Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular stratification of idiopathic nephrotic syndrome

Abstract

Idiopathic nephrotic syndrome (INS) describes a group of pathologies of the renal glomerulus that result in the classic triad of heavy proteinuria, oedema and hypoalbuminaemia. The disease has historically been defined by evidence of distinctive histological changes in the absence of clinical evidence of a distinct pathological driver. However, the current classification is not based on any systematic mechanistic understanding of biological processes, and therefore current treatment regimens are broad, iterative and nonspecific. Over the past 20 years delineation of the underlying biology of the target cell in INS — the glomerular podocyte — has transformed our understanding of the mechanisms that contribute to breakdown of the glomerular filtration barrier and the development of INS. It is increasingly clear that nephrotic syndrome caused by monogenic mutations is distinct from immune-driven disease, which in some cases is mediated by circulating factors that target the podocyte. The combination of systems biology and bioinformatics approaches, together with powerful laboratory models and ever-growing patient registries has potential to identify disease ‘signatures’ that reflect the underlying molecular mechanism of INS on an individual basis. Understanding of such processes could lead to the development of targeted therapies.

Key points

  • New insights suggest that nephrotic syndrome can be classified according to our understanding of underlying molecular mechanisms into genetic nephrotic syndrome, immune-based nephrotic syndrome and circulating factor disease (CFD); such a classification might aid the identification of patient subgroups who would benefit from targeted therapy.

  • Genetic advances have shown that at least 33% of cases of childhood-onset steroid-resistant nephrotic syndrome are caused by single gene mutations, and have identified specific biological pathways that could be therapeutically targeted.

  • CFD is characterized by disease recurrence after transplantation, and is associated with negative genetic testing and often secondary steroid resistance.

  • Immune-based nephrotic syndrome is acquired, and is likely to be the basis of some forms CFD, but may also account for an immune-mediated non-CFD subtype of disease; some forms of immune-based nephrotic syndrome also have known genetic associations, particularly with HLA-DR alleles.

  • Biomarkers for CFD can be derived by correlating findings from in vitro models with key clinical features; such approaches may aid the identification of patients at risk of recurrence and provide greater insights into disease processes.

  • In-depth molecular stratification will be enhanced by systems biology approaches that combine big data methodologies with advanced bioinformatics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current steroid response-based classification of idiopathic nephrotic syndrome.
Fig. 2: Contribution of molecular signals and soluble factors to podocyte health.
Fig. 3: Proposed stratification of steroid-resistant nephrotic syndrome based on disease mechanisms and outcomes.

Similar content being viewed by others

References

  1. Banh, T. H. et al. Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 11, 1760–1768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim, J. S. et al. High incidence of initial and late steroid resistance in childhood nephrotic syndrome. Kidney Int. 68, 1275–1281 (2005).

    CAS  PubMed  Google Scholar 

  3. Bierzynska, A. et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int. 91, 937–947 (2017).

    PubMed  Google Scholar 

  4. Saleem, M. A. One hundred ways to kill a podocyte. Nephrol. Dial. Transpl. 30, 1266–1271 (2015).

    CAS  Google Scholar 

  5. Hunte, W., al-Ghraoui, F. & Cohen, R. J. Secondary syphilis and the nephrotic syndrome. J. Am. Soc. Nephrol. 3, 1351–1355 (1993).

    CAS  PubMed  Google Scholar 

  6. Becker, C. G. et al. Nephrotic syndrome after contact with mercury. A report of five cases, three after the use of ammoniated mercury ointment. Arch. Intern. Med. 110, 178–186 (1962).

    CAS  PubMed  Google Scholar 

  7. Maas, R. J. et al. Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat. Rev. Nephrol. 12, 768–776 (2016).

    PubMed  Google Scholar 

  8. Report of the International Study of Kidney Disease in Children. Minimal change nephrotic syndrome in children: deaths during the first 5 to 15 years’ observation. Pediatrics 73, 497–501 (1984).

    Google Scholar 

  9. Niaudet, P. Long-term outcome of children with steroid-sensitive idiopathic nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 4, 1547–1548 (2009).

    PubMed  Google Scholar 

  10. Vivarelli, M. et al. Minimal change disease. Clin. J. Am. Soc. Nephrol. 12, 332–345 (2017).

    CAS  PubMed  Google Scholar 

  11. D’Agati, V. D. et al. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am. J. Kidney Dis. 43, 368–382 (2004).

    PubMed  Google Scholar 

  12. Trautmann, A. et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin. J. Am. Soc. Nephrol. 10, 592–600 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Bagga, A., Sinha, A. & Moudgil, A. Rituximab in patients with the steroid-resistant nephrotic syndrome. N. Engl. J. Med. 356, 2751–2752 (2007).

    CAS  PubMed  Google Scholar 

  14. Iijima, K. et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 384, 1273–1281 (2014).

    CAS  PubMed  Google Scholar 

  15. Sinha, A. et al. Efficacy and safety of rituximab in children with difficult-to-treat nephrotic syndrome. Nephrol. Dial. Transpl. 30, 96–106 (2015).

    CAS  Google Scholar 

  16. Trachtman, H. et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J. Am. Soc. Nephrol. 29, 2745–2754 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan, X. et al. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight 1, e86934 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Welsh, G. I. & Saleem, M. A. The podocyte cytoskeleton–key to a functioning glomerulus in health and disease. Nat. Rev. Nephrol. 8, 14–21 (2012).

    CAS  Google Scholar 

  19. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    CAS  PubMed  Google Scholar 

  20. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    CAS  PubMed  Google Scholar 

  21. Welsh, G. I. & Saleem, M. A. Nephrin — signature molecule of the glomerular podocyte? J. Pathol. 220, 328–337 (2010).

    CAS  PubMed  Google Scholar 

  22. Simons, M. et al. Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am. J. Pathol. 159, 1069–1077 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwarz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest. 108, 1621–1629 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber, S. et al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int. 66, 571–579 (2004).

    CAS  PubMed  Google Scholar 

  25. Shih, N. Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286, 312–315 (1999).

    CAS  PubMed  Google Scholar 

  26. Bierzynska, A. et al. MAGI2 mutations cause congenital nephrotic syndrome. J. Am. Soc. Nephrol. 28, 1614–1621 (2017).

    CAS  PubMed  Google Scholar 

  27. van Duijn, T. J. et al. Rac1 recruits the adapter protein CMS/CD2AP to cell-cell contacts. J. Biol. Chem. 285, 20137–20146 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Huber, T. B. et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol. Cell. Biol. 23, 4917–4928 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Akilesh, S., Koziell, A. & Shaw, A. S. Basic science meets clinical medicine: identification of a CD2AP-deficient patient. Kidney Int. 72, 1181–1183 (2007).

    CAS  PubMed  Google Scholar 

  30. Gigante, M. et al. CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). Nephrol. Dial. Transpl. 24, 1858–1864 (2009).

    CAS  Google Scholar 

  31. Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gee, H. Y. et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J. Clin. Invest. 123, 3243–3253 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Harris, J. J. et al. Active proteases in nephrotic plasma lead to a podocin-dependent phosphorylation of VASP in podocytes via protease activated receptor-1. J. Pathol. 229, 660–671 (2013).

    CAS  PubMed  Google Scholar 

  34. Pozzi, A. et al. Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev. Biol. 316, 288–301 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanasaki, K. et al. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev. Biol. 313, 584–593 (2008).

    CAS  PubMed  Google Scholar 

  36. Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 (2008).

    CAS  PubMed  Google Scholar 

  37. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, Y., Rao, J., Zha, X. & Xu, H. Angiopoietin-like 3 induces podocyte F-actin rearrangement through integrin alpha(V)beta(3)/FAK/PI3K pathway-mediated Rac1 activation. Biomed Res. Int. 2013, 135608 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Ashraf, S. et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest. 123, 5179–5189 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Diomedi-Camassei, F. et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol. 18, 2773–2780 (2007).

    CAS  PubMed  Google Scholar 

  42. Lopez, L. C. et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet. 79, 1125–1129 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Braun, D. A. et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat. Genet. 48, 457–465 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shalhoub, R. J. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 2, 556–560 (1974).

    CAS  PubMed  Google Scholar 

  45. Eremina, V. & Quaggin, S. E. The role of VEGF-A in glomerular development and function. Curr. Opin. Nephrol. Hypertens. 13, 9–15 (2004).

    CAS  PubMed  Google Scholar 

  46. Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Keir, L. S. et al. VEGF regulates local inhibitory complement proteins in the eye and kidney. J. Clin. Invest. 127, 199–214 (2017).

    PubMed  Google Scholar 

  50. Guan, Z., VanBeusecum, J. P. & Inscho, E. W. Endothelin and the renal microcirculation. Semin. Nephrol. 35, 145–155 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lenoir, O. et al. Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J. Am. Soc. Nephrol. 25, 1050–1062 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Barton, M. Therapeutic potential of endothelin receptor antagonists for chronic proteinuric renal disease in humans. Biochim. Biophys. Acta 1802, 1203–1213 (2010).

    CAS  PubMed  Google Scholar 

  53. Coward, R. J. et al. The human glomerular podocyte is a novel target for insulin action. Diabetes 54, 3095–3102 (2005).

    CAS  PubMed  Google Scholar 

  54. Welsh, G. I. et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 12, 329–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Keir, L. S., Marks, S. D. & Kim, J. J. Shigatoxin-associated hemolytic uremic syndrome: current molecular mechanisms and future therapies. Drug Des. Dev. Ther. 6, 195–208 (2012).

    CAS  Google Scholar 

  56. Psotka, M. A. et al. Shiga toxin 2 targets the murine renal collecting duct epithelium. Infect. Immun. 77, 959–969 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Davin, J. C. The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr. Nephrol. 31, 207–215 (2016).

    PubMed  Google Scholar 

  58. Bierzynska, A. & Saleem, M. A. Deriving and understanding the risk of post-transplant recurrence of nephrotic syndrome in the light of current molecular and genetic advances. Pediatr. Nephrol. 33, 2027–2035 (2018).

    PubMed  Google Scholar 

  59. Gallon, L. et al. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N. Engl. J. Med. 366, 1648–1649 (2012).

    CAS  PubMed  Google Scholar 

  60. Hinkes, B. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397–1405 (2006).

    CAS  PubMed  Google Scholar 

  61. Wasilewska, A. M., Kuroczycka-Saniutycz, E. & Zoch-Zwierz, W. Effect of cyclosporin A on proteinuria in the course of glomerulopathy associated with WT1 mutations. Eur. J. Pediatr. 170, 389–391 (2011).

    CAS  PubMed  Google Scholar 

  62. Kuusniemi, A. M. et al. Plasma exchange and retransplantation in recurrent nephrosis of patients with congenital nephrotic syndrome of the Finnish type (NPHS1). Transplantation 83, 1316–1323 (2007).

    PubMed  Google Scholar 

  63. Gbadegesin, R. et al. A new locus for familial FSGS on chromosome 2P. J. Am. Soc. Nephrol. 21, 1390–1397 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bertelli, R. et al. Recurrence of focal segmental glomerulosclerosis after renal transplantation in patients with mutations of podocin. Am. J. Kidney Dis. 41, 1314–1321 (2003).

    CAS  PubMed  Google Scholar 

  65. Billing, H. et al. NPHS2 mutation associated with recurrence of proteinuria after transplantation. Pediatr. Nephrol. 19, 561–564 (2004).

    PubMed  Google Scholar 

  66. Becker-Cohen, R. et al. Recurrent nephrotic syndrome in homozygous truncating NPHS2 mutation is not due to anti-podocin antibodies. Am. J. Transpl. 7, 256–260 (2007).

    CAS  Google Scholar 

  67. Hocker, B. et al. Recurrence of proteinuria 10 years post-transplant in NPHS2-associated focal segmental glomerulosclerosis after conversion from cyclosporin A to sirolimus. Pediatr. Nephrol. 21, 1476–1479 (2006).

    PubMed  Google Scholar 

  68. Ruf, R. G. et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J. Am. Soc. Nephrol. 15, 722–732 (2004).

    PubMed  Google Scholar 

  69. Caridi, G. et al. Heterozygous NPHS1 or NPHS2 mutations in responsive nephrotic syndrome and the multifactorial origin of proteinuria. Kidney Int. 66, 1715–1716 (2004).

    PubMed  Google Scholar 

  70. Dorval, G. et al. Clinical and genetic heterogeneity in familial steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. 33, 473–483 (2018).

    PubMed  Google Scholar 

  71. Gee, H. Y. et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 94, 884–890 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gee, H. Y. et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J. Clin. Investig. 125, 2375–2384 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Xing, C. Y. et al. Direct effects of dexamethasone on human podocytes. Kidney Int. 70, 1038–1045 (2006).

    CAS  PubMed  Google Scholar 

  74. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McCarthy, H. J. et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 8, 637–648 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sen, E. S. et al. Clinical genetic testing using a custom-designed steroid-resistant nephrotic syndrome gene panel: analysis and recommendations. J. Med. Genet. 54, 795–804 (2017).

    CAS  PubMed  Google Scholar 

  77. Lee, H. et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312, 1880–1887 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1279–1289 (2015).

    CAS  PubMed  Google Scholar 

  79. Gribouval, O. et al. Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney Int. 94, 1013–1022 (2018).

    CAS  PubMed  Google Scholar 

  80. Yao, T. et al. Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin. J. Am. Soc. Nephrol. 14, 213–223 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Robson, K. J. et al. HLA and kidney disease: from associations to mechanisms. Nat. Rev. Nephrol. 14, 636–655 (2018).

    CAS  PubMed  Google Scholar 

  82. Jia, X. Y. et al. Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the Japanese population. J. Am. Soc. Nephrol. 29, 2189–2199 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Debiec, H. et al. Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. 29, 2000–2013 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Crawford, B. D. et al. Evaluating Mendelian nephrotic syndrome genes for evidence for risk alleles or oligogenicity that explain heritability. Pediatr. Nephrol. 32, 467–476 (2017).

    PubMed  Google Scholar 

  85. Kienzl-Wagner, K., Waldegger, S. & Schneeberger, S. Disease recurrence-the sword of Damocles in kidney transplantation for primary focal segmental glomerulosclerosis. Front. Immunol. 10, 1669 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Ding, W. Y. et al. Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J. Am. Soc. Nephrol. 25, 1342–1348 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sinha, A. et al. Disease course in steroid sensitive nephrotic syndrome. Indian Pediatr. 49, 881–887 (2012).

    PubMed  Google Scholar 

  88. Buscher, A. K. et al. Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 11, 245–253 (2016).

    PubMed  Google Scholar 

  89. Savin, V. J. et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med. 334, 878–883 (1996).

    CAS  PubMed  Google Scholar 

  90. Cattran, D. et al. Serial estimates of serum permeability activity and clinical correlates in patients with native kidney focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 14, 448–453 (2003).

    CAS  PubMed  Google Scholar 

  91. Trachtman, H. et al. Glomerular permeability activity: prevalence and prognostic value in pediatric patients with idiopathic nephrotic syndrome. Am. J. Kidney Dis. 44, 604–610 (2004).

    PubMed  Google Scholar 

  92. Saleem, M. A. et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol. 13, 630–638 (2002).

    CAS  PubMed  Google Scholar 

  93. Srivastava, P. et al. Development of a novel cell-based assay to diagnose recurrent focal segmental glomerulosclerosis patients. Kidney Int. 95, 708–716 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Kitzler, T. M. et al. Use of genomic and functional analysis to characterize patients with steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 33, 1741–1750 (2018).

    PubMed  Google Scholar 

  95. Bitzan, M. et al. TNF alpha pathway blockade ameliorates toxic effects of FSGS plasma on podocyte cytoskeleton and beta 3 integrin activation. Pediatr. Nephrol. 27, 2217–2226 (2012).

    PubMed  Google Scholar 

  96. Coward, R. J. et al. Nephrotic plasma alters slit diaphragm-dependent signaling and translocates nephrin, podocin, and CD2 associated protein in cultured human podocytes. J. Am. Soc. Nephrol. 16, 629–637 (2005).

    CAS  PubMed  Google Scholar 

  97. May, C. J. et al. Human Th17 cells produce a soluble mediator that increases podocyte motility via signalling pathways which mimic PAR-1 activation. Am. J. Physiol. Renal Physiol. 317, F913–F921 (2019).

    PubMed  PubMed Central  Google Scholar 

  98. Yu, C. C. et al. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 369, 2416–2423 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Novelli, R., Benigni, A. & Remuzzi, G. The role of B7-1 in proteinuria of glomerular origin. Nat. Rev. Nephrol. 14, 589–596 (2018).

    CAS  PubMed  Google Scholar 

  100. Kim, E. Y., Roshanravan, H. & Dryer, S. E. Changes in podocyte TRPC channels evoked by plasma and sera from patients with recurrent FSGS and by putative glomerular permeability factors. Biochim. Biophys. Acta 1863, 2342–2354 (2017).

    CAS  PubMed Central  Google Scholar 

  101. Morath, C. et al. Management of severe recurrent focal segmental glomerulosclerosis through circulating soluble urokinase receptor modification. Am. J. Ther. 20, 226–229 (2013).

    PubMed  Google Scholar 

  102. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    CAS  PubMed  Google Scholar 

  103. Farmer, L. K., et al. TRPC6 binds to and activates calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and motility. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2018070729 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Verheijden, K. A. T. et al. The calcium-dependent protease calpain-1 links TRPC6 activity to podocyte injury. J. Am. Soc. Nephrol. 29, 2099–2109 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Veit, G. et al. Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat. Med. 24, 1732–1742 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Roselli, S. et al. Plasma membrane targeting of podocin through the classical exocytic pathway: effect of NPHS2 mutations. Traffic 5, 37–44 (2004).

    CAS  PubMed  Google Scholar 

  107. Nathwani, A. C., Davidoff, A. M. & Tuddenham, E. G. D. Advances in gene therapy for hemophilia. Hum. Gene Ther. 28, 1004–1012 (2017).

    CAS  PubMed  Google Scholar 

  108. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    CAS  PubMed  Google Scholar 

  109. Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS  PubMed  Google Scholar 

  111. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 (2016).

    CAS  PubMed  Google Scholar 

  113. Taguchi, A. & Nishinakamura, R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21, 730–773 (2017).

    CAS  PubMed  Google Scholar 

  114. Xinaris, C. et al. Functional human podocytes generated in organoids from amniotic fluid stem cells. J. Am. Soc. Nephrol. 27, 1400–1411 (2016).

    CAS  PubMed  Google Scholar 

  115. Merchant, M. L. et al. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat. Rev. Nephrol. 13, 731–749 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lai, Z. W., Petrera, A. & Schilling, O. Protein amino-terminal modifications and proteomic approaches for N-terminal profiling. Curr. Opin. Chem. Biol. 24, 71–79 (2015).

    CAS  PubMed  Google Scholar 

  117. Lange, P. F. & Overall, C. M. Protein TAILS: when termini tell tales of proteolysis and function. Curr. Opin. Chem. Biol. 17, 73–82 (2013).

    CAS  PubMed  Google Scholar 

  118. Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5, 785–799 (2006).

    CAS  PubMed  Google Scholar 

  119. Wiita, A. P. et al. Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling. Proc. Natl Acad. Sci. USA 111, 7594–7599 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Meyer-Schwesinger, C. et al. Ubiquitin C-terminal hydrolase-l1 activity induces polyubiquitin accumulation in podocytes and increases proteinuria in rat membranous nephropathy. Am. J. Pathol. 178, 2044–2057 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Meyer-Schwesinger, C. The ubiquitin-proteasome system in kidney physiology and disease. Nat. Rev. Nephrol. 15, 393–411 (2019).

    PubMed  Google Scholar 

  122. Spath, M. R. et al. The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. Kidney Int. 95, 333–349 (2019).

    PubMed  Google Scholar 

  123. Karpman, D., Stahl, A. L. & Arvidsson, I. Extracellular vesicles in renal disease. Nat. Rev. Nephrol. 13, 545–562 (2017).

    CAS  PubMed  Google Scholar 

  124. Hogan, M. C. et al. Subfractionation, characterization, and in-depth proteomic analysis of glomerular membrane vesicles in human urine. Kidney Int. 85, 1225–1237 (2014).

    CAS  PubMed  Google Scholar 

  125. Erkan, E. et al. Distinct urinary lipid profile in children with focal segmental glomerulosclerosis. Pediatr. Nephrol. 31, 581–588 (2016).

    PubMed  Google Scholar 

  126. Shah, L., et al. LDL-apheresis-induced remission of focal segmental glomerulosclerosis recurrence in pediatric renal transplant recipients. Pediatr. Nephrol. https://doi.org/10.1007/s00467-019-04296-6 (2019).

    PubMed  Google Scholar 

  127. Kaisar, M. et al. Plasma degradome affected by variable storage of human blood. Clin. Proteom. 13, 26 (2016).

    Google Scholar 

  128. Trautmann, A., Lipska-Zietkiewicz, B. S. & Schaefer, F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet Registry. Front. Pediatr. 6, 200 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Gadegbeku, C. A. et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 83, 749–756 (2013).

    PubMed  PubMed Central  Google Scholar 

  130. Dossier, C. et al. Five-year outcome of children with idiopathic nephrotic syndrome: the NEPHROVIR population-based cohort study. Pediatr. Nephrol. 34, 671–678 (2019).

    PubMed  Google Scholar 

  131. Scheufele, E. et al. tranSMART: an open source knowledge management and high content data analytics platform. AMIA Jt. Summits Transl. Sci. Proc. 2014, 96–101 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Ding, W. Y. et al. Big data and stratified medicine: what does it mean for children? Arch. Dis. Child. 104, 389–394 (2019).

    PubMed  Google Scholar 

  133. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Agius, P., Ying, Y. & Campbell, C. Bayesian unsupervised learning with multiple data types. Stat. Appl. Genet. Mol. Biol. 8, 27 (2009).

    Google Scholar 

  135. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Perez, V. et al. Comparative differential proteomic analysis of minimal change disease and focal segmental glomerulosclerosis. BMC Nephrol. 18, 49 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Choi, Y. W. et al. Potential urine proteomics biomarkers for primary nephrotic syndrome. Clin. Proteom. 14, 18 (2017).

    Google Scholar 

  138. Huang, Z., Zhang, Y., Zhou, J. & Zhang, Y. Urinary exosomal miR-193a can be a potential biomarker for the diagnosis of primary focal segmental glomerulosclerosis in children. Biomed. Res. Int. 2017, 7298160 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Ramezani, A. et al. Circulating and urinary microRNA profile in focal segmental glomerulosclerosis: a pilot study. Eur. J. Clin. Invest. 45, 394–404 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee, J. E. et al. Systematic biomarker discovery and coordinative validation for different primary nephrotic syndromes using gas chromatography-mass spectrometry. J. Chromatogr. A 1453, 105–115 (2016).

    CAS  PubMed  Google Scholar 

  141. Sui, W. et al. Circulating microRNAs as potential biomarkers for nephrotic syndrome. Iran. J. Kidney Dis. 8, 371–376 (2014).

    PubMed  Google Scholar 

  142. Lu, M. et al. Differentially expressed microRNAs in kidney biopsies from various subtypes of nephrotic children. Exp. Mol. Pathol. 99, 590–595 (2015).

    CAS  PubMed  Google Scholar 

  143. Nafar, M. et al. The novel diagnostic biomarkers for focal segmental glomerulosclerosis. Int. J. Nephrol. 2014, 574261 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Pant, P. et al. Serum sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of patients with membranous nephropathy and focal and segmental glomerulosclerosis. Saudi J. Kidney Dis. Transpl. 27, 539–545 (2016).

    PubMed  Google Scholar 

  145. Suresh, C. P. et al. Differentially expressed urinary biomarkers in children with idiopathic nephrotic syndrome. Clin. Exp. Nephrol. 20, 273–283 (2016).

    CAS  PubMed  Google Scholar 

  146. Kalantari, S. et al. Predictive urinary biomarkers for steroid-resistant and steroid-sensitive focal segmental glomerulosclerosis using high resolution mass spectrometry and multivariate statistical analysis. BMC Nephrol. 15, 141 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Nickavar, A. et al. Urine neutrophil gelatinase associated lipocalin to creatinine ratio: a novel index for steroid response in idiopathic nephrotic syndrome. Indian J. Pediatr. 83, 18–21 (2016).

    PubMed  Google Scholar 

  148. Gopal, N. et al. Assay of urinary protein-bound sialic acid can differentiate steroidsensitive nephrotic syndrome from steroid-resistant cases. Saudi J. Kidney Dis. Transpl. 27, 37–40 (2016).

    PubMed  Google Scholar 

  149. Bennett, M. R. et al. Urinary vitamin D-binding protein as a biomarker of steroid-resistant nephrotic syndrome. Biomark. Insights 11, 1–6 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Badr, H. S., El-Hawy, M. A. & Helwa, M. A. P-glycoprotein activity in steroid-responsive vs. steroid-resistant nephrotic syndrome. Indian J. Pediatr. 83, 1222–1226 (2016).

    PubMed  Google Scholar 

  151. Turolo, S. et al. SXR rs3842689: a prognostic factor for steroid sensitivity or resistance in pediatric idiopathic nephrotic syndrome. Pharmacogenomics 17, 1227–1233 (2016).

    CAS  PubMed  Google Scholar 

  152. Mishra, O. P. et al. Toll-like receptor 3 (TLR-3), TLR-4 and CD80 expression in peripheral blood mononuclear cells and urinary CD80 levels in children with idiopathic nephrotic syndrome. Pediatr. Nephrol. 32, 1355–1361 (2017).

    PubMed  Google Scholar 

  153. Gopal, N. et al. Assay of urinary protein carbonyl content can predict the steroid dependence and resistance in children with idiopathic nephrotic syndrome. Saudi J. Kidney Dis. Transpl. 28, 268–272 (2017).

    PubMed  Google Scholar 

  154. Bennett, M. R. et al. A novel biomarker panel to identify steroid resistance in childhood idiopathic nephrotic syndrome. Biomark. Insights 12, 1–11 (2017).

    CAS  Google Scholar 

  155. Watany, M. M. & El-Horany, H. E. Nephronectin (NPNT) and the prediction of nephrotic syndrome response to steroid treatment. Eur. J. Hum. Genet. 26, 1354–1360 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Andersen, R. F. et al. Plasma and urine proteomic profiles in childhood idiopathic nephrotic syndrome. Proteom. Clin. Appl. 6, 382–393 (2012).

    CAS  Google Scholar 

  157. Chan, C. Y. et al. T lymphocyte activation markers as predictors of responsiveness to rituximab among patients with FSGS. Clin. J. Am. Soc. Nephrol. 11, 1360–1368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kuribayashi-Okuma, E. et al. Proteomics approach identifies factors associated with the response to low-density lipoprotein apheresis therapy in patients with steroid-resistant nephrotic syndrome. Ther. Apher. Dial. 20, 174–182 (2016).

    CAS  PubMed  Google Scholar 

  159. Kalantari, S. et al. Urinary prognostic biomarkers in patients with focal segmental glomerulosclerosis. Nephrourol. Mon. 6, e16806 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Lopez-Hellin, J. et al. A form of apolipoprotein a-I is found specifically in relapses of focal segmental glomerulosclerosis following transplantation. Am. J. Transpl. 13, 493–500 (2013).

    CAS  Google Scholar 

  161. Puig-Gay, N. et al. Apolipoprotein A-Ib as a biomarker of focal segmental glomerulosclerosis recurrence after kidney transplantation: diagnostic performance and assessment of its prognostic value – a multi-centre cohort study. Transpl. Int. 32, 313–322 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funders for studies referenced from the author’s laboratory include the Medical Research Council (UK), Kidney Research UK, Nephrotic Syndrome Trust (NeST), NIHR-TRC, and Kids Kidney Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moin A. Saleem.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks R. Gbadegesin, K. Iijima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NURTuRE: www.nurturebiobank.org

Glossary

Proteostasis

The concept of protein homeostasis, involving protein biogenesis, folding, trafficking and degradation of proteins present within and outside the cell.

Tryptic peptides

Peptides generated by the action of the protease trypsin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M.A. Molecular stratification of idiopathic nephrotic syndrome. Nat Rev Nephrol 15, 750–765 (2019). https://doi.org/10.1038/s41581-019-0217-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0217-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing