Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oncometabolites in renal cancer

Abstract

The study of cancer metabolism has evolved vastly beyond the remit of tumour proliferation and survival with the identification of the role of ‘oncometabolites’ in tumorigenesis. Simply defined, oncometabolites are conventional metabolites that, when aberrantly accumulated, have pro-oncogenic functions. Their discovery has led researchers to revisit the Warburg hypothesis, first postulated in the 1950s, of aberrant metabolism as an aetiological determinant of cancer. As such, the identification of oncometabolites and their utilization in diagnostics and prognostics, as novel therapeutic targets and as biomarkers of disease, are areas of considerable interest in oncology. To date, fumarate, succinate, l-2-hydroxyglutarate (l-2-HG) and d-2-hydroxyglutarate (d-2-HG) have been characterized as bona fide oncometabolites. Extensive metabolic reprogramming occurs during tumour initiation and progression in renal cell carcinoma (RCC) and three oncometabolites — fumarate, succinate and l-2-HG — have been implicated in this disease process. All of these oncometabolites inhibit a superfamily of enzymes known as α-ketoglutarate-dependent dioxygenases, leading to epigenetic dysregulation and induction of pseudohypoxic phenotypes, and also have specific pro-oncogenic capabilities. Oncometabolites could potentially be exploited for the development of novel targeted therapies and as biomarkers of disease.

Key points

  • Oncometabolites are aberrantly accumulated metabolites that possess pro-oncogenic capabilities, they contribute to tumorigenesis via epigenetic dysregulation and can influence tumour progression through phenotypic switches such as epithelial to mesenchymal transition.

  • l-2-hydroxyglutarate, fumarate and succinate are bona fide renal cell carcinoma (RCC) oncometabolites; exploitation of these oncometabolites and their downstream signalling effects are attractive targets for novel therapies and as biomarkers of disease.

  • Oncometabolites have shared pro-oncogenic functions owing to their ability to inhibit α-ketoglutarate-dependent dioxygenases as well as individual oncometabolite-specific functions.

  • Chromatin remodelling via oncometabolites may recapitulate the effects of other epigenetic modifiers mutated in RCC, thus converging on the same gene signature; identification of the underlying pathways influences treatment strategy.

  • Elucidation of exogenous factors that give rise to oncometabolite production, such as hyperglycaemia, may prove to be a synergistic strategy to reduce the levels of oncometabolites and their subsequent sequelae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key metabolic pathways in renal cell carcinoma.
Fig. 2: Individual and shared oncometabolite signalling pathways.
Fig. 3: Strategies for targeting oncometabolite-associated pathways.

Similar content being viewed by others

References

  1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  2. Bhatt, J. R. & Finelli, A. Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat. Rev. Urol. 11, 517–525 (2014).

    Google Scholar 

  3. Linehan, W. M., Walther, M. M. & Zbar, B. The genetic basis of cancer of the kidney. J. Urol. 170, 2163–2172 (2003).

    CAS  PubMed  Google Scholar 

  4. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO Classification of tumours of the urinary system and male genital organs — part a: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).

    PubMed  Google Scholar 

  5. Ricketts, C. J. et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 0, (2018).

  6. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell 173, 611–623 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173, 595–610 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    PubMed Central  Google Scholar 

  11. Zbar, B., Brauch, H., Talmadge, C. & Linehan, M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327, 721 (1987).

    CAS  PubMed  Google Scholar 

  12. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    CAS  PubMed  Google Scholar 

  13. Hosen, I. et al. TERT promoter mutations in clear cell renal cell carcinoma. Int. J. Cancer 136, 2448–2452 (2015).

    CAS  PubMed  Google Scholar 

  14. Shroff, E. H. et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc. Natl Acad. Sci. USA 112, 6539–6544 (2015).

    CAS  PubMed  Google Scholar 

  15. Tang, S.-W. et al. MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells. Cancer Lett. 273, 35–43 (2009).

    CAS  PubMed  Google Scholar 

  16. The Multiple Leiomyoma Consortium. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    Google Scholar 

  17. Linehan, W. M. & Ricketts, C. J. The metabolic basis of kidney cancer. Semin. Cancer Biol. 23, 46–55 (2013).

    CAS  PubMed  Google Scholar 

  18. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  20. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  21. Pescador, N. et al. Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1. PLOS ONE 5, e9644 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Semenza, G. L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 123, 3664–3671 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA 108, 19611–19616 (2011).

    CAS  PubMed  Google Scholar 

  24. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  25. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    CAS  PubMed  Google Scholar 

  27. Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    CAS  PubMed  Google Scholar 

  28. Sudarshan, S. et al. Reduced expression of fumarate hydratase in clear cell renal cancer mediates HIF-2α accumulation and promotes migration and invasion. PLOS ONE 6, e21037 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

    CAS  PubMed  Google Scholar 

  30. Brugarolas, J. B., Vazquez, F., Reddy, A., Sellers, W. R. & Kaelin, W. G. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4, 147–158 (2003).

    CAS  PubMed  Google Scholar 

  31. Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251–255 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Du, W. et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat. Commun. 8, 1–12 (2017).

    Google Scholar 

  33. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G. & Kell, D. B. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22, 245–252 (2004).

    CAS  PubMed  Google Scholar 

  35. Horgan, R. P. & Kenny, L. C. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol. 13, 189–195 (2011).

    Google Scholar 

  36. Gouirand, V., Guillaumond, F. & Vasseur, S. Influence of the tumor microenvironment on cancer cells metabolic reprogramming. Front. Oncol 8, 117 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Yang, L. V. Tumor microenvironment and metabolism. Int. J. Mol. Sci. 18, E2729 (2017).

    PubMed  Google Scholar 

  38. Hakimi, A. A. et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29, 104–116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wettersten, H. I. et al. Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res. 75, 2541–2552 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. van der Mijn, J. C. et al. Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer Metab. 4, 14 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Niemann, S. & Müller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 26, 268–270 (2000).

    CAS  PubMed  Google Scholar 

  43. Warburg, O. The metabolism of carcinoma cells. J. Cancer Res. 9, 148–163 (1925).

    CAS  Google Scholar 

  44. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  45. Racker, E. Bioenergetics and the problem of tumor growth. Am. Sci. 60, 56–63 (1972).

    CAS  PubMed  Google Scholar 

  46. Flier, J. S., Mueckler, M. M., Usher, P. & Lodish, H. F. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235, 1492–1495 (1987).

    CAS  PubMed  Google Scholar 

  47. Frezza, C., Pollard, P. J. & Gottlieb, E. Inborn and acquired metabolic defects in cancer. J. Mol. Med. 89, 213–220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Haber, D. A. & Fearon, E. R. The promise of cancer genetics. Lancet 351, SII1–SII8 (1998).

    PubMed  Google Scholar 

  49. Liberti, M. V. & Locasale, J. W. The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000).

    CAS  PubMed  Google Scholar 

  51. Cervera, A. M., Apostolova, N., Crespo, F. L., Mata, M. & McCreath, K. J. Cells silenced for SDHB expression display characteristic features of the tumor phenotype. Cancer Res. 68, 4058–4067 (2008).

    CAS  PubMed  Google Scholar 

  52. Dahia, P. L. M. et al. A HIF1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLOS Genet. 1, (2005).

  53. López-Jiménez, E. et al. Research resource: transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol. Endocrinol. 24, 2382–2391 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Pollard, P. et al. Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. J. Pathol. 205, 41–49 (2005).

    PubMed  Google Scholar 

  55. Vanharanta, S. et al. Distinct expression profile in fumarate-hydratase-deficient uterine fibroids. Hum. Mol. Genet. 15, 97–103 (2006).

    CAS  PubMed  Google Scholar 

  56. Mohlin, S., Wigerup, C., Jögi, A. & Påhlman, S. Hypoxia, pseudohypoxia and cellular differentiation. Exp. Cell Res. 356, 192–196 (2017).

    CAS  PubMed  Google Scholar 

  57. Wigerup, C., Påhlman, S. & Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 164, 152–169 (2016).

    CAS  PubMed  Google Scholar 

  58. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Achouri, Y. et al. Identification of a dehydrogenase acting on D-2-hydroxyglutarate. Biochem. J. 381, 35–42 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Collins, R. R. J., Patel, K., Putnam, W. C., Kapur, P. & Rakheja, D. Oncometabolites: a new paradigm for oncology, metabolism, and the clinical laboratory. Clin. Chem. 63, 1812–1820 (2017).

    CAS  PubMed  Google Scholar 

  61. Linster, C. L., Van Schaftingen, E. & Hanson, A. D. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9, 72–80 (2013).

    CAS  PubMed  Google Scholar 

  62. Struys, E. A. 2-Hydroxyglutarate is not a metabolite; d-2-hydroxyglutarate and l-2-hydroxyglutarate are! Proc. Natl Acad. Sci. USA 110, E4939 (2013).

    CAS  PubMed  Google Scholar 

  63. Aghili, M., Zahedi, F. & Rafiee, E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J. Neurooncol. 91, 233–236 (2009).

    PubMed  Google Scholar 

  64. Moroni, I. et al. L-2-hydroxyglutaric aciduria and brain malignant tumors: a predisposing condition? Neurology 62, 1882–1884 (2004).

    CAS  PubMed  Google Scholar 

  65. Rogers, R. E. et al. Wilms tumor in a child with L-2-hydroxyglutaric aciduria. Pediatr. Dev. Pathol. 13, 408–411 (2010).

    CAS  PubMed  Google Scholar 

  66. Kranendijk, M. et al. IDH2 Mutations in patients with d-2-hydroxyglutaric aciduria. Science 330, 336–336 (2010).

    CAS  PubMed  Google Scholar 

  67. Morin, A., Letouzé, E., Gimenez-Roqueplo, A.-P. & Favier, J. Oncometabolites-driven tumorigenesis: from genetics to targeted therapy. Int. J. Cancer 135, 2237–2248 (2014).

    CAS  PubMed  Google Scholar 

  68. Sciacovelli, M. & Frezza, C. Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radic. Biol. Med. 100, 175–181 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Castro-Vega, L. J. et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum. Mol. Genet. 23, 2440–2446 (2014).

    CAS  PubMed  Google Scholar 

  70. Kaelin, W. G. SDH5 mutations and familial paraganglioma: somewhere Warburg is smiling. Cancer Cell 16, 180–182 (2009).

    CAS  PubMed  Google Scholar 

  71. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gross, S. et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med. 207, 339–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mukherjee, P. K. et al. Metabolomic analysis identifies differentially produced oral metabolites, including the oncometabolite 2-hydroxyglutarate, in patients with head and neck squamous cell carcinoma. BBA Clin. 7, 8–15 (2017).

    PubMed  Google Scholar 

  76. Shelar, S. et al. Biochemical and epigenetic insights into l-2-hydroxyglutarate, a potential therapeutic target in renal cancer. Clin. Cancer Res. 24, 6433–6446 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bardella Chiara et al. Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status. J. Pathol. 225, 4–11 (2011).

    CAS  PubMed  Google Scholar 

  79. Kinch, L., Grishin, N. V. & Brugarolas, J. Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type-2. Cancer Cell 20, 418–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gottlieb, E. & Tomlinson, I. P. M. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5, 857–866 (2005).

    CAS  PubMed  Google Scholar 

  81. Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    PubMed  Google Scholar 

  82. Vranken, J. G. V., Na, U., Winge, D. R. & Rutter, J. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit. Rev. Biochem. Mol. Biol. 50, 168–180 (2015).

    PubMed  Google Scholar 

  83. Malinoc, A. et al. Biallelic inactivation of the SDHC gene in renal carcinoma associated with paraganglioma syndrome type 3. Endocr. Relat. Cancer 19, 283–290 (2012).

    CAS  PubMed  Google Scholar 

  84. Ni, Y. et al. Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am. J. Hum. Genet. 83, 261–268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, C.-H. et al. Persistent severe hyperlactatemia and metabolic derangement in lethal SDHB-mutated metastatic kidney cancer: clinical challenges and examples of extreme Warburg effect. JCO Precis. Oncol. 1, 1–14 (2017).

    Google Scholar 

  86. McEvoy, C. R. et al. SDH-deficient renal cell carcinoma associated with biallelic mutation in succinate dehydrogenase A: comprehensive genetic profiling and its relation to therapy response. NPJ Precis. Oncol. 2, 9 (2018).

    Google Scholar 

  87. Vanharanta, S. et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am. J. Hum. Genet. 74, 153–159 (2004).

    CAS  PubMed  Google Scholar 

  88. Gill, A. J. et al. Succinate dehydrogenase (SDH)-deficient renal carcinoma: a morphologically distinct entity. Am. J. Surg. Pathol. 38, 1588–1602 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Ricketts, C. J. et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J. Urol. 188, 2063–2071 (2012).

    CAS  PubMed  Google Scholar 

  90. Williamson, S. R. et al. Succinate dehydrogenase-deficient renal cell carcinoma: detailed characterization of 11 tumors defining a unique subtype of renal cell carcinoma. Mod. Pathol. 28, 80–94 (2015).

    CAS  PubMed  Google Scholar 

  91. Alam, N. A. et al. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum. Mol. Genet. 12, 1241–1252 (2003).

    CAS  PubMed  Google Scholar 

  92. Lehtonen, H. J. et al. Increased risk of cancer in patients with fumarate hydratase germline mutation. J. Med. Genet. 43, 523–526 (2006).

    CAS  PubMed  Google Scholar 

  93. Linehan, W. M. & Rouault, T. A. Molecular pathways: fumarate hydratase-deficient kidney cancer — targeting the Warburg effect in cancer. Clin. Cancer Res. 19, 3345–3352 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmidt, L. S. & Linehan, W. M. Hereditary leiomyomatosis and renal cell carcinoma. Int. J. Nephrol. Renovasc. Dis. 7, 253–260 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Schmidt, L. S. & Linehan, W. M. Genetic predisposition to kidney cancer. Semin. Oncol. 43, 566–574 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Clark, G. R. et al. Germline FH mutations presenting with pheochromocytoma. J. Clin. Endocrinol. Metab. 99, E2046–E2050 (2014).

    CAS  PubMed  Google Scholar 

  97. Neumann, H. P. H. et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292, 943–951 (2004).

    CAS  PubMed  Google Scholar 

  98. Allegri, G. et al. Fumaric aciduria: an overview and the first Brazilian case report. J. Inherit. Metab. Dis. 33, 411–419 (2010).

    PubMed  Google Scholar 

  99. Kerrigan, J. F., Aleck, K. A., Tarby, T. J., Bird, C. R. & Heidenreich, R. A. Fumaric aciduria: clinical and imaging features. Ann. Neurol. 47, 583–588 (2000).

    CAS  PubMed  Google Scholar 

  100. Loeffen, J., Smeets, R., Voit, T., Hoffmann, G. & Smeitink, J. Fumarase deficiency presenting with periventricular cysts. J. Inherit. Metab. Dis. 28, 799–800 (2005).

    CAS  PubMed  Google Scholar 

  101. Haigis, K. M., Cichowski, K. & Elledge, S. J. Tissue-specificity in cancer: the rule, not the exception. Science 363, 1150–1151 (2019).

    CAS  PubMed  Google Scholar 

  102. Zheng, L. et al. Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells. Cancer Metab. 1, 12 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Marcucci, G. et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 28, 2348–2355 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lin, A.-P. et al. D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nat. Commun. 6, 7768 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Fan, J. et al. Human phosphoglycerate dehydrogenase produces the oncometabolite d-2-hydroxyglutarate. ACS Chem. Biol. 10, 510–516 (2015).

    CAS  PubMed  Google Scholar 

  108. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  109. Lee, J. H. et al. IDH1 R132C mutation is detected in clear cell hepatocellular carcinoma by pyrosequencing. World J. Surg. Oncol. 15, 82 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Shim, E.-H. et al. l-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 4, 1290–1298 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mitchell, T. J., Rossi, S. H., Klatte, T. & Stewart, G. D. Genomics and clinical correlates of renal cell carcinoma. World J. Urol. 36, 1899–1911 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Burr, S. P. et al. Mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase complex controls HIF1α stability in aerobic conditions. Cell Metab. 24, 740–752 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ni, M. et al. Functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans. Cell Rep. 27, 1376–1386.e6 (2019).

    CAS  PubMed  Google Scholar 

  114. Baker, P. R. et al. Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137, 366–379 (2014).

    PubMed  Google Scholar 

  115. Losman, J.-A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    CAS  PubMed  Google Scholar 

  116. Intlekofer, A. M. et al. Hypoxia induces production of l-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Oldham, W. M., Clish, C. B., Yang, Y. & Loscalzo, J. Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22, 291–303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Nadtochiy, S. M. et al. Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation. J. Mol. Cell Cardiol. 88, 64–72 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Nadtochiy, S. M. et al. Acidic pH Is a metabolic switch for 2-hydroxyglutarate generation and signaling. J. Biol. Chem. 291, 20188–20197 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rodenhizer, D. et al. A 3D engineered tumour for spatial snap-shot analysis of cell metabolism and phenotype in hypoxic gradients. Nat. Mater. 15, 227–234 (2016).

    CAS  PubMed  Google Scholar 

  121. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sapieha, P. et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat. Med. 14, 1067–1076 (2008).

    CAS  PubMed  Google Scholar 

  123. Zhang, J. et al. Accumulation of succinate in cardiac ischemia primarily occurs via canonical krebs cycle activity. Cell Rep. 23, 2617–2628 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kohlhauer Matthias et al. Metabolomic profiling in acute ST-segment–elevation myocardial infarction identifies succinate as an early marker of human ischemia–reperfusion injury. J. Am. Heart Assoc. 7, e007546

  125. O’Flaherty, L. et al. Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism. Hum. Mol. Genet. 19, 3844–3851 (2010).

    PubMed  PubMed Central  Google Scholar 

  126. Selak, M. A., Durán, R. V. & Gottlieb, E. Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells. Biochim. Biophys. Acta 1757, 567–572 (2006).

    CAS  PubMed  Google Scholar 

  127. Puisségur, M.-P. et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 18, 465–478 (2011).

    PubMed  Google Scholar 

  128. Blatnik, M., Frizzell, N., Thorpe, S. R. & Baynes, J. W. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by fumarate in diabetes: formation of s-(2-succinyl)cysteine, a novel chemical modification of protein and possible biomarker of mitochondrial stress. Diabetes 57, 41–49 (2008).

    CAS  PubMed  Google Scholar 

  129. Frizzell, N., Thomas, S. A., Carson, J. A. & Baynes, J. W. Mitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity. Biochem. J. 445, 247–254 (2012).

    CAS  PubMed  Google Scholar 

  130. Gao, C.-L. et al. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol. Cell. Endocrinol. 320, 25–33 (2010).

    CAS  PubMed  Google Scholar 

  131. Yang, M. et al. The succinated proteome of FH-mutant tumours. Metabolites 4, 640–654 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Thomas, S. A., Storey, K. B., Baynes, J. W. & Frizzell, N. Tissue distribution of S-(2-succino)cysteine (2SC), a biomarker of mitochondrial stress in obesity and diabetes. Obesity 20, 263–269 (2012).

    CAS  PubMed  Google Scholar 

  133. Guo, Y. et al. Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis. Nat. Commun. 8, 15621 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Mitchell, T. & Darley-Usmar, V. Metabolic syndrome and mitochondrial dysfunction: insights from pre-clinical studies with a mitochondrially targeted antioxidant. Free. Radic. Biol. Med. 52, 838–840 (2012).

    CAS  PubMed  Google Scholar 

  135. Zhang, G.-M., Zhu, Y. & Ye, D.-W. Metabolic syndrome and renal cell carcinoma. World J. Surg. Oncol. 12, 236 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Häggström, C. et al. Metabolic factors associated with risk of renal cell carcinoma. PLOS ONE 8, e57475 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Tannahill, G. et al. Succinate is a danger signal that induces IL-1β via HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaelin, W. G. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 76, 335–345 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Letouzé, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752 (2013).

    PubMed  Google Scholar 

  142. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Laukka, T. et al. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J. Biol. Chem. 291, 4256–4265 (2016).

    CAS  PubMed  Google Scholar 

  144. Guzy, R. D., Sharma, B., Bell, E., Chandel, N. S. & Schumacker, P. T. Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell Biol. 28, 718–731 (2008).

    CAS  PubMed  Google Scholar 

  145. Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tarhonskaya, H. et al. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nat. Commun. 5, 3423 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    CAS  PubMed  Google Scholar 

  150. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006).

    CAS  PubMed  Google Scholar 

  151. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lu, C. et al. Induction of sarcomas by mutant IDH2. Genes Dev. 27, 1986–1998 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Aspuria, P.-J. P. et al. Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism. Cancer Metab. 2, 21 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Enane, F. O., Saunthararajah, Y. & Korc, M. Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death Dis. 9, 1–15 (2018).

    CAS  Google Scholar 

  157. Zhou, D., Luo, Y., Dingli, D. & Traulsen, A. The invasion of de-differentiating cancer cells into hierarchical tissues. PLOS Computational Biol. 15, e1007167 (2019).

    CAS  Google Scholar 

  158. Ahuja, N. et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 57, 3370–3374 (1997).

    CAS  PubMed  Google Scholar 

  159. Issa, J.-P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer 4, 988–993 (2004).

    CAS  PubMed  Google Scholar 

  160. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Linehan, W. M. et al. Comprehensive molecular characterization of papillary renal cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    PubMed  Google Scholar 

  162. Chan, M. M. Y. et al. Cascade fumarate hydratase mutation screening allows early detection of kidney tumour: a case report. BMC Med. Genet. 18, 79 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Ooi, A. et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20, 511–523 (2011).

    CAS  PubMed  Google Scholar 

  164. Sourbier, C. et al. Targeting ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient cancer. Cancer Cell 26, 840–850 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Shanmugasundaram, K. et al. The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-κB signaling. J. Biol. Chem. 289, 24691–24699 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. van Uden, P., Kenneth, N. S. & Rocha, S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem. J. 412, 477–484 (2008).

    PubMed  PubMed Central  Google Scholar 

  167. Tong, W.-H. et al. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 20, 315–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Bratslavsky, G., Sudarshan, S., Neckers, L. & Linehan, W. M. Pseudohypoxic pathways in renal cell carcinoma. Clin. Cancer Res. 13, 4667–4671 (2007).

    CAS  PubMed  Google Scholar 

  169. Sullivan, L. B. et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51, 236–248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zheng, L. et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6, 6001 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS  PubMed  Google Scholar 

  172. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    PubMed  PubMed Central  Google Scholar 

  173. Fourquet, S., Guerois, R., Biard, D. & Toledano, M. B. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J. Biol. Chem. 285, 8463–8471 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Jin, L. et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 27, 257–270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Hensley, C. T., Wasti, A. T. & DeBerardinis, R. J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2012).

    CAS  Google Scholar 

  177. Xu, Y. et al. Pathologic oxidation of ptpn12 underlies abl1 phosphorylation in hereditary leiomyomatosis and renal cell carcinoma. Cancer Res. 78, 6539–6548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Shambaugh, G. E. Urea biosynthesis I. The urea cycle and relationships to the citric acid cycle. Am. J. Clin. Nutr. 30, 2083–2087 (1977).

    CAS  PubMed  Google Scholar 

  179. Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225–228 (2011).

    CAS  PubMed  Google Scholar 

  180. Mu, X. et al. Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget 8, 13174–13185 (2017).

    PubMed  PubMed Central  Google Scholar 

  181. Baumbach, L., Leyssac, P. P. & Skinner, S. L. Studies on renin release from isolated superfused glomeruli: effects of temperature, urea, ouabain and ethacrynic acid. J. Physiol. 258, 243–256 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    CAS  PubMed  Google Scholar 

  183. Toma, I. et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Invest. 118, 2526–2534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Aguiar, C. J. et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun. Signal. 12, 78 (2014).

    PubMed  PubMed Central  Google Scholar 

  185. Correa, P. R. A. V. et al. Succinate is a paracrine signal for liver damage. J. Hepatol. 47, 262–269 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Jiang, S. & Yan, W. Succinate in the cancer-immune cycle. Cancer Lett. 390, 45–47 (2017).

    CAS  PubMed  Google Scholar 

  187. Mills, E. & O’Neill, L. A. J. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 24, 313–320 (2014).

    CAS  PubMed  Google Scholar 

  188. Zhang, Z. et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7, 58–63 (2011).

    CAS  PubMed  Google Scholar 

  189. Li, F. et al. NADP+-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol. Cell 60, 661–675 (2015).

    CAS  PubMed  Google Scholar 

  190. Xie, Z. et al. Lysine succinylation and lysine malonylation in histones. Mol. Cell Proteom. 11, 100–107 (2012).

    CAS  Google Scholar 

  191. Park, J. et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50, 919–930 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Frezza, C. Mitochondrial metabolites: undercover signalling molecules. Interface Focus 7, 20160100 (2017).

    PubMed  PubMed Central  Google Scholar 

  193. Cardaci, S. et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol. 17, 1317–1326 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Lussey-Lepoutre, C. et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat. Commun. 6, 8784 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA Signaling. Cell 172, 90–105.e23 (2018).

    CAS  PubMed  Google Scholar 

  196. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a n6-methyladenosine rna demethylase. Cancer Cell 31, 127–141 (2017).

    PubMed  Google Scholar 

  198. Fu, X. et al. 2-Hydroxyglutarate inhibits ATP synthase and mTOR signaling. Cell Metab. 22, 508–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Cancer Genome Atlas Research Network. et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481–2498 (2015).

    Google Scholar 

  200. Colvin, H. et al. Oncometabolite D-2-hydroxyglurate directly induces epithelial-mesenchymal transition and is associated with distant metastasis in colorectal cancer. Sci. Rep. 6, 36289 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Adam, J. et al. A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia. Cell Rep. 3, 1440–1448 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Nassereddine, S., Lap, C. J., Haroun, F. & Tabbara, I. The role of mutant IDH1 and IDH2 inhibitors in the treatment of acute myeloid leukemia. Ann. Hematol. 96, 1983–1991 (2017).

    CAS  PubMed  Google Scholar 

  203. Kats, L. M. et al. A pharmacogenomic approach validates AG-221 as an effective and on-target therapy in IDH2 mutant AML. Leukemia 31, 1466–1470 (2017).

    CAS  PubMed  Google Scholar 

  204. Kernytsky, A. et al. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood 125, 296–303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    CAS  PubMed  Google Scholar 

  206. Birendra, K. C. & DiNardo, C. D. Evidence for clinical differentiation and differentiation syndrome in patients with acute myeloid leukemia and IDH1 mutations treated with the targeted mutant IDH1 inhibitor, AG-120. Clin. Lymphoma. Myeloma. Leuk. 16, 460–465 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Norsworthy, K. J. et al. FDA approval summary: ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutation. Clin. Cancer Res. 25, 3205–3209 (2019).

    PubMed  Google Scholar 

  208. Terunuma, A. et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J. Clin. Invest. 124, 398–412 (2014).

    CAS  PubMed  Google Scholar 

  209. Salamanca-Cardona, L. et al. In vivo imaging of glutamine metabolism to the oncometabolite 2-hydroxyglutarate in idh1/2 mutant tumors. Cell Metab. 26, 830–841.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Abu Aboud, O. et al. Glutamine addiction in kidney cancer suppresses oxidative stress and can be exploited for real-time imaging. Cancer Res. 77, 6746–6758 (2017).

    CAS  PubMed  Google Scholar 

  211. Gameiro, P. A. et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab 17, 372–385 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Raczka, A. M. & Reynolds, P. A. Glutaminase inhibition in renal cell carcinoma therapy. Cancer Drug Resist. 2, 356–364 (2019).

    Google Scholar 

  213. Song, M., Kim, S.-H., Im, C. Y. & Hwang, H.-J. Recent development of small molecule glutaminase inhibitors. Curr. Top Med. Chem. 18, 432–443 (2018).

    CAS  PubMed  Google Scholar 

  214. Tannir, N. M. et al. CANTATA: a randomized phase 2 study of CB-839 in combination with cabozantinib vs. placebo with cabozantinib in patients with advanced/metastatic renal cell carcinoma. J. Clin. Oncol. 36, TPS4601–TPS4601 (2018).

    Google Scholar 

  215. Vancura, A., Bu, P., Bhagwat, M., Zeng, J. & Vancurova, I. Metformin as an anticancer agent. Trends Pharmacol. Sci. 39, 867–878 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Brière, J.-J. et al. Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum. Mol. Genet. 14, 3263–3269 (2005).

    PubMed  Google Scholar 

  217. MacKenzie, E. D. et al. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol. Cell. Biol. 27, 3282–3289 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Matsumoto, K. et al. 2-Oxoglutarate downregulates expression of vascular endothelial growth factor and erythropoietin through decreasing hypoxia-inducible factor-1alpha and inhibits angiogenesis. J. Cell. Physiol. 209, 333–340 (2006).

    CAS  PubMed  Google Scholar 

  219. Matsumoto, K. et al. Antitumor effects of 2-oxoglutarate through inhibition of angiogenesis in a murine tumor model. Cancer Science 100, 1639–1647 (2009).

    CAS  PubMed  Google Scholar 

  220. Tennant, D. A. et al. Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 28, 4009–4021 (2009).

    CAS  PubMed  Google Scholar 

  221. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Cho, H. et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature 539, 107–111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Courtney, K. D. et al. Phase I dose-escalation trial of pt2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018).

    CAS  PubMed  Google Scholar 

  224. Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Gurion, R. et al. 5-azacitidine prolongs overall survival in patients with myelodysplastic syndrome — a systematic review and meta-analysis. Haematologica 95, 303–310 (2010).

    CAS  PubMed  Google Scholar 

  226. Turcan, S. et al. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT inhibitor decitabine. Oncotarget 4, 1729–1736 (2013).

    PubMed  PubMed Central  Google Scholar 

  227. Yoo, K. H. & Hennighausen, L. EZH2 methyltransferase and H3K27 methylation in breast cancer. Int. J. Biol. Sci. 8, 59–65 (2012).

    CAS  PubMed  Google Scholar 

  228. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    PubMed  PubMed Central  Google Scholar 

  230. Hu, C. Y. et al. Kidney cancer is characterized by aberrant methylation of tissue-specific enhancers that are prognostic for overall survival. Clin. Cancer Res. 20, 4349–4360 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. To, K. K. W., Zhan, Z. & Bates, S. E. Aberrant promoter methylation of the ABCG2 gene in renal carcinoma. Mol. Cell Biol. 26, 8572–8585 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Reu, F. J. et al. Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation. J. Clin. Oncol. 24, 3771–3779 (2006).

    CAS  PubMed  Google Scholar 

  233. Amato, R. J. et al. MG98, a second-generation DNMT1 inhibitor, in the treatment of advanced renal cell carcinoma. Cancer Invest. 30, 415–421 (2012).

    CAS  PubMed  Google Scholar 

  234. Brindle, K. M. Imaging metabolism with hyperpolarized (13)C-labeled cell substrates. J. Am. Chem. Soc. 137, 6418–6427 (2015).

    CAS  PubMed  Google Scholar 

  235. Skinner, J. G. et al. Metabolic and molecular imaging with hyperpolarised tracers. Mol. Imaging Biol. 20, 902–918 (2018).

    CAS  PubMed  Google Scholar 

  236. Dong, Y. et al. Hyperpolarized MRI visualizes Warburg effects and predicts treatment response to mTOR inhibitors in patient-derived ccRCC xenograft models. Cancer Res. 79, 242–250 (2018).

    PubMed  PubMed Central  Google Scholar 

  237. Casey, R. T. et al. Translating in vivo metabolomic analysis of succinate dehydrogenase deficient tumours into clinical utility. JCO Precis. Oncol. 2, 1–12 (2018).

    PubMed  PubMed Central  Google Scholar 

  238. Lussey-Lepoutre, C. et al. In vivo detection of succinate by magnetic resonance spectroscopy as a hallmark of sdhx mutations in paraganglioma. Clin. Cancer Res. 22, 1120–1129 (2016).

    CAS  PubMed  Google Scholar 

  239. Bisdas, S. et al. MR spectroscopy for in vivo assessment of the oncometabolite 2-hydroxyglutarate and its effects on cellular metabolism in human brain gliomas at 9.4T. J. Magn. Reson. Imaging 44, 823–833 (2016).

    PubMed  Google Scholar 

  240. de la Fuente, M. I. et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro Oncol. 18, 283–290 (2016).

    PubMed  Google Scholar 

  241. Kim, I.-Y., Suh, S.-H., Lee, I.-K. & Wolfe, R. R. Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp. Mol. Med. 48, e203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Süllentrop, F., Hahn, J. & Moka, D. In vitro and in vivo 1h-mr spectroscopic examination of the renal cell carcinoma. Int. J. Biomed. Sci. 8, 94–108 (2012).

    PubMed  PubMed Central  Google Scholar 

  243. Santagata, S. et al. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc. Natl Acad. Sci. USA 111, 11121–11126 (2014).

    CAS  PubMed  Google Scholar 

  244. Ljungberg, B. et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 67, 913–924 (2015).

    Google Scholar 

  245. Petros, F. G. et al. Oncologic outcomes of patients with positive surgical margin after partial nephrectomy: a 25-year single institution experience. World J. Urol. 36, 1093–1101 (2018).

    Google Scholar 

  246. Maxwell, P. H. Seeing the smoking gun: a sensitive and specific method to visualize loss of the tumour suppressor, fumarate hydratase, in human tissues. J. Pathol. 225, 1–3 (2011).

    CAS  PubMed  Google Scholar 

  247. Yang, M., Soga, T., Pollard, P. J. & Adam, J. The emerging role of fumarate as an oncometabolite. Front. Oncol. 2, 85 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Gupta, S. et al. Primary renal paragangliomas and renal neoplasia associated with pheochromocytoma/paraganglioma: analysis of von Hippel-Lindau (VHL), succinate dehydrogenase (SDHX) and transmembrane protein 127 (TMEM127). Endocr. Pathol. 28, 253–268 (2017).

    CAS  PubMed  Google Scholar 

  249. Ozluk, Y. et al. Renal carcinoma associated with a novel succinate dehydrogenase A mutation: a case report and review of literature of a rare subtype of renal carcinoma. Hum. Pathol. 46, 1951–1955 (2015).

    CAS  PubMed  Google Scholar 

  250. Ricketts, C. J. et al. Tumor risks and genotype–phenotype–proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum. Mutat. 31, 41–51 (2010).

    CAS  PubMed  Google Scholar 

  251. Sanchez, D. J. & Simon, M. C. Genetic and metabolic hallmarks of clear cell renal cell carcinoma. Biochim. Biophys. Acta 1870, 23–31 (2018).

    CAS  Google Scholar 

  252. Gudbjartsson, T. et al. Histological subtyping and nuclear grading of renal cell carcinoma and their implications for survival: a retrospective nation-wide study of 629 patients. Eur. Urol. 48, 593–600 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

C.Y. is funded by the Wellcome Trust and The Urology Foundation. C.F. is supported by the Medical Research Council, grant MRC_MC_UU_12022/6.

Author information

Authors and Affiliations

Authors

Contributions

C.Y. C.F. and G.D.S. researched the data for the article and made substantial contributions to discussions of the content. C.Y. wrote the manuscript. C.Y. G.D.S. and C.F. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Grant D. Stewart or Christian Frezza.

Ethics declarations

Competing interests

C.Y. declares no competing interests. G.D.S. has received educational grants from Pfizer, AstraZeneca and Intuitive Surgical, consultancy fees from Merck, Pfizer, EUSA Pharma and CMR Surgical, travel expenses from Pfizer and speaker fees from Pfizer. C.F. is an adviser of Istesso Limited and a member of the Scientific Advisory Board of Owlstone Medical.

Additional information

Peer review information

Nature Reviews Nephrology thanks J. Bedke, R. Deberardinis, J. Hsieh and R. Weiss for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hereditary leiomyomatosis and renal cell cancer

(HLRCC). An autosomal dominant hereditary cancer syndrome caused by germline mutations in FH. HLRCC is characterized by cutaneous and uterine leiomyomas and is associated with papillary type 2 RCC.

Hereditary paraganglioma

(PGL). A dominantly inherited rare condition consisting of benign tumours arising from neuroendocrine tissues, typically in the head and neck.

Phaeochromocytomas

(PCCs). A type of paraganglioma that arises from the adrenal glands and produces catecholamines such as adrenaline.

Pseudohypoxic phenotype

Hypoxic-like metabolic changes that are observed in cells in the absence of a hypoxic environment or stimulant.

Neomorphic

A novel and/or non-canonical function of an enzyme.

Heterozygous germline mutations

Inheritance of one copy of a mutant allele and one copy of the wild type allele.

Loss of heterozygosity

(LOH). The loss of one allele of a genetic locus.

CpG islands

Clusters of dinucleotide sequence of a cytosine followed by a guanosine nucleotide in the 5′–3′ direction. CpG islands are often found in promoter regions upstream of transcription sites.

Half maximal inhibitory concentration

(IC50). A measure of the potency of a substance to inhibit a specific biological process or function by 50%.

Anaplerosis

The process of replenishing the tricarboxylic acid cycle intermediates that have been extracted for biosynthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, C., Stewart, G.D. & Frezza, C. Oncometabolites in renal cancer. Nat Rev Nephrol 16, 156–172 (2020). https://doi.org/10.1038/s41581-019-0210-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0210-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer