β-catenin modulator that drives kidney fibrosis and represents a novel marker for chronic kidney disease progression and acute kidney injury.

  • Several WNT–β-catenin signalling inhibitors are in development, of which so far only the sclerostin-inhibiting antibody is available for treatment of osteoporosis.

  • Future studies will improve understanding of the regulation of WNT–β-catenin and set the stage for specific therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Canonical WNT signalling in the absence or presence of WNT ligands and its inhibition by DKK proteins.
Fig. 2: The secretory route of WNT proteins in the cell.
Fig. 3: The role of WNT–β-catenin in the regulation of the interaction between tubular epithelial cells, fibroblasts and macrophages.
Fig. 4: Role of WNT–β-catenin signalling in kidney diseases.
Fig. 5: Role of DKK3 as a tubular epithelial stress sensor.
Fig. 6: Potential therapeutic targets in the WNT–β-catenin signalling pathway.

Similar content being viewed by others

References

  1. Nusse, R. & Varmus, H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    CAS  PubMed  Google Scholar 

  2. Nusse, R. & Clevers, H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    CAS  PubMed  Google Scholar 

  3. Edeling, M., Ragi, G., Huang, S., Pavenstadt, H. & Susztak, K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 12, 426–439 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Karner, C. M. et al. Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat. Genet. 41, 793–799 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Niehrs, C. & Shen, J. Regulation of Lrp6 phosphorylation. Cell Mol. Life Sci. 67, 2551–2562 (2010).

    CAS  PubMed  Google Scholar 

  7. Clevers, H. & Nusse, R. Wnt/beta-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    CAS  PubMed  Google Scholar 

  8. Ma, L. & Wang, H. Y. Mitogen-activated protein kinase p38 regulates the Wnt/cyclic GMP/Ca2+ non-canonical pathway. J. Biol. Chem. 282, 28980–28990 (2007).

    CAS  PubMed  Google Scholar 

  9. Yang, Y. & Mlodzik, M. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu. Rev. Cell Dev. Biol. 31, 623–646 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    CAS  PubMed  Google Scholar 

  11. Harterink, M. & Korswagen, H. C. Dissecting the Wnt secretion pathway: key questions on the modification and intracellular trafficking of Wnt proteins. Acta Physiol. 204, 8–16 (2012).

    CAS  Google Scholar 

  12. Lorenowicz, M. J. & Korswagen, H. C. Sailing with the Wnt: charting the Wnt processing and secretion route. Exp. Cell Res. 315, 2683–2689 (2009).

    CAS  PubMed  Google Scholar 

  13. Langton, P. F., Kakugawa, S. & Vincent, J. P. Making, exporting, and modulating Wnts. Trends Cell Biol. 26, 756–765 (2016).

    CAS  PubMed  Google Scholar 

  14. Panakova, D., Sprong, H., Marois, E., Thiele, C. & Eaton, S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58–65 (2005).

    CAS  PubMed  Google Scholar 

  15. Mulligan, K. A. et al. Secreted Wingless-interacting molecule (Swim) promotes long-range signaling by maintaining Wingless solubility. Proc. Natl Acad. Sci. USA 109, 370–377 (2012).

    CAS  PubMed  Google Scholar 

  16. Stanganello, E. et al. Filopodia-based Wnt transport during vertebrate tissue patterning. Nat. Commun. 6, 5846 (2015).

    CAS  PubMed  Google Scholar 

  17. Gross, J. C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).

    CAS  PubMed  Google Scholar 

  18. Xu, Y. K. & Nusse, R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol. 8, R405–R406 (1998).

    CAS  PubMed  Google Scholar 

  19. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. & Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000).

    CAS  PubMed  Google Scholar 

  20. Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cell 8, 645–654 (2003).

    CAS  Google Scholar 

  21. Malinauskas, T., Aricescu, A. R., Lu, W., Siebold, C. & Jones, E. Y. Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat. Struct. Mol. Biol. 18, 886–893 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsieh, J. C. et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431–436 (1999).

    CAS  PubMed  Google Scholar 

  23. Joiner, D. M., Ke, J., Zhong, Z., Xu, H. E. & Williams, B. O. LRP5 and LRP6 in development and disease. Trends Endocrinol. Metab. 24, 31–39 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Niida, A. et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23, 8520–8526 (2004).

    CAS  PubMed  Google Scholar 

  25. Agapova, O. A., Fang, Y., Sugatani, T., Seifert, M. E. & Hruska, K. A. Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int. 89, 1231–1243 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, Z. et al. (Pro)renin receptor is an amplifier of Wnt/beta-catenin signaling in kidney injury and fibrosis. J. Am. Soc. Nephrol. 28, 2393–2408 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Riediger, F. et al. Prorenin receptor is essential for podocyte autophagy and survival. J. Am. Soc. Nephrol. 22, 2193–2202 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kinouchi, K. et al. The (pro)renin receptor/ATP6AP2 is essential for vacuolar H+-ATPase assembly in murine cardiomyocytes. Circ. Res. 107, 30–34 (2010).

    CAS  PubMed  Google Scholar 

  29. Zhou, D., Tan, R. J., Zhou, L., Li, Y. & Liu, Y. Kidney tubular beta-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci. Rep. 3, 1878 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. Maarouf, O. H. et al. Paracrine Wnt1 drives interstitial fibrosis without inflammation by tubulointerstitial cross-talk. J. Am. Soc. Nephrol. 27, 781–790 (2016).

    CAS  PubMed  Google Scholar 

  31. DiRocco, D. P., Kobayashi, A., Taketo, M. M., McMahon, A. P. & Humphreys, B. D. Wnt4/beta-catenin signaling in medullary kidney myofibroblasts. J. Am. Soc. Nephrol. 24, 1399–1412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Beaton, H. et al. Wnt6 regulates epithelial cell differentiation and is dysregulated in renal fibrosis. Am. J. Physiol. Ren. Physiol. 311, F35–F45 (2016).

    CAS  Google Scholar 

  33. Zhou, D. et al. Tubule-specific ablation of endogenous beta-catenin aggravates acute kidney injury in mice. Kidney Int. 82, 537–547 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, Z. et al. Beta-catenin promotes survival of renal epithelial cells by inhibiting Bax. J. Am. Soc. Nephrol. 20, 1919–1928 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sinha, D. et al. Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors. Am. J. Physiol. Ren. Physiol. 288, F703–F713 (2005).

    CAS  Google Scholar 

  36. Nlandu-Khodo, S. et al. Tubular beta-catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight 5, e135454 (2020).

    PubMed Central  Google Scholar 

  37. Luo, C. et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J. Am. Soc. Nephrol. 29, 1238–1256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, X. et al. Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes Cell 18, 608–619 (2013).

    CAS  Google Scholar 

  39. Strutz, F. & Zeisberg, M. Renal fibroblasts and myofibroblasts in chronic kidney disease. J. Am. Soc. Nephrol. 17, 2992–2998 (2006).

    CAS  PubMed  Google Scholar 

  40. Zhou, D. et al. Tubule-derived Wnts are required for fibroblast activation and kidney fibrosis. J. Am. Soc. Nephrol. 28, 2322–2336 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, D. et al. Fibroblast-specific beta-catenin signaling dictates the outcome of AKI. J. Am. Soc. Nephrol. 29, 1257–1271 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    PubMed  Google Scholar 

  43. Lin, S. L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194–4199 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, X. et al. Opposing actions of renal tubular- and myeloid-derived porcupine in obstruction-induced kidney fibrosis. Kidney Int. 96, 1308–1319 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wong, D. W. L. et al. Activated renal tubular Wnt/beta-catenin signaling triggers renal inflammation during overload proteinuria. Kidney Int. 93, 1367–1383 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lever, J. M. et al. Resident macrophages reprogram toward a developmental state after acute kidney injury. JCI Insight 4, e12553 (2019).

    Google Scholar 

  47. Feng, Y., Liang, Y., Ren, J. & Dai, C. Canonical Wnt signaling promotes macrophage proliferation during kidney fibrosis. Kidney Dis. 4, 95–103 (2018).

    Google Scholar 

  48. Feng, Y. et al. Wnt/beta-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J. Am. Soc. Nephrol. 29, 182–193 (2018).

    CAS  PubMed  Google Scholar 

  49. Feng, Y. et al. The signaling protein Wnt5a promotes TGFbeta1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. J. Biol. Chem. 293, 19290–19302 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou, D., Tan, R. J., Fu, H. & Liu, Y. Wnt/beta-catenin signaling in kidney injury and repair: a double-edged sword. Lab. Invest. 96, 156–167 (2016).

    CAS  PubMed  Google Scholar 

  51. Terada, Y. et al. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J. Am. Soc. Nephrol. 14, 1223–1233 (2003).

    CAS  PubMed  Google Scholar 

  52. Xiao, L. et al. Sustained activation of Wnt/beta-catenin signaling drives AKI to CKD progression. J. Am. Soc. Nephrol. 27, 1727–1740 (2016).

    CAS  PubMed  Google Scholar 

  53. Chen, S. et al. Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney Int. 95, 62–74 (2019).

    CAS  PubMed  Google Scholar 

  54. Wang, D., Dai, C., Li, Y. & Liu, Y. Canonical Wnt/beta-catenin signaling mediates transforming growth factor-beta1-driven podocyte injury and proteinuria. Kidney Int. 80, 1159–1169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shkreli, M. et al. Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat. Med. 18, 111–119 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Dai, C. et al. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol. 20, 1997–2008 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, L. & Liu, Y. Wnt/beta-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat. Rev. Nephrol. 11, 535–545 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kato, H. et al. Wnt/beta-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J. Biol. Chem. 286, 26003–26015 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, L. et al. Wnt/beta-catenin links oxidative stress to podocyte injury and proteinuria. Kidney Int. 95, 830–845 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang, L. et al. Calmodulin-dependent protein kinase II/cAMP response element-binding protein/Wnt/beta-catenin signaling cascade regulates angiotensin II-induced podocyte injury and albuminuria. J. Biol. Chem. 288, 23368–23379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. He, W., Kang, Y. S., Dai, C. & Liu, Y. Blockade of Wnt/beta-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J. Am. Soc. Nephrol. 22, 90–103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Primers 4, 50 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Lancaster, M. A. et al. Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med. 15, 1046–1054 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Feng, S. et al. The sorting nexin 3 retromer pathway regulates the cell surface localization and activity of a Wnt-activated polycystin channel complex. J. Am. Soc. Nephrol. 28, 2973–2984 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, S. et al. The polycystin complex mediates Wnt/Ca2+ signalling. Nat. Cell Biol. 18, 752–764 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Papakrivopoulou, E., Dean, C. H., Copp, A. J. & Long, D. A. Planar cell polarity and the kidney. Nephrol. Dial. Transpl. 29, 1320–1326 (2014).

    Google Scholar 

  67. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Otto, E. A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat. Genet. 34, 413–420 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, A. et al. Canonical Wnt inhibitors ameliorate cystogenesis in a mouse ortholog of human ADPKD. JCI Insight 3, e95874 (2018).

    PubMed Central  Google Scholar 

  70. Surendran, K., Schiavi, S. & Hruska, K. A. Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J. Am. Soc. Nephrol. 16, 2373–2384 (2005).

    CAS  PubMed  Google Scholar 

  71. He, W. et al. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Miao, J. et al. Wnt/beta-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell 18, e13004 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Li, S. Y. et al. Four-and-a-half LIM domains protein 2 is a coactivator of Wnt signaling in diabetic kidney disease. J. Am. Soc. Nephrol. 26, 3072–3084 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao, Y. et al. Wnt/beta-catenin signaling mediates both heart and kidney injury in type 2 cardiorenal syndrome. Kidney Int. 95, 815–829 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, P., Cai, Y., Soofi, A. & Dressler, G. R. Activation of Wnt11 by transforming growth factor-beta drives mesenchymal gene expression through non-canonical Wnt protein signaling in renal epithelial cells. J. Biol. Chem. 287, 21290–21302 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nlandu-Khodo, S. et al. Blocking TGF-beta and beta-catenin epithelial crosstalk exacerbates CKD. J. Am. Soc. Nephrol. 28, 3490–3503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Qiao, X. et al. Redirecting TGF-beta signaling through the beta-catenin/foxo complex prevents kidney fibrosis. J. Am. Soc. Nephrol. 29, 557–570 (2018).

    CAS  PubMed  Google Scholar 

  78. Satoh, M. et al. Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am. J. Physiol. Ren. Physiol. 303, F1641–F1651 (2012).

    CAS  Google Scholar 

  79. Zhou, L., Li, Y., Zhou, D., Tan, R. J. & Liu, Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/beta-catenin signaling. J. Am. Soc. Nephrol. 24, 771–785 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cheng, R., Ding, L., He, X., Takahashi, Y. & Ma, J. X. Interaction of PPARα with the canonic Wnt pathway in the regulation of renal fibrosis. Diabetes 65, 3730–3743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Madan, B. et al. Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis. Kidney Int. 89, 1062–1074 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. He, X. et al. Pigment epithelium-derived factor, a noninhibitory serine protease inhibitor, is renoprotective by inhibiting the Wnt pathway. Kidney Int. 91, 642–657 (2017).

    CAS  PubMed  Google Scholar 

  83. Hao, S. et al. Targeted inhibition of beta-catenin/CBP signaling ameliorates renal interstitial fibrosis. J. Am. Soc. Nephrol. 22, 1642–1653 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zoccali, C. et al. The systemic nature of CKD. Nat. Rev. Nephrol. 13, 344–358 (2017).

    PubMed  Google Scholar 

  85. Krishnan, V., Bryant, H. U. & Macdougald, O. A. Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116, 1202–1209 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Clement-Lacroix, P. et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl Acad. Sci. USA 102, 17406–17411 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tu, X. et al. Osteocytes mediate the anabolic actions of canonical Wnt/beta-catenin signaling in bone. Proc. Natl Acad. Sci. USA 112, E478–E486 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Holmen, S. L. et al. Essential role of beta-catenin in postnatal bone acquisition. J. Biol. Chem. 280, 21162–21168 (2005).

    CAS  PubMed  Google Scholar 

  89. Kramer, I. et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol. Cell Biol. 30, 3071–3085 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell… and more. Endocr. Rev. 34, 658–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bonewald, L. F. & Johnson, M. L. Osteocytes, mechanosensing and Wnt signaling. Bone 42, 606–615 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. van Lierop, A. H., Appelman-Dijkstra, N. M. & Papapoulos, S. E. Sclerostin deficiency in humans. Bone 96, 51–62 (2017).

    PubMed  Google Scholar 

  93. Li, X. et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23, 860–869 (2008).

    PubMed  Google Scholar 

  94. Winkler, D. G. et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 22, 6267–6276 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wijenayaka, A. R. et al. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One 6, e25900 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Grotewold, L., Theil, T. & Ruther, U. Expression pattern of Dkk-1 during mouse limb development. Mech. Dev. 89, 151–153 (1999).

    CAS  PubMed  Google Scholar 

  97. Morvan, F. et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934–945 (2006).

    CAS  PubMed  Google Scholar 

  98. Nakajima, H. et al. Wnt modulators, SFRP-1, and SFRP-2 are expressed in osteoblasts and differentially regulate hematopoietic stem cells. Biochem. Biophys. Res. Commun. 390, 65–70 (2009).

    CAS  PubMed  Google Scholar 

  99. Ominsky, M. S. et al. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J. Bone Miner. Res. 26, 1012–1021 (2011).

    CAS  PubMed  Google Scholar 

  100. Feng, G., Chang-Qing, Z., Yi-Min, C. & Xiao-Lin, L. Systemic administration of sclerostin monoclonal antibody accelerates fracture healing in the femoral osteotomy model of young rats. Int. Immunopharmacol. 24, 7–13 (2015).

    PubMed  Google Scholar 

  101. Jin, H. et al. Anti-DKK1 antibody promotes bone fracture healing through activation of beta-catenin signaling. Bone 71, 63–75 (2015).

    CAS  PubMed  Google Scholar 

  102. Ominsky, M. S., Boyce, R. W., Li, X. & Ke, H. Z. Effects of sclerostin antibodies in animal models of osteoporosis. Bone 96, 63–75 (2017).

    CAS  PubMed  Google Scholar 

  103. Moe, S. M. et al. Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy. J. Bone Miner. Res. 30, 499–509 (2015).

    PubMed  Google Scholar 

  104. Fang, Y. et al. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J. Am. Soc. Nephrol. 25, 1760–1773 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Carrillo-Lopez, N. et al. Direct inhibition of osteoblastic Wnt pathway by fibroblast growth factor 23 contributes to bone loss in chronic kidney disease. Kidney Int. 90, 77–89 (2016).

    CAS  PubMed  Google Scholar 

  106. Sabbagh, Y. et al. Repression of osteocyte Wnt/beta-catenin signaling is an early event in the progression of renal osteodystrophy. J. Bone Miner. Res. 27, 1757–1772 (2012).

    CAS  PubMed  Google Scholar 

  107. Huang, J. C. et al. PTH differentially regulates expression of RANKL and OPG. J. Bone Miner. Res. 19, 235–244 (2004).

    CAS  PubMed  Google Scholar 

  108. Keller, H. & Kneissel, M. SOST is a target gene for PTH in bone. Bone 37, 148–158 (2005).

    CAS  PubMed  Google Scholar 

  109. Bellido, T. et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146, 4577–4583 (2005).

    CAS  PubMed  Google Scholar 

  110. Guo, J. et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 11, 161–171 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kulkarni, N. H. et al. Effects of parathyroid hormone on Wnt signaling pathway in bone. J. Cell Biochem. 95, 1178–1190 (2005).

    CAS  PubMed  Google Scholar 

  112. Malluche, H. H., Mawad, H. & Monier-Faugere, M. C. The importance of bone health in end-stage renal disease: out of the frying pan, into the fire? Nephrol. Dial. Transpl. 19, i9–i13 (2004).

    Google Scholar 

  113. Yang, C. Y. et al. Circulating Wnt/beta-catenin signalling inhibitors and uraemic vascular calcifications. Nephrol. Dial. Transpl. 30, 1356–1363 (2015).

    Google Scholar 

  114. Ho, T. Y. et al. Evaluation of the association of Wnt signaling with coronary artery calcification in patients on dialysis with severe secondary hyperparathyroidism. BMC Nephrol. 20, 345 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Albanese, I. et al. Role of noncanonical Wnt signaling pathway in human aortic valve calcification. Arterioscler. Thromb. Vasc. Biol. 37, 543–552 (2017).

    CAS  PubMed  Google Scholar 

  116. Cai, T. et al. WNT/beta-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp. Cell Res. 345, 206–217 (2016).

    CAS  PubMed  Google Scholar 

  117. Freise, C., Kretzschmar, N. & Querfeld, U. Wnt signaling contributes to vascular calcification by induction of matrix metalloproteinases. BMC Cardiovasc. Disord. 16, 185 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. Shao, J. S. et al. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J. Clin. Invest. 115, 1210–1220 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Al-Aly, Z. et al. Aortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr-/- mice. Arterioscler. Thromb. Vasc. Biol. 27, 2589–2596 (2007).

    CAS  PubMed  Google Scholar 

  120. Zhang, H. et al. Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/beta-catenin signaling. Toxicol. Lett. 284, 29–36 (2018).

    CAS  PubMed  Google Scholar 

  121. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    CAS  PubMed  Google Scholar 

  122. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 15, 1–12 (2004).

    CAS  PubMed  Google Scholar 

  124. Simon-Tillaux, N. & Hertig, A. Snail and kidney fibrosis. Nephrol. Dial. Transpl. 32, 224–233 (2017).

    CAS  Google Scholar 

  125. Zhou, B. P. et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 6, 931–940 (2004).

    CAS  PubMed  Google Scholar 

  126. Yook, J. I., Li, X. Y., Ota, I., Fearon, E. R. & Weiss, S. J. Wnt-dependent regulation of the E-cadherin repressor snail. J. Biol. Chem. 280, 11740–11748 (2005).

    CAS  PubMed  Google Scholar 

  127. Matsui, I. et al. Snail, a transcriptional regulator, represses nephrin expression in glomerular epithelial cells of nephrotic rats. Lab. Invest. 87, 273–283 (2007).

    CAS  PubMed  Google Scholar 

  128. Li, C. & Siragy, H. M. High glucose induces podocyte injury via enhanced (pro)renin receptor-Wnt-beta-catenin-snail signaling pathway. PLoS One 9, e89233 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. Li, X., Deng, W., Lobo-Ruppert, S. M. & Ruppert, J. M. Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26, 4489–4498 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou, D. et al. Matrix metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis. J. Am. Soc. Nephrol. 28, 598–611 (2017).

    CAS  PubMed  Google Scholar 

  131. Tan, R. J. & Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Ren. Physiol. 302, F1351–F1361 (2012).

    CAS  Google Scholar 

  132. Villa-Morales, M. & Fernandez-Piqueras, J. Targeting the Fas/FasL signaling pathway in cancer therapy. Expert Opin. Ther. Targets 16, 85–101 (2012).

    CAS  PubMed  Google Scholar 

  133. Hu, C. et al. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr. Med. Chem. 22, 2858–2870 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tan, R. J. et al. Tubular injury triggers podocyte dysfunction by beta-catenin-driven release of MMP-7. JCI Insight 4, e122399 (2019).

    PubMed Central  Google Scholar 

  135. He, W. et al. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/beta-catenin activity in CKD. J. Am. Soc. Nephrol. 23, 294–304 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang, X. et al. Urinary matrix metalloproteinase 7 and prediction of IgA nephropathy progression. Am. J. Kidney Dis. 75, 384–393 (2020).

    CAS  PubMed  Google Scholar 

  137. Fu, H. et al. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int. 95, 1167–1180 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang, X. et al. Urinary matrix metalloproteinase-7 predicts severe AKI and poor outcomes after cardiac surgery. J. Am. Soc. Nephrol. 28, 3373–3382 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Hall, G., Wang, L. & Spurney, R. F. TRPC channels in proteinuric kidney diseases. Cells 9, 44 (2019).

    PubMed Central  Google Scholar 

  140. Wang, L. et al. Gq signaling causes glomerular injury by activating TRPC6. J. Clin. Invest. 125, 1913–1926 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Zhou, L. et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/beta-catenin signaling. J. Am. Soc. Nephrol. 26, 107–120 (2015).

    CAS  PubMed  Google Scholar 

  142. Floege, J. Antagonism of canonical Wnt/beta-catenin signaling: taking RAS blockade to the next level? J. Am. Soc. Nephrol. 26, 3–5 (2015).

    CAS  PubMed  Google Scholar 

  143. Yao, L. et al. Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction. Nephrol. Dial. Transpl. 34, 2042–2050 (2019).

    CAS  Google Scholar 

  144. Liu, Y. et al. Inhibition of PAI-1 attenuates perirenal fat inflammation and the associated nephropathy in high-fat diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 316, E260–E267 (2019).

    CAS  PubMed  Google Scholar 

  145. Gu, C., Zhang, J., Noble, N. A., Peng, X. R. & Huang, Y. An additive effect of anti-PAI-1 antibody to ACE inhibitor on slowing the progression of diabetic kidney disease. Am. J. Physiol. Ren. Physiol. 311, F852–F863 (2016).

    CAS  Google Scholar 

  146. Kobayashi, N. et al. Podocyte injury-driven intracapillary plasminogen activator inhibitor type 1 accelerates podocyte loss via uPAR-mediated beta1-integrin endocytosis. Am. J. Physiol. Ren. Physiol. 308, F614–F626 (2015).

    CAS  Google Scholar 

  147. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    CAS  PubMed  Google Scholar 

  148. Mao, B. et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321–325 (2001).

    CAS  PubMed  Google Scholar 

  149. Pollard, S. L. & Holland, P. W. Evidence for 14 homeobox gene clusters in human genome ancestry. Curr. Biol. 10, 1059–1062 (2000).

    CAS  PubMed  Google Scholar 

  150. Luke, G. N. et al. Dispersal of NK homeobox gene clusters in amphioxus and humans. Proc. Natl Acad. Sci. USA 100, 5292–5295 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, 664–667 (2002).

    CAS  PubMed  Google Scholar 

  152. Mao, B. & Niehrs, C. Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302, 179–183 (2003).

    CAS  PubMed  Google Scholar 

  153. Federico, G. et al. Tubular Dickkopf-3 promotes the development of renal atrophy and fibrosis. JCI Insight 1, e84916 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. Yu, B. et al. A cytokine-like protein dickkopf-related protein 3 is atheroprotective. Circulation 136, 1022–1036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Issa Bhaloo, S. et al. Binding of Dickkopf-3 to CXCR7 enhances vascular progenitor cell migration and degradable graft regeneration. Circ. Res. 123, 451–466 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ren, S. et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc. Natl Acad. Sci. USA 110, 1440–1445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Johnson, B. G. et al. Connective tissue growth factor domain 4 amplifies fibrotic kidney disease through activation of LDL receptor-related protein 6. J. Am. Soc. Nephrol. 28, 1769–1782 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lin, C. L. et al. Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J. Am. Soc. Nephrol. 21, 124–135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Liu, M. et al. Genetic variation of DKK3 may modify renal disease severity in ADPKD. J. Am. Soc. Nephrol. 21, 1510–1520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Wong, D. W. et al. Downregulation of renal tubular Wnt/beta-catenin signaling by Dickkopf-3 induces tubular cell death in proteinuric nephropathy. Cell Death Dis. 7, e2155 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Lipphardt, M. et al. Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial-mesenchymal transition. Nephrol. Dial. Transpl. 34, 49–62 (2019).

    CAS  Google Scholar 

  162. Schunk, S. J., Speer, T., Petrakis, I. & Fliser, D. Dickkopf 3 — a novel biomarker of the ‘kidney injury continuum’. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfaa003 (2020).

  163. Zewinger, S. et al. Dickkopf-3 (DKK3) in urine identifies patients with short-term risk of eGFR Loss. J. Am. Soc. Nephrol. 29, 2722–2733 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Rauen, T. et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N. Engl. J. Med. 373, 2225–2236 (2015).

    CAS  PubMed  Google Scholar 

  165. Schunk, S. J. et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet 394, 488–496 (2019).

    CAS  PubMed  Google Scholar 

  166. Zarbock, A. et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA 313, 2133–2141 (2015).

    CAS  PubMed  Google Scholar 

  167. McClung, M. R. et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370, 412–420 (2014).

    CAS  PubMed  Google Scholar 

  168. Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

    CAS  PubMed  Google Scholar 

  169. Langdahl, B. L. et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet 390, 1585–1594 (2017).

    CAS  PubMed  Google Scholar 

  170. Saag, K. G. et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377, 1417–1427 (2017).

    CAS  PubMed  Google Scholar 

  171. Chatterjee, S. & Sil, P. C. Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacol. Res. 142, 251–261 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.J.S., T.S., J.F. and D.F. are supported by the Deutsche Forschungsgemeinschaft (DFG SFB-TRR 219).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, made a substantial contribution to discussion of content, wrote and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Thimoteus Speer.

Ethics declarations

Competing interest

D.F. is affiliated with DiaRen. S.J.S, J.F. and T.S. declare no competing interests.

Additional information

Peer-review information

Nature Reviews Nephrology thanks Xiao Meng, Youhua Liu and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schunk, S.J., Floege, J., Fliser, D. et al. WNT–β-catenin signalling — a versatile player in kidney injury and repair. Nat Rev Nephrol 17, 172–184 (2021). https://doi.org/10.1038/s41581-020-00343-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-00343-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing