Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Measured and estimated glomerular filtration rate: current status and future directions

Abstract

Evaluation of glomerular filtration rate (GFR) is central to the assessment of kidney function in medical practice, research and public health. Measured GFR (mGFR) remains the reference standard, but the past 20 years have seen major advances in estimated GFR (eGFR). Both eGFR and mGFR are associated with error compared with true GFR. eGFR is now recommended by clinical practice guidelines, regulatory agencies and public health agencies for the initial evaluation of GFR, with measured GFR (mGFR) typically considered an important confirmatory test, depending on how accurate the assessment of GFR needs to be for application to the clinical, research or public health setting. Our approach is to use initial and confirmatory tests as needed to develop a final assessment of true GFR. We suggest that GFR evaluation might be improved by more complete implementation of current recommendations and by further research to improve the accuracy of mGFR and eGFR.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assessment of true GFR.
Fig. 2: An approach to the evaluation of GFR.
Fig. 3: Estimated performance of eGFR using a panel of filtration markers.

Similar content being viewed by others

References

  1. Shannon, J. A. & Smith, H. W. The excretion of inulin, xylose and urea by normal and phlorizinized man. J. Clin. Invest. 14, 393 (1935).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Soveri, I., Berg, U. B. & Bjork, J. et al. Measuring GFR: a systematic review. Am. J. Kidney Dis. 64, 411–424 (2014).

    PubMed  Google Scholar 

  3. Cockcroft, D. W. & Gault, M. H. Prediction of creatinine clearance from serum creatinine. Nephron 16, 31–41 (1976).

    CAS  PubMed  Google Scholar 

  4. Levey, A. S. et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann. Intern. Med. 130, 461–470 (1999).

    Google Scholar 

  5. Levey, A. S., Stevens, L. A. & Schmid, C. H. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).

    PubMed  PubMed Central  Google Scholar 

  6. Levey, A. S., Stevens, L. A. & Schmid, C. H. et al. Correction: a new equation to estimate glomerular filtration rate. Ann. Intern. Med. 155, 408 (2011).

    Google Scholar 

  7. Inker, L. A., Schmid, C. H. & Tighiouart, H. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. New Engl. J. Med. 367, 20–29 (2012).

    CAS  PubMed  Google Scholar 

  8. Myers, G. L., Miller, W. G. & Coresh, J. et al. Recommendations for improving serum creatinine measurement: a report from the laboratory working group of the national kidney disease education program. Clin. Chem. 52, 5–18 (2006).

    CAS  PubMed  Google Scholar 

  9. Grubb, A., Blirup-Jensen, S., Lindstrom, V., Schmidt, C., Althaus, H. & Zegers, I. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin. Chem. Lab. Med. 48, 1619–1621 (2010).

    CAS  PubMed  Google Scholar 

  10. Miller, W. G. & Jones, G. R. D. Estimated glomerular filtration rate; laboratory implementation and current global status. Adv. Chronic Kidney Dis. 25, 7–13 (2018).

    PubMed  Google Scholar 

  11. Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).

    Google Scholar 

  12. Denic, A., Mathew, J. & Lerman, L. O. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Barai, S., Bandopadhayaya, G. P. & Patel, C. D. et al. Do healthy potential kidney donors in india have an average glomerular filtration rate of 81.4 ml/min? Nephron Physiol. 101, p21–p26 (2005).

    PubMed  Google Scholar 

  14. Barai, S., Gambhir, S. & Prasad, N. et al. Levels of GFR and protein-induced hyperfiltration in kidney donors: a single-center experience in India. Am. J. Kidney Dis. 51, 407–414 (2008).

    CAS  PubMed  Google Scholar 

  15. Jafar, T. H., Islam, M. & Jessani, S. et al. Level and determinants of kidney function in a South Asian population in Pakistan. Am. J. Kidney Dis. 58, 764–772 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Inker, L. A., Shafi, T. & Okparavero, A. et al. Effects of race and sex on measured GFR: the multi-ethnic study of atherosclerosis. Am. J. Kidney Dis. 68, 743–751 (2016).

    PubMed  Google Scholar 

  17. Wesson, L. Physiology of the Human Kidney. (pp. 96–108. Grune & Stratton, New York, 1969).

    Google Scholar 

  18. Pottel, H., Hoste, L., Yayo, E. & Delanaye, P. Glomerular filtration rate in healthy living potential kidney donors: a meta-analysis supporting the construction of the full age spectrum equation. Nephron 135, 105–119 (2017).

    PubMed  Google Scholar 

  19. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2, 1–138 (2012).

    Google Scholar 

  20. Matzke, G. R., Aronoff, G. R. & Atkinson, A. J. Jr. et al. Drug dosing consideration in patients with acute and chronic kidney disease — a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 80, 1122–1137 (2011).

    CAS  PubMed  Google Scholar 

  21. US Department of Health and Human Services, Food and Drug Administration & Center for Drug Evaluation and Research (CDER). Guidance for industry: Pharmacokinetics in patients with impaired renal function — study design, data analysis, and impact on dosing and labeling. FDA https://www.fda.gov/downloads/drugs/guidances/ucm204959.pdf (2010).

  22. European Medicines Agency. Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal function. EMA http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/02/WC500162133.pdf (2014).

  23. Levey, A. S., Inker, L. A. & Matsushita, K. et al. GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am. J. Kidney Dis. 64, 821–835 (2014).

    PubMed  Google Scholar 

  24. Levey A. et al. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: a scientific workshop sponsored by the National Kidney Foundation in collaboration with the US Food and Drug Administration and European Medicines Agency. Am. J. Kidney Dis. https://doi.org/10.1053/j.ajkd.2019.06.009 (2019).

  25. Eckfeldt, J. H., Karger, A. B., Miller, W. G., Rynders, G. P. & Inker, L. A. Performance in measurement of serum cystatin C by laboratories participating in the College of American Pathologists 2014 cys survey. Arch. Pathol. Lab. Med. 139, 888–893 (2015).

    CAS  PubMed  Google Scholar 

  26. The National Institute of Diabetes and Digestive and Kidney Diseases. Glomerular filtration rate (GFR). NIH https://www.niddk.nih.gov/health-information/health-communication-programs/nkdep/lab-evaluation/gfr/Pages/default.aspx (2019).

  27. Inker L. A. et al. GFR sope as a surrogate end point for kidney disease progression in clinical trials: a meta-analysis of treatment effects of randomized controlled Trials. J. Am. Soc. Nephrol. 30, 1735–1745 (2019).

    PubMed  Google Scholar 

  28. Greene T. et al. Performance of GFR slope as a surrogate endpoint for kidney disease progression in clinical trials: a statistical simulation. J. Am. Soc. Nephrol. 30, 1756–1769 (2019).

    PubMed  Google Scholar 

  29. Davies, D. F. & Shock, N. W. The variability of measurement of inulin and diodrast tests of kidney function. J. Clin. Invest. 29, 491–495 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Levey, A. S., Greene, T. & Schluchter, M. D. et al. Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. J. Am. Soc. Nephrol. 4, 1159–1171 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Florijn, K. W., Barendregt, J. N. & Lentjes, E. G. et al. Glomerular filtration rate measurement by ‘‘single-shot’’ injection of inulin. Kidney Int. 46, 252–259 (1994).

    CAS  PubMed  Google Scholar 

  32. Chowdhury, T. A., Dyer, P. H. & Bartlett, W. A. et al. Glomerular filtration rate determination in diabetic patients using iohexol clearance–comparison of single and multiple plasma sampling methods. Clin. Chim. Acta Int. J. Clin. Chem. 277, 153–158 (1998).

    CAS  Google Scholar 

  33. Gaspari, F., Perico, N. & Matalone, M. et al. Precision of plasma clearance of iohexol for estimation of GFR in patients with renal disease. J. Am. Soc. Nephrol. 9, 310–313 (1998).

    CAS  PubMed  Google Scholar 

  34. Tan, G. D., Lewis, A. V., James, T. J., Altmann, P., Taylor, R. P. & Levy, J. C. Clinical usefulness of cystatin C for the estimation of glomerular filtration rate in type 1 diabetes: reproducibility and accuracy compared with standard measures and iohexol clearance. Diabetes Care. 25, 2004–2009 (2002).

    CAS  PubMed  Google Scholar 

  35. Agarwal, R. Ambulatory GFR measurement with cold iothalamate in adults with chronic kidney disease. Am. J. Kidney Dis. 41, 752–759 (2003).

    PubMed  Google Scholar 

  36. Rowe C., Sitch A. J., Barratt J., et al. Biological variation of measured and estimated glomerular filtration rate in patients with chronic kidney disease. Kidney Int. 96, 429–435 (2019).

    PubMed  Google Scholar 

  37. Rodby, R. A., Ali, A., Rohde, R. D. & Lewis, E. Nephropathy CSGfTSoA-CEIiD. Renal scanning 99mTc diethylene-triamine pentaacetic acid glomerular filtration rate (GFR) determination compared with iothalamate clearance GFR in diabetics. Am. J. Kidney Dis. 20, 569–573 (1992).

    CAS  PubMed  Google Scholar 

  38. Blaufox, M. D., Aurell, M. & Bubeck, B. et al. Report of the radionuclides in nephrourology committee on renal clearance. J. Nucl. Med. 37, 1883–1890 (1996).

    CAS  PubMed  Google Scholar 

  39. Ma, Y. C., Zuo, L., Zhang, C. L., Wang, M., Wang, R. F. & Wang, H. Y. Comparison of 99mTc-DTPA renal dynamic imaging with modified MDRD equation for glomerular filtration rate estimation in chinese patients in different stages of chronic kidney disease. Nephrol Dial Transplant. 22, 417–423 (2007).

    PubMed  Google Scholar 

  40. Xie, P., Huang, J. M., Liu, X. M., Wu, W. J., Pan, L. P. & Lin, H. Y. (99m)Tc-DTPA renal dynamic imaging method may be unsuitable to be used as the reference method in investigating the validity of CDK-EPI equation for determining glomerular filtration rate. PLOS ONE 8, e62328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Seegmiller, J. C., Eckfeldt, J. H. & Lieske, J. C. Challenges in measuring glomerular filtration rate: a clinical laboratory perspective. Adv. Chronic Kidney Dis. 25, 84–92 (2018).

    PubMed  Google Scholar 

  42. Rizk, D. V., Meier, D. & Sandoval, R. M. et al. A novel method for rapid bedside measurement of gfr. J. Am. Soc. Nephrol. 29, 1609–1613 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwartz, G. J. & Furth, S. L. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr. Nephrol. 22, 1839–1848 (2007).

    PubMed  Google Scholar 

  44. Luis-Lima, S., Gaspari, F. & Negrín-Mena, N. et al. Iohexol plasma clearance simplified by dried blood spot testing. Nephrol. Dial. Transplant. 33, 1597–1603 (2017).

    Google Scholar 

  45. Bjornstad, P., Karger, A. B. & Maahs, D. M. Measured GFR in routine clinical practice — the promise of dried blood spots. Adv. Chronic Kidney Dis. 25, 76–83 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Stevens, L. A., Coresh, J., Greene, T. & Levey, A. S. Assessing kidney function — measured and estimated glomerular filtration rate. N. Engl. J. Med. 354, 2473–2483 (2006).

    CAS  PubMed  Google Scholar 

  47. Levey, A. S., Inker, L. A. & Coresh, J. GFR estimation: from physiology to public health. Am. J. Kidney Dis. 63, 820–834 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Stevens, L. A., Zhang, Y. & Schmid, C. H. Evaluating the performance of equations for estimating glomerular filtration rate. J. Nephrol. 21, 797–807 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. Selvin, E., Juraschek, S. P., Eckfeldt, J., Levey, A. S., Inker, L. A. & Coresh, J. Within-person variability in kidney measures. Am. J. Kidney Dis. 61, 716–722 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Waikar, S. S., Rebholz, C. M. & Zheng, Z. et al. Biological variability of estimated GFR and albuminuria in CKD. Am. J. Kidney Dis. 72, 538–546 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwong, Y. T., Stevens, L. A. & Selvin, E. et al. Imprecision of urinary iothalamate clearance as a gold-standard measure of GFR decreases the diagnostic accuracy of kidney function estimating equations. Am. J. Kidney Dis. 56, 39–49 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39 (2Suppl 1): S1–266 (2002).

    Google Scholar 

  53. Jelliffe, R. Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen. Am. J. Nephrol. 22, 320–324 (2002).

    PubMed  Google Scholar 

  54. Chen, S. Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J. Am. Soc. Nephrol. 24, 877–888 (2013).

    PubMed  Google Scholar 

  55. Chen, S. Kinetic glomerular filtration rate in routine clinical practice—applications and possibilities. Adv. Chronic Kidney Dis. 25, 105–114 (2018).

    PubMed  Google Scholar 

  56. Stevens, L. A., Manzi, J. & Levey, A. S. et al. Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am. J. Kidney Dis. 50, 21–35 (2007).

    CAS  PubMed  Google Scholar 

  57. Levey, A. S., Coresh, J. & Greene, T. et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 145, 247–254 (2006).

    CAS  PubMed  Google Scholar 

  58. Levey, A. S., Coresh, J. & Greene, T. et al. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem. 53, 766–772 (2007).

    CAS  PubMed  Google Scholar 

  59. Stevens, L. A., Nolin, T. D. & Richardson, M. M. et al. Comparison of drug dosing recommendations based on measured GFR and kidney function estimating equations. Am. J. Kidney Dis. 54, 33–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Earley, A., Miskulin, D., Lamb, E. J., Levey, A. S. & Uhlig, K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann. Intern. Med. 156, 785–795 (2012).

    PubMed  Google Scholar 

  61. Bjork, J., Grubb, A., Sterner, G. & Nyman, U. Revised equations for estimating glomerular filtration rate based on the Lund-Malmo Study cohort. Scand. J. Clin. Lab. Invest. 71, 232–239 (2011).

    PubMed  Google Scholar 

  62. Pottel, H., Hoste, L. & Dubourg, L. et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol. Dial. Transplant. 31, 798–806 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Björk, J., Grubb, A. & Gudnason, V. et al. Comparison of glomerular filtration rate estimating equations derived from creatinine and cystatin C: validation in the Age, Gene/Environment Susceptibility-Reykjavik Elderly Cohort. Nephrol. Dial. Transplant. 33, 1380–1388 (2017).

    PubMed Central  Google Scholar 

  64. Levey, A. S., Tighiouart, H., Simon, A. L. & Inker, L. A. Comparing newer GFR estimating equations using creatinine and cystatin C to the CKD-EPI equations in adults. Am. J. Kidney Dis. 70, 587–589 (2017).

    CAS  PubMed  Google Scholar 

  65. Erratum Regarding "Comparing newer gfr estimating equations using creatinine and cystatin C to the CKD-EPI Equation in Adults" (Am. J. Kidney Dis. 70, 587–589 (2017). Am. J. Kidney Dis. 73, 897 (2019).

    Google Scholar 

  66. Padala, S., Tighiouart, H. & Inker, L. A. et al. Accuracy of a GFR estimating equation over time in people with a wide range of kidney function. Am. J. Kidney Dis. 60, 217–224 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Wang, X., Lewis, J. & Appel, L. et al. Validation of creatinine-based estimates of GFR when evaluating risk factors in longitudinal studies of kidney disease. J. Am. Soc. Nephrol. 17, 2900–2909 (2006).

    CAS  PubMed  Google Scholar 

  68. Torre, A., Aguirre-Valadez, J. M. & Arreola-Guerra, J. M. et al. Creatinine versus cystatin c for estimating GFR in patients with liver cirrhosis. Am. J. Kidney Dis. 67, 342–344 (2016).

    PubMed  Google Scholar 

  69. Kervella, D., Lemoine, S. & Sens, F. et al. Cystatin C versus creatinine for GFR estimation in CKD due to heart failure. Am. J. Kidney Dis. 69, 321–323 (2017).

    CAS  PubMed  Google Scholar 

  70. Filler, G., Bokenkamp, A., Hofmann, W., Le Bricon, T., Martinez-Bru, C. & Grubb, A. Cystatin C as a marker of GFR–history, indications, and future research. Clin. Biochem. 38, 1–8 (2005).

    CAS  PubMed  Google Scholar 

  71. Liu, X., Foster, M. C. & Tighiouart, H. et al. Non-GFR determinants of low-molecular-weight serum protein filtration markers in CKD. Am. J. Kidney Dis. 68, 892–900 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Foster, M. C., Levey, A. S. & Inker, L. A. et al. Non-GFR determinants of low-molecular-weight serum protein filtration markers in the elderly: AGES-kidney and MESA-kidney. Am. J. Kidney Dis. 70, 406–414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rule, A. D., Larson, T. S., Bergstralh, E. J., Slezak, J. M., Jacobsen, S. J. & Cosio, F. G. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann. Intern. Med. 141, 929–937 (2004).

    CAS  PubMed  Google Scholar 

  74. Schaeffner, E. S., Ebert, N. & Delanaye, P. et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann. Intern. Med. 157, 471–481 (2012).

    PubMed  Google Scholar 

  75. Teo, B. W., Zhang, L. & Guh, J.-Y. et al. Glomerular filtration rates in Asians. Adv. Chronic Kidney Dis. 25, 41–48 (2018).

    PubMed  Google Scholar 

  76. Grubb, A., Horio, M. & Hansson, L. O. et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin. Chem. 60, 974–986 (2014).

    CAS  PubMed  Google Scholar 

  77. Bjork, J., Grubb, A. & Larsson, A. et al. Accuracy of GFR estimating equations combining standardized cystatin C and creatinine assays: a cross-sectional study in Sweden. Clin. Chem. Lab. Med. 53, 403–414 (2015).

    PubMed  Google Scholar 

  78. Pottel, H., Delanaye, P. & Schaeffner, E. et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol. Dial. Transplant. 32, 497–507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Grams, M. E., Juraschek, S. P. & Selvin, E. et al. Trends in the prevalence of reduced GFR in the United States: a comparison of creatinine- and cystatin C-based estimates. Am. J. Kidney Dis. 62, 253–260 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Matsushita, K., Mahmoodi, B. K. & Woodward, M. et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 307, 1941–1951 (2012).

    CAS  PubMed  Google Scholar 

  81. Shlipak, M. G., Matsushita, K. & Arnlov, J. et al. Cystatin C versus creatinine in determining risk based on kidney function. N. Engl. J. Med. 369, 932–943 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Coresh, J., Turin, T. C. & Matsushita, K. et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA 311, 2518–2531 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Inker, L. A., Lambers Heerspink, H. J. & Mondal, H. et al. GFR decline as an alternative end point to kidney failure in clinical trials: a meta-analysis of treatment effects from 37 randomized trials. Am. J. Kidney Dis. 64, 848–859 (2014).

    PubMed  Google Scholar 

  84. Chronic Kidney Disease Epidemiology Collaboration. 24 hour urine clear calculator. CKD-EPI http://ckdepi.org/equations/24-hour-urine-clearance-calculator/ (2019).

  85. Chronic Kidney Disease Prognosis Consortium. CKD-PC Risk Model. CKD-PC http://www.ckdpcrisk.org/ (2019).

  86. Tangri, N., Stevens, L. A. & Griffith, J. et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305, 1553–1559 (2011).

    CAS  PubMed  Google Scholar 

  87. Tangri, N., Grams, M. E. & Levey, A. S. et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA 315, 164–174 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Grams, M. E., Sang, Y. & Ballew, S. H. et al. Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate. Kidney Int. 93, 1442–1451 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Grams, M. E., Sang, Y. & Levey, A. S. et al. Kidney-failure risk projection for the living kidney-donor candidate. N. Engl. J. Med. 374, 411–421 (2016).

    CAS  PubMed  Google Scholar 

  90. Huang, N., Foster, M. C. & Lentine, K. L. et al. Estimated GFR for living kidney donor evaluation. Am. J. Transplant. 16, 171–180 (2016).

    CAS  PubMed  Google Scholar 

  91. Chronic Kidney Disease Epidemiology Collaboration. Donor candidate GFR calculator: determining probability of GFR above or below certain threshold. CKD-EPI http://ckdepi.org/equations/donor-candidate-gfr-calculator/ (2019).

  92. Inker, L. A., Levey, A. S. & Coresh, J. Estimated glomerular filtration rate from a panel of filtration markers-hope for increased accuracy beyond measured glomerular filtration rate? Adv. Chronic Kidney Dis. 25, 67–75 (2018).

    PubMed  Google Scholar 

  93. Gassman, J. J., Greene, T. & Wright, J. T. Jr. et al. Design and statistical aspects of the African American Study of Kidney Disease and Hypertension (AASK). J. Am. Soc. Nephrol. 14, S154–S165 (2003). 7Suppl 2.

    PubMed  PubMed Central  Google Scholar 

  94. Inker, L. A., Tighiouart, H. & Coresh, J. et al. GFR estimation using beta-trace protein and beta2-microglobulin in CKD. Am. J. Kidney Dis. 67, 40–48 (2016).

    CAS  PubMed  Google Scholar 

  95. Coresh J., Inker L. A., Sang Y., et al. Metabolomic profiling to improve glomerular filtration rate estimation: a proof-of-concept study. Nephrol. Dial. Transplant. 34, 825–833 (2019).

    PubMed Central  Google Scholar 

  96. Freed T. A., Coresh J., Inker L. A., et al. Analytical and clinical validation of a panel of metabolites for a more accurate estimation of glomerular filtration rate using quantitative LC-MS/MS. Clin. Chem. 65, 406–418 (2019).

Download references

Acknowledgements

The authors are grateful to J. Chen, at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, for assistance with statistical analysis, and to J. Chaudhari at Tufts Medical Centre, Boston, MA, USA, for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to ideas expressed in the manuscript. J.C. and H.T. performed statistical analyses. A.S.L. wrote the first draft. All co-authors contributed to critical revisions.

Corresponding author

Correspondence to Andrew S. Levey.

Ethics declarations

Competing interests

A.S.L., J.C., T.G. and L.A.I have received grants from the National Kidney Foundation (NKF) and National Institutes of Health for GFR estimation and CKD epidemiology. A.S.L has received a grant from Siemens to Tufts Medical Centre outside of the submitted work. T.G. has received personal fees from DURECT Corporation, Janssen and Pfizer outside of the submitted work. L.A.I. has received grants from Retrophin, Omeros and Reata Pharmaceuticals for research and contracts with Tufts Medical Centre, and consulting agreements with Tricida and Omeros Corp. A.S.L., J.C. and L.A.I. also have a provisional patent (filed 15 August 2014; precise estimation of glomerular filtration rate from multiple biomarkers, patent number PCT/US2015/044567), and Tufts Medical Centre, John Hopkins University and Metabolon have a collaboration agreement to develop a product to estimate GFR from a panel of markers. H.T. declares no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks L. Dubourg, E. Porrini and P. Stevens for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Kidney Failure Risk Equation: http://www.ckdpcrisk.org/kidneyfailurerisk/

CKD-PC instrument: http://www.ckdpcrisk.org/lowgfrevents/

CKD-PC instrument for kidney donor candidates: http://www.ckdpcrisk.org/esrdrisk/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levey, A.S., Coresh, J., Tighiouart, H. et al. Measured and estimated glomerular filtration rate: current status and future directions. Nat Rev Nephrol 16, 51–64 (2020). https://doi.org/10.1038/s41581-019-0191-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0191-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing