Molecular nephrology: types of acute tubular injury


The acute loss of kidney function has been diagnosed for many decades using the serum concentration of creatinine — a muscle metabolite that is an insensitive and non-specific marker of kidney function, but is now used for the very definition of acute kidney injury (AKI). Fortunately, myriad new tools have now been developed to better understand the relationship between acute tubular injury and elevation in serum creatinine (SCr). These tools include unbiased gene and protein expression analyses in kidney, urine and blood, the localization of specific gene transcripts in pathological biopsy samples by rapid in-situ RNA technology and single-cell RNA-sequencing analyses. However, this molecular approach to AKI has produced a series of unexpected problems, because the expression of specific kidney-derived molecules that are indicative of injury often do not correlate with SCr levels. This discrepancy between kidney injury markers and SCr level can be reconciled by the recognition that many separate subtypes of AKI exist, each with distinct patterning of molecular markers of tubular injury and SCr data. In this Review, we describe the weaknesses of isolated SCr-based diagnoses, the clinical and molecular subtyping of acute tubular injury, and the role of non-invasive biomarkers in clinical phenotyping. We propose a conceptual model that synthesizes molecular and physiological data along a time course spanning from acute cellular injury to organ failure.

Key points

  • Current definitions of acute kidney injury (AKI), based on serum creatinine (SCr) level, focus on loss of kidney function rather than kidney injury.

  • AKI definitions cannot provide an acute measurement of loss of function, however, because SCr is a quantitative functional marker only at the steady state.

  • Current AKI metrics can neither detect kidney injury in real time nor distinguish dramatically different types of kidney injury.

  • Molecular analyses of acutely damaged kidneys have detected cellular and segment-specific responses to injurious stimuli, prior to and distinct from the loss of function as measured by SCr.

  • As a result, molecular analyses have detected different types of acute tubular injury and have re-characterized the concept of the kidney response to noxious stimuli into biomarker-positive ʻinjury’ and biomarker-negative ʻno injury’.

  • A conceptual model places ʻtubular injury’ (biomarkers) upstream of ʻloss of function’ (AKI metrics), providing a unifying ʻinjury’ and ʻloss of function’ sequence consistent with biological pathways.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Rapid resolution of serum creatinine in most patients with AKI.
Fig. 2: Renal expression of NGAL mRNA.
Fig. 3: Sources of AKI biomarker mRNA and protein.
Fig. 4: Biomarkers change the definition of AKI.
Fig. 5: Combined analysis of biomarker, serum creatinine and urine output for the assessment of kidney injury.


  1. 1.

    Heberden, W. Commentaries on the History and Cure of Diseases (Wells and Lilly, 1818).

  2. 2.

    Eknoyan, G. Emergence of the concept of acute renal failure. Am. J. Nephrol. 22, 225–230 (2002).

    PubMed  Google Scholar 

  3. 3.

    Cameron, J. S. Bright’s disease today: the pathogenesis and treatment of glomerulonephritis–I. Br. Med. J. 4, 87–90 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Smith, H. W. The Kidney: Structure and Function in Health and Disease (Oxford University Press, 1951).

  5. 5.

    Bellomo, R. et al. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit. Care 8, R204–212 (2004).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Mehta, R. L. et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11, R31 (2007).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 120, c179–c184 (2012).

    PubMed  Google Scholar 

  8. 8.

    Xu, K. et al. Unique transcriptional programs identify subtypes of AKI. J. Am. Soc. Nephrol. 28, 1729–1740 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Uchino, S., Bellomo, R., Bagshaw, S. M. & Goldsmith, D. Transient azotaemia is associated with a high risk of death in hospitalized patients. Nephrol. Dial. Transpl. 25, 1833–1839 (2010).

    Google Scholar 

  10. 10.

    Vanmassenhove, J., Van Biesen, W., Vanholder, R. & Lameire, N. Subclinical AKI: ready for primetime in clinical practice? J. Nephrol. 32, 9–16 (2018).

    PubMed  Google Scholar 

  11. 11.

    Haase, M., Kellum, J. A. & Ronco, C. Subclinical AKI — an emerging syndrome with important consequences. Nat. Rev. Nephrol. 8, 735–739 (2012).

    CAS  PubMed  Google Scholar 

  12. 12.

    Ronco, C., Kellum, J. A. & Haase, M. Subclinical AKI is still AKI. Crit. Care 16, 313 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Huen, S. C. & Parikh, C. R. Molecular phenotyping of clinical AKI with novel urinary biomarkers. Am. J. Physiol. Ren. Physiol. 309, F406–F413 (2015).

    CAS  Google Scholar 

  14. 14.

    Fujii, T., Uchino, S., Takinami, M. & Bellomo, R. Subacute kidney injury in hospitalized patients. Clin. J. Am. Soc. Nephrol. 9, 457–461 (2014).

    PubMed  Google Scholar 

  15. 15.

    Nickolas, T. L. et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J. Am. Coll. Cardiol. 59, 246–255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mehta, S. et al. The prognostic importance of duration of AKI: a systematic review and meta-analysis. BMC Nephrol. 19, 91 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Au, V., Feit, J., Barasch, J., Sladen, R. N. & Wagener, G. Urinary neutrophil gelatinase-associated lipocalin (NGAL) distinguishes sustained from transient acute kidney injury after general surgery. Kidney Int. Rep. 1, 3–9 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Freda, B. J., Knee, A. B., Braden, G. L., Visintainer, P. F. & Thakar, C. V. Effect of transient and sustained acute kidney injury on readmissions in acute decompensated heart failure. Am. J. Cardiol. 119, 1809–1814 (2017).

    PubMed  Google Scholar 

  19. 19.

    Moriyama, N. et al. Early development of acute kidney injury is an independent predictor of in-hospital mortality in patients with acute myocardial infarction. J. Cardiol. 69, 79–83 (2017).

    PubMed  Google Scholar 

  20. 20.

    Basu, R. K., Kaddourah, A., Goldstein, S. L. & Investigators, A. S. Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child. Adolesc. Health 2, 112–120 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Yang, X. et al. Urinary matrix metalloproteinase-7 predicts severe AKI and poor outcomes after cardiac surgery. J. Am. Soc. Nephrol. 28, 3373–3382 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Efstratiadis, G. et al. Rhabdomyolysis updated. Hippokratia 11, 129–137 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Walid, M. S. Blood urea nitrogen/creatinine ratio in rhabdomyolysis. Indian J. Nephrol. 18, 173–174 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Doi, K. et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol. 20, 1217–1221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Vanholder, R., Sever, M. S., Erek, E. & Lameire, N. Rhabdomyolysis. J. Am. Soc. Nephrol. 11, 1553–1561 (2000).

    CAS  PubMed  Google Scholar 

  26. 26.

    Schetz, M., Gunst, J. & Van den Berghe, G. The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU. Intensive Care Med. 40, 1709–1717 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Ravn, B., Prowle, J. R., Martensson, J., Martling, C. R. & Bell, M. Superiority of serum cystatin C over creatinine in prediction of long-term prognosis at discharge from ICU. Crit. Care Med. 45, e932–e940 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Wilson, F. P., Sheehan, J. M., Mariani, L. H. & Berns, J. S. Creatinine generation is reduced in patients requiring continuous venovenous hemodialysis and independently predicts mortality. Nephrol. Dial. Transpl. 27, 4088–4094 (2012).

    CAS  Google Scholar 

  29. 29.

    Sise, M. E. et al. Urine neutrophil gelatinase-associated lipocalin identifies unilateral and bilateral urinary tract obstruction. Nephrol. Dial. Transpl. 26, 4132–4135 (2011).

    CAS  Google Scholar 

  30. 30.

    Decoste, R., Himmelman, J. G. & Grantmyre, J. Acute renal infarct without apparent cause: a case report and review of the literature. Can. Urol. Assoc. J. 9, E237–239 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ramcharan, T. & Matas, A. J. Long-term (20–37 years) follow-up of living kidney donors. Am. J. Transpl. 2, 959–964 (2002).

    Google Scholar 

  32. 32.

    Molitoris, B. A. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J. Clin. Invest. 124, 2355–2363 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sharma, A., Mucino, M. J. & Ronco, C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin. Pract. 127, 94–100 (2014).

    CAS  PubMed  Google Scholar 

  34. 34.

    Moretti, C. et al. Androgens and body composition in the aging male. J. Endocrinol. Invest. 28, 56–64 (2005).

    CAS  PubMed  Google Scholar 

  35. 35.

    Kimmel, P. L., Lew, S. Q. & Bosch, J. P. Nutrition, ageing and GFR: is age-associated decline inevitable? Nephrol. Dial. Transpl. 11, 85–88 (1996).

    Google Scholar 

  36. 36.

    Musso, C. G. et al. Creatinine reabsorption by the aged kidney. Int. Urol. Nephrol. 41, 727–731 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Sjostrom, P. A., Odlind, B. G. & Wolgast, M. Extensive tubular secretion and reabsorption of creatinine in humans. Scand. J. Urol. Nephrol. 22, 129–131 (1988).

    CAS  PubMed  Google Scholar 

  38. 38.

    Gault, M. H. & Cockcroft, D. W. Letter: creatinine clearance and age. Lancet 2, 612–613 (1975).

    CAS  PubMed  Google Scholar 

  39. 39.

    Cockcroft, D. W. & Gault, M. H. Prediction of creatinine clearance from serum creatinine. Nephron 16, 31–41 (1976).

    CAS  Google Scholar 

  40. 40.

    Inker, L. A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Schaeffner, E. S. et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann. Intern. Med. 157, 471–481 (2012).

    Google Scholar 

  42. 42.

    Sutherland, S. M. et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin. J. Am. Soc. Nephrol. 10, 554–561 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Toto, R. D. Conventional measurement of renal function utilizing serum creatinine, creatinine clearance, inulin and para-aminohippuric acid clearance. Curr. Opin. Nephrol. Hypertens. 4, 505–509 (1995).

    CAS  PubMed  Google Scholar 

  44. 44.

    Coca, S. G. et al. First post-operative urinary kidney injury biomarkers and association with the duration of AKI in the TRIBE-AKI Cohort. PLOS ONE 11, e0161098 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Coca, S. G., King, J. T., Jr, Rosenthal, R. A., Perkal, M. F. & Parikh, C. R. The duration of postoperative acute kidney injury is an additional parameter predicting long-term survival in diabetic veterans. Kidney Int. 78, 926–933 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Brown, J. R., Kramer, R. S., Coca, S. G. & Parikh, C. R. Duration of acute kidney injury impacts long-term survival after cardiac surgery. Ann. Thorac. Surg. 90, 1142–1148 (2010).

    PubMed  Google Scholar 

  47. 47.

    Safirstein, R. L. Acute renal failure: from renal physiology to the renal transcriptome. Kidney Int. Suppl., S62–S66 (2004).

  48. 48.

    Johnson, A. C. M. & Zager, R. A. Mechanisms underlying increased timp2 and igfbp7 urinary excretion in experimental AKI. J. Am. Soc. Nephrol. 29, 2157–2167 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Johnson, A. C. & Zager, R. A. Plasma and urinary p21: potential biomarkers of AKI and renal aging. Am. J. Physiol. Ren. Physiol. 315, F1329–F1335 (2018).

  50. 50.

    Garner, A. E., Lewington, A. J. & Barth, J. H. Detection of patients with acute kidney injury by the clinical laboratory using rises in serum creatinine: comparison of proposed definitions and a laboratory delta check. Ann. Clin. Biochem. 49, 59–62 (2012).

    CAS  PubMed  Google Scholar 

  51. 51.

    Lin, J. et al. False-positive rate of AKI using consensus creatinine-based criteria. Clin. J. Am. Soc. Nephrol. 10, 1723–1731 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Labban, B. et al. The role of kidney biopsy in heart transplant candidates with kidney disease. Transplantion 89, 887–893 (2010).

    Google Scholar 

  53. 53.

    Bergler-Klein, J. et al. The long-term effect of simultaneous heart and kidney transplantation on native renal function. Transplantion 71, 1597–1600 (2001).

    CAS  Google Scholar 

  54. 54.

    Moledina, D. G. et al. Performance of serum creatinine and kidney injury biomarkers for diagnosing histologic acute tubular injury. Am. J. Kidney Dis. 70, 807–816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Gay, L. et al. Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes Dev. 27, 98–115 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Yuen, P. S., Jo, S. K., Holly, M. K., Hu, X. & Star, R. A. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol. Genomics 25, 375–386 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Zager, R. A. Alterations of intravascular volume: influence on renal susceptibility to ischemic injury. J. Lab. Clin. Med. 108, 60–69 (1986).

    CAS  PubMed  Google Scholar 

  58. 58.

    Nickolas, T. L. et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann. Intern. Med. 148, 810–819 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Belcher, J. M. et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology 60, 622–632 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Verna, E. C. et al. Urinary neutrophil gelatinase-associated lipocalin predicts mortality and identifies acute kidney injury in cirrhosis. Dig. Dis. Sci. 57, 2362–2370 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Singer, E. et al. Urinary neutrophil gelatinase-associated lipocalin distinguishes pre-renal from intrinsic renal failure and predicts outcomes. Kidney Int. 80, 405–414 (2011).

    CAS  PubMed  Google Scholar 

  62. 62.

    Ahmad, T. et al. Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation 137, 2016–2028 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Heyman, S. N., Rosenberger, C. & Rosen, S. Experimental ischemia-reperfusion: biases and myths-the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int. 77, 9–16 (2010).

    PubMed  Google Scholar 

  64. 64.

    Liu, J. et al. Cell-specific translational profiling in acute kidney injury. J. Clin. Invest. 124, 1242–1254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lautrette, A. et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat. Med. 11, 867–874 (2005).

    CAS  PubMed  Google Scholar 

  66. 66.

    Azroyan, A. et al. Renal intercalated cells sense and mediate inflammation via the P2Y14 receptor. PLOS ONE 10, e0121419 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Gburek, J. et al. Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin. Am. J. Physiol. Ren. Physiol. 285, F451–458 (2003).

    Google Scholar 

  68. 68.

    Prozialeck, W. C. & Edwards, J. R. Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharmacol. Exp. Ther. 343, 2–12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Schmitz, C. et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J. Biol. Chem. 277, 618–622 (2002).

    CAS  PubMed  Google Scholar 

  70. 70.

    Servais, H. et al. Gentamicin-induced apoptosis in LLC-PK1 cells: involvement of lysosomes and mitochondria. Toxicol. Appl. Pharmacol. 206, 321–333 (2005).

    CAS  PubMed  Google Scholar 

  71. 71.

    Servais, H. et al. Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis 13, 11–32 (2008).

    CAS  PubMed  Google Scholar 

  72. 72.

    Prozialeck, W. C. et al. Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury. Toxicol. Appl. Pharmacol. 238, 306–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    McWilliam, S. J. et al. Mechanism-based urinary biomarkers to identify the potential for aminoglycoside-induced nephrotoxicity in premature neonates: a proof-of-concept study. PLOS ONE 7, e43809 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Blank, M., Thompson, A., Hausner, E. & Rouse, R. Biomarkers of drug-induced acute kidney injury: a regulatory perspective. Expert. Opin. Drug. Metab. Toxicol. 14, 929–936 (2018).

    CAS  PubMed  Google Scholar 

  75. 75.

    Matheis, K. A. et al. Cross-study and cross-omics comparisons of three nephrotoxic compounds reveal mechanistic insights and new candidate biomarkers. Toxicol. Appl. Pharmacol. 252, 112–122 (2011).

    CAS  PubMed  Google Scholar 

  76. 76.

    Woodcock, J. & Jenkins, J. Review submission of the qualification of seven biomarkers of drug-induced nephrotoxicity in rats. Department of Health and Human Services (2008).

  77. 77.

    European Medicines Agency. Final report on the pilot Joint EMEA/FDA VXDS experience on qualification of nephrotoxicity biomarkers. EMA (2008).

  78. 78.

    Rasi, G. Letter of support for PSTC translational drug-induced kidney injury (DIKI) biomarkers. European Medicines Agency (2014).

  79. 79.

    Woodcock, J. Biomarker letter of support. FDA (2014).

  80. 80.

    Rasi, G. Letter of support for drug-induced renal tubular injury biomarker(s). European Medicines Agency (2016).

  81. 81.

    Woodcock, J. Letter of Support for Drug-Induced Renal Tubular Injury Biomarker(s). FDA (2016).

  82. 82.

    Leptak, C. & Stockbridge, N. Qualification determination letter. FDA (2018).

  83. 83.

    El-Achkar, T. M. et al. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am. J. Physiol. Ren. Physiol. 290, F1034–F1043 (2006).

    CAS  Google Scholar 

  84. 84.

    Krivan, S. et al. Increased expression of Toll-like receptors 2, 3, 4 and 7 mRNA in the kidney and intestine of a septic mouse model. Sci. Rep. 9, 4010 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Lieberthal, W. & Nigam, S. K. Acute renal failure. I. relative importance of proximal vs. distal tubular injury. Am. J. Physiol. 275, F623–F631 (1998).

    CAS  PubMed  Google Scholar 

  86. 86.

    Epstein, F. H. Oxygen and renal metabolism. Kidney Int. 51, 381–385 (1997).

    CAS  PubMed  Google Scholar 

  87. 87.

    Bagnasco, S., Good, D., Balaban, R. & Burg, M. Lactate production in isolated segments of the rat nephron. Am. J. Physiol. 248, F522–F526 (1985).

    CAS  PubMed  Google Scholar 

  88. 88.

    Brezis, M., Rosen, S., Silva, P. & Epstein, F. H. Transport activity modifies thick ascending limb damage in the isolated perfused kidney. Kidney Int. 25, 65–72 (1984).

    CAS  PubMed  Google Scholar 

  89. 89.

    di Mari, J. F., Davis, R. & Safirstein, R. L. MAPK activation determines renal epithelial cell survival during oxidative injury. Am. J. Physiol. 277, F195–F203 (1999).

    PubMed  Google Scholar 

  90. 90.

    Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).

    CAS  PubMed  Google Scholar 

  91. 91.

    Sharfuddin, A. A. & Molitoris, B. A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol. 7, 189–200 (2011).

    CAS  PubMed  Google Scholar 

  92. 92.

    Ratliff, B. B., Rabadi, M. M., Vasko, R., Yasuda, K. & Goligorsky, M. S. Messengers without borders: mediators of systemic inflammatory response in AKI. J. Am. Soc. Nephrol. 24, 529–536 (2013).

    CAS  PubMed  Google Scholar 

  93. 93.

    Kalogeris, T., Baines, C. P., Krenz, M. & Korthuis, R. J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298, 229–317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Kanda, J. et al. An AKI biomarker lipocalin 2 in the blood derives from the kidney in renal injury but from neutrophils in normal and infected conditions. Clin. Exp. Nephrol. 19, 99–106 (2015).

    CAS  PubMed  Google Scholar 

  95. 95.

    Paragas, N. et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 17, 216–222 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Lankadeva, Y. R. et al. Alterations in regional kidney oxygenation during expansion of extracellular fluid volume in conscious healthy sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R1242–R1250 (2018).

    PubMed  Google Scholar 

  97. 97.

    Evans, R. G. et al. Urinary oxygen tension: a clinical window on the health of the renal medulla? Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R45–R50 (2014).

    CAS  PubMed  Google Scholar 

  98. 98.

    Lankadeva, Y. R., Kosaka, J., Evans, R. G., Bellomo, R. & May, C. N. Urinary oxygenation as a surrogate measure of medullary oxygenation during angiotensin ii therapy in septic acute kidney injury. Crit. Care Med. 46, e41–e48 (2018).

    PubMed  Google Scholar 

  99. 99.

    Sgouralis, I. et al. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R532–R544 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Zhu, M. Z. L. et al. Urinary hypoxia: an intraoperative marker of risk of cardiac surgery-associated acute kidney injury. Nephrol. Dial. Transpl. 33, 2191–2201 (2018).

    CAS  Google Scholar 

  101. 101.

    Kellum, J. A. & Prowle, J. R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 14, 217–230 (2018).

    PubMed  Google Scholar 

  102. 102.

    Angus, D. C. & van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 369, 840–851 (2013).

    CAS  PubMed  Google Scholar 

  103. 103.

    Brown, K. A. et al. Neutrophils in development of multiple organ failure in sepsis. Lancet 368, 157–169 (2006).

    CAS  PubMed  Google Scholar 

  104. 104.

    Gomez, H. et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 41, 3–11 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Ince, C. et al. The endothelium in sepsis. Shock 45, 259–270 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Prowle, J. R. & Bellomo, R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin. Nephrol. 35, 64–74 (2015).

    PubMed  Google Scholar 

  107. 107.

    Post, E. H. et al. Changes in kidney perfusion and renal cortex metabolism in septic shock: an experimental study. J. Surg. Res. 207, 145–154 (2017).

    PubMed  Google Scholar 

  108. 108.

    Takasu, O. et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am. J. Respir. Crit. Care Med. 187, 509–517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Tran, M. et al. PGC-1alpha promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003–4014 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Brealey, D. & Singer, M. Mitochondrial dysfunction in sepsis. Curr. Infect. Dis. Rep. 5, 365–371 (2003).

    PubMed  Google Scholar 

  111. 111.

    Parikh, S. M. et al. Mitochondrial function and disturbances in the septic kidney. Semin. Nephrol. 35, 108–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Bailly, V. et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J. Biol. Chem. 277, 39739–39748 (2002).

    CAS  PubMed  Google Scholar 

  113. 113.

    Nickolas, T. L. et al. NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease. Kidney Int. 82, 718–722 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Yan, L., Borregaard, N., Kjeldsen, L. & Moses, M. A. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J. Biol. Chem. 276, 37258–37265 (2001).

    CAS  PubMed  Google Scholar 

  115. 115.

    Ichimura, T. et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem. 273, 4135–4142 (1998).

    CAS  PubMed  Google Scholar 

  116. 116.

    Mishra, J. et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365, 1231–1238 (2005).

    CAS  PubMed  Google Scholar 

  117. 117.

    Dong, L., Ma, Q., Bennett, M. & Devarajan, P. Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass. Pediatr. Nephrol. 32, 2351–2360 (2017).

    PubMed  Google Scholar 

  118. 118.

    Krawczeski, C. D. et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J. Am. Coll. Cardiol. 58, 2301–2309 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Mishra, J. et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 14, 2534–2543 (2003).

    CAS  PubMed  Google Scholar 

  120. 120.

    Paragas, N. et al. Urinary NGAL marks cystic disease in HIV-associated nephropathy. J. Am. Soc. Nephrol. 20, 1687–1692 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Paragas, N. et al. alpha-Intercalated cells defend the urinary system from bacterial infection. J. Clin. Invest. 124, 2963–2976 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Emlet, D. R. et al. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: differential expression and secretion in human kidney tubule cells. Am. J. Physiol. Ren. Physiol. 312, F284–F296 (2017).

    CAS  Google Scholar 

  124. 124.

    Mar, D. et al. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int. 88, 734–744 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Basu, R. K. et al. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery. J. Am. Coll. Cardiol. 64, 2753–2762 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Vaidya, V. S. et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol. 28, 478–485 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Mori, K. et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Invest. 115, 610–621 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    da Rocha, E. P. et al. Urinary neutrophil gelatinase-associated lipocalin is excellent predictor of acute kidney injury in septic elderly patients. Aging Dis. 9, 182–191 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Park, H. S. et al. Urinary neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury in sepsis patients in the emergency department. Clin. Chim. Acta 495, 552–555 (2019).

    CAS  PubMed  Google Scholar 

  130. 130.

    Srisawat, N. et al. Neutrophil gelatinase associated lipocalin (NGAL) in leptospirosis acute kidney injury: a multicenter study in thailand. PLOS ONE 10, e0143367 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Urbschat, A. et al. Serum and urinary NGAL but not KIM-1 raises in human postrenal AKI. Eur. J. Clin. Invest. 44, 652–659 (2014).

    CAS  PubMed  Google Scholar 

  132. 132.

    Forster, C. S. & Devarajan, P. Neutrophil gelatinase-associated lipocalin: utility in urologic conditions. Pediatr. Nephrol. 32, 377–381 (2017).

    PubMed  Google Scholar 

  133. 133.

    Kostic, D. et al. The role of renal biomarkers to predict the need of surgery in congenital urinary tract obstruction in infants. J. Pediatr. Urol. 15, 242.e1–249.e9 (2019).

    Google Scholar 

  134. 134.

    Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002).

    CAS  PubMed  Google Scholar 

  135. 135.

    Arai, S. et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat. Med. 22, 183–193 (2016).

    CAS  PubMed  Google Scholar 

  136. 136.

    Murray, P. T. et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th acute dialysis quality initiative consensus conference. Kidney Int. 85, 513–521 (2014).

    PubMed  Google Scholar 

  137. 137.

    Haase, M. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 57, 1752–1761 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Basu, R. K. et al. Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin. J. Am. Soc. Nephrol. 9, 654–662 (2014).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Molitoris, B. A. & Reilly, E. S. Quantifying glomerular filtration rates in acute kidney injury: a requirement for translational success. Semin. Nephrol. 36, 31–41 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Hollinger, A. et al. Proenkephalin A 119-159 (Penkid) is an early biomarker of septic acute kidney injury: the kidney in sepsis and septic shock (Kid-SSS) study. Kidney Int. Rep. 3, 1424–1433 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Denning, G. M. et al. Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides 29, 83–92 (2008).

    CAS  PubMed  Google Scholar 

  142. 142.

    Rosen, S., Brezis, M. & Stillman, I. The pathology of nephrotoxic injury: a reappraisal. Min. Electrolyte Metab. 20, 174–180 (1994).

    CAS  Google Scholar 

  143. 143.

    Heyman, S. N., Rosen, S., Fuchs, S., Epstein, F. H. & Brezis, M. Myoglobinuric acute renal failure in the rat: a role for medullary hypoperfusion, hypoxia, and tubular obstruction. J. Am. Soc. Nephrol. 7, 1066–1074 (1996).

    CAS  PubMed  Google Scholar 

  144. 144.

    Alexanian, R., Barlogie, B. & Dixon, D. Renal failure in multiple myeloma. Pathogenesis and prognostic implications. Arch. Intern. Med. 150, 1693–1695 (1990).

    CAS  PubMed  Google Scholar 

  145. 145.

    Cohen, D. J., Sherman, W. H., Osserman, E. F. & Appel, G. B. Acute renal failure in patients with multiple myeloma. Am. J. Med. 76, 247–256 (1984).

    CAS  PubMed  Google Scholar 

  146. 146.

    Perazella, M. A. Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin. J. Am. Soc. Nephrol. 7, 1713–1721 (2012).

    CAS  PubMed  Google Scholar 

  147. 147.

    Ghane Shahrbaf, F. & Assadi, F. Drug-induced renal disorders. J. Ren. Inj. Prev. 4, 57–60 (2015).

    PubMed  Google Scholar 

  148. 148.

    Stacul, F. et al. Strategies to reduce the risk of contrast-induced nephropathy. Am. J. Cardiol. 98, 59K–77K (2006).

    CAS  PubMed  Google Scholar 

  149. 149.

    Goldfarb, S., McCullough, P. A., McDermott, J. & Gay, S. B. Contrast-induced acute kidney injury: specialty-specific protocols for interventional radiology, diagnostic computed tomography radiology, and interventional cardiology. Mayo Clin. Proc. 84, 170–179 (2009).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Schrier, R. W. Nephrology forum: acute renal failure. Kidney Int. 15, 205–216 (1979).

    CAS  PubMed  Google Scholar 

  151. 151.

    Gines, P. & Schrier, R. W. Renal failure in cirrhosis. N. Engl. J. Med. 361, 1279–1290 (2009).

    CAS  PubMed  Google Scholar 

  152. 152.

    Charlton, J. R. et al. Late onset neonatal acute kidney injury: results from the AWAKEN Study. Pediatr. Res. 85, 339–348 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Takaya, Y. et al. Impact of onset time of acute kidney injury on outcomes in patients with acute decompensated heart failure. Heart Vessel. 31, 60–65 (2016).

    Google Scholar 

Download references


J.B. is supported by NIH 1U54DK104309, NIH 2R01DK073462, UG3 DK114926, T32-DK108741 and a Columbia Precision Medicine Pilot Award. P.D. is funded by NIH P50 DK096418, NIH R01HL133695, NIH 1R01HL132551.

Author information




B.D.D.O., K.X., T.H.S., K.K., V.D.D., N.P.T., J.B. and P.D. researched data for the article. All authors contributed equally to discussion of the article’s content, writing the article and review/editing the manuscript before submission.

Corresponding author

Correspondence to Prasad Devarajan.

Ethics declarations

Competing interests

J.B. and P.D. are co-inventors on patents (US57766204P; US8592170; US797710; EP1766395B1; EP1616184) for the use of NGAL in kidney disease.

Additional information

Peer review information

Nature Reviews Nephrology thanks M. Ostermann, J. Prowle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Thiouracil tagging

Tagging of newly synthesized RNA. The Uprt gene is activated in the Rosa locus by segment-specific Cre drivers. 4-Thiouracil is then introduced at the time of choosing and 4 h later, thiouracil-labelled RNA is extracted from the whole organ without the need for cell dissociation.

Warm IRI

Arterial ischaemia–reperfusion injury of the kidney in the setting of normal body temperature (37 oC).

Sterile inflammation

The presence of inflammatory cells (neutrophils, macrophages and lymphocytes) in the absence of overt infection with bacteria or virus.

RNA pulldown

A process of extraction and purification of labelled RNA from an organ.

Partial pressure of oxygen

(pO2). The percentage of atmosphere occupied by oxygen gas, multiplied by the total atmospheric pressure.

Fine mapping

The use of high-resolution microscopy, whereby single cells and cellular details are microscopically discernible.


An organic chemical that binds with high affinity to iron. Bacteria create many different types of complex siderophores (catecholates, hydroxamates, carboxylates) to capture host iron from serum, urine and cells. Metabolic fragments, such as catecholates, can serve as siderophores in mammals. NGAL protein binds catechols and catecholate siderophores enterochelin with high affinity.

Nutritional immunity

A process of sequestering critical nutrients needed for bacterial growth. This includes the capture of iron-bound siderophores by NGAL and more generally the capture of iron by transferrin and lactoferrin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Desanti De Oliveira, B., Xu, K., Shen, T.H. et al. Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol 15, 599–612 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing