Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of hypoxia signalling: new implications for nephrology

Abstract

Studies of the regulation of erythropoietin (EPO) production by the liver and kidneys, one of the classical physiological responses to hypoxia, led to the discovery of human oxygen-sensing mechanisms, which are now being targeted therapeutically. The oxygen-sensitive signal is generated by 2-oxoglutarate-dependent dioxygenases that deploy molecular oxygen as a co-substrate to catalyse the post-translational hydroxylation of specific prolyl and asparaginyl residues in hypoxia-inducible factor (HIF), a key transcription factor that regulates transcriptional responses to hypoxia. Hydroxylation of HIF at different sites promotes both its degradation and inactivation. Under hypoxic conditions, these processes are suppressed, enabling HIF to escape destruction and form active transcriptional complexes at thousands of loci across the human genome. Accordingly, HIF prolyl hydroxylase inhibitors stabilize HIF and stimulate expression of HIF target genes, including the EPO gene. These molecules activate endogenous EPO gene expression in diseased kidneys and are being developed, or are already in clinical use, for the treatment of renal anaemia. In this Review, we summarize information on the molecular circuitry of hypoxia signalling pathways underlying these new treatments and highlight some of the outstanding questions relevant to their clinical use.

Key points

  • Hypoxia-inducible factors (HIFs) transduce transcriptional responses to hypoxia that involve hundreds to thousands of target genes.

  • The oxygen-sensitive signal regulating HIF activity is generated by 2-oxoglutarate-dependent dioxygenases that catalyse the hydroxylation of specific HIF prolyl and asparaginyl residues to inactivate HIF in the presence of oxygen.

  • Inhibition of the HIF prolyl hydroxylases by 2-oxoglutarate analogues mimics hypoxia and activates many, but not all, components of the HIF transcriptional response.

  • Erythropoietin production by cortical interstitial fibroblasts in the kidney is very sensitive to activation of the HIF pathway.

  • In diseased kidneys, erythropoietin production is reduced, but can be increased by HIF prolyl hydroxylase inhibitors.

  • Activation of HIF has the potential to generate many other renal and systemic effects that will require consideration when HIF prolyl hydroxylase inhibitors are used clinically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General mechanism of oxidation catalysed by 2-oxoglutarate-dependent dioxygenases
Fig. 2: Regulation of HIF-1α and HIF-2α.
Fig. 3: Feedback mechanisms of hypoxic gene regulation.
Fig. 4: HIF isoform expression profiles and target gene selectivity.
Fig. 5: Erythropoietin regulation in normal and diseased kidneys.
Fig. 6: Actions of HIF in the kidney.

Similar content being viewed by others

References

  1. Kirkegaard, J. B., Bouillant, A., Marron, A. O., Leptos, K. C. & Goldstein, R. E. Aerotaxis in the closest relatives of animals. eLife 5, e1810 (2016).

    Google Scholar 

  2. Loenarz, C. et al. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep, 12, 63–70 (2011).

    CAS  Google Scholar 

  3. Tsai, A. G., Johnson, P. C. & Intaglietta, M. Oxygen gradients in the microcirculation. Physiol. Rev. 83, 933–963 (2003).

    CAS  PubMed  Google Scholar 

  4. Keeley, T. P. & Mann, G. E. Defining physiological normoxia for improved translation of cell physiology to animal models and humans. Physiol. Rev. 99, 161–234 (2019).

    CAS  PubMed  Google Scholar 

  5. Schurek, H. J., Jost, U., Baumgartl, H., Bertram, H. & Heckmann, U. Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am. J. Physiol. 259, F910–F915 (1990).

    CAS  PubMed  Google Scholar 

  6. Viault, F. Sur l'augmentation considerable du nombre des globules rouges dans le sang chez les habitants des hauts plateaux de l'Amerique du Sud. Comptes Rendus Academie Sciences Paris 111, 917–918 (1890).

    Google Scholar 

  7. FitzGerald, M. P. & Haldane, J. S. VIII. The changes in the breathing and the blood at various high altitudes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 203, 351–371 (1913).

    Google Scholar 

  8. Erslev, A. Humoral regulation of red cell production. Blood 8, 349–357 (1953).

    CAS  PubMed  Google Scholar 

  9. Erslev, A. J. Erythropoietin. N. Engl. J. Med. 324, 1339–1344 (1991).

    CAS  PubMed  Google Scholar 

  10. Maxwell, P. H., Pugh, C. W. & Ratcliffe, P. J. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc. Natl Acad. Sci. USA 90, 2423–2427 (1993).

    CAS  PubMed  Google Scholar 

  11. Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, G. L. & Semenza, G. L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl Acad. Sci. USA 90, 4304–4308 (1993).

    CAS  PubMed  Google Scholar 

  13. Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  14. Ivan, M. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    CAS  PubMed  Google Scholar 

  15. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    CAS  PubMed  Google Scholar 

  16. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    CAS  PubMed  Google Scholar 

  17. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Whitelaw, M. L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858–861 (2002).

    CAS  PubMed  Google Scholar 

  18. Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hewitson, K. S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).

    CAS  PubMed  Google Scholar 

  20. Loenarz, C. & Schofield, C. J. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 36, 7–18 (2011).

    CAS  PubMed  Google Scholar 

  21. Maxwell, P. H. & Eckardt, K. U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat. Rev. Nephrol. 12, 157–168 (2016).

    CAS  PubMed  Google Scholar 

  22. Chan, M. C., Holt-Martyn, J. P., Schofield, C. J. & Ratcliffe, P. J. Pharmacological targeting of the HIF hydroxylases – a new field in medicine development. Mol. Aspects Med. 47-48, 54–75 (2016).

    CAS  PubMed  Google Scholar 

  23. Kular, D. & Macdougall, I. C. HIF stabilizers in the management of renal anemia: from bench to bedside to pediatrics. Pediatr. Nephrol. 34, 365–378 (2019).

    PubMed  Google Scholar 

  24. Cho, H. & Kaelin, W. G. Targeting HIF2 in Clear Cell Renal Cell Carcinoma. Cold Spring Harb. Symp. Quant. Biol. 81, 113–121 (2016).

    PubMed  Google Scholar 

  25. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    CAS  PubMed  Google Scholar 

  26. Hoffman, E. C. et al. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252, 954–958 (1991).

    CAS  PubMed  Google Scholar 

  27. Jiang, B. H., Rue, E., Wang, G. L., Roe, R. & Semenza, G. L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271, 17771–17778 (1996).

    CAS  PubMed  Google Scholar 

  28. Pugh, C. W., O'Rourke, J. F., Nagao, M., Gleadle, J. M. & Ratcliffe, P. J. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J. Biol. Chem. 272, 11205–11214 (1997).

    CAS  PubMed  Google Scholar 

  29. Jiang, B. H., Zheng, J. Z., Leung, S. W., Roe, R. & Semenza, G. L. Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272, 19253–19260 (1997).

    CAS  PubMed  Google Scholar 

  30. Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 95, 7987–7992 (1998).

    CAS  PubMed  Google Scholar 

  31. Wu, D. & Rastinejad, F. Structural characterization of mammalian bHLH-PAS transcription factors. Curr. Opin. Struct. Biol. 43, 1–9 (2017).

    PubMed  Google Scholar 

  32. Keith, B., Adelman, D. M. & Simon, M. C. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc. Natl Acad. Sci. USA 98, 6692–6697 (2001).

    CAS  PubMed  Google Scholar 

  33. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    CAS  PubMed  Google Scholar 

  34. Wiesener, M. S. et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92, 2260–2268 (1998).

    CAS  PubMed  Google Scholar 

  35. Rosenberger, C. et al. Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J. Am. Soc. Nephrol. 13, 1721–1732 (2002).

    CAS  PubMed  Google Scholar 

  36. Holmquist-Mengelbier, L. et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10, 413–423 (2006).

    CAS  PubMed  Google Scholar 

  37. Rossignol, F., Vache, C. & Clottes, E. Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene 299, 135–140 (2002).

    CAS  PubMed  Google Scholar 

  38. Duan, C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am. J. Physiol. Cell Physiol. 310, C260–C269 (2016).

    PubMed  Google Scholar 

  39. Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).

    CAS  PubMed  Google Scholar 

  40. Maynard, M. A. et al. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J. Biol. Chem. 278, 11032–11040 (2003).

    CAS  PubMed  Google Scholar 

  41. Zhang, P. et al. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 6, 1110–1121 (2014).

    CAS  PubMed  Google Scholar 

  42. Makino, Y. et al. Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells. J. Biol. Chem. 282, 14073–14082 (2007).

    CAS  PubMed  Google Scholar 

  43. Srinivas, V., Zhang, L. P., Zhu, X. H. & Caro, J. Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochem. Biophys. Res. Commun. 260, 557–561 (1999).

    CAS  PubMed  Google Scholar 

  44. Gnarra, J. R. et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc. Natl Acad. Sci. USA 93, 10589–10594 (1996).

    CAS  PubMed  Google Scholar 

  45. Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. Jr. & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    CAS  PubMed  Google Scholar 

  46. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  47. Cockman, M. E. et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von hippel-lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741 (2000).

    CAS  PubMed  Google Scholar 

  48. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2, 423–427 (2000).

    CAS  PubMed  Google Scholar 

  49. Tanimoto, K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298–4309 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Masson, N., Willam, C., Maxwell, P. H., Pugh, C. W. & Ratcliffe, P. J. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20, 5197–5206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

    CAS  PubMed  Google Scholar 

  52. Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417, 975–978 (2002).

    CAS  PubMed  Google Scholar 

  53. Min, J. H. et al. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    CAS  PubMed  Google Scholar 

  54. Illingworth, C. J., Loenarz, C., Schofield, C. J. & Domene, C. Chemical basis for the selectivity of the von Hippel Lindau tumor suppressor pVHL for prolyl-hydroxylated HIF-1alpha. Biochemistry 49, 6936–6944 (2010).

    CAS  PubMed  Google Scholar 

  55. Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell. Biol. 5, 343–354 (2004).

    CAS  PubMed  Google Scholar 

  56. Berra, E. et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22, 4082–4090 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Appelhoff, R. J. et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279, 38458–38465 (2004).

    CAS  PubMed  Google Scholar 

  58. Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Stiehl, D. P. et al. Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J. Biol. Chem. 281, 23482–23491 (2006).

    CAS  PubMed  Google Scholar 

  60. Chan, D. A., Sutphin, P. D., Yen, S. E. & Giaccia, A. J. Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol. Cell. Biol. 25, 6415–6426 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirsila, M., Koivunen, P., Gunzler, V., Kivirikko, K. I. & Myllyharju, J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem. 278, 30772–30780 (2003).

    PubMed  Google Scholar 

  62. Villar, D., Vara-Vega, A., Landazuri, M. O. & Del Peso, L. Identification of a region on hypoxia-inducible-factor prolyl 4-hydroxylases that determines their specificity for the oxygen degradation domains. Biochem. J. 408, 231–240 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chowdhury, R. et al. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat. Commun. 7, 12673 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yeh, T. L. et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem. Sci. 8, 7651–7668 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Flashman, E. et al. Evidence for the slow reaction of hypoxia-inducible factor prolyl hydroxylase 2 with oxygen. FEBS J. 277, 4089–4099 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tarhonskaya, H. et al. Investigating the contribution of the active site environment to the slow reaction of hypoxia-inducible factor prolyl hydroxylase domain 2 with oxygen. Biochem. J. 463, 363–372 (2014).

    CAS  PubMed  Google Scholar 

  67. Flagg, S. C., Giri, N., Pektas, S., Maroney, M. J. & Knapp, M. J. Inverse solvent isotope effects demonstrate slow aquo release from hypoxia inducible factor-prolyl hydroxylase (PHD2). Biochemistry 51, 6654–6666 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Flashman, E., Davies, S. L., Yeoh, K. K. & Schofield, C. J. Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents. Biochem. J. 427, 135–142 (2010).

    CAS  PubMed  Google Scholar 

  69. Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004).

    CAS  PubMed  Google Scholar 

  70. Briggs, K. J. et al. Paracrine induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell 166, 126–139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Knowles, H. J., Raval, R. R., Harris, A. L. & Ratcliffe, P. J. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res. 63, 1764–1768 (2003).

    CAS  PubMed  Google Scholar 

  72. Nytko, K. J. et al. Vitamin C is dispensable for oxygen sensing in vivo. Blood 117, 5485–5493 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. McNeill, L. A. et al. Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarate. Mol. Biosyst. 1, 321–324 (2005).

    CAS  PubMed  Google Scholar 

  74. West, C. M. & Blader, I. J. Oxygen sensing by protozoans: how they catch their breath. Curr. Opin. Microbiol. 26, 41–47 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mahon, P. C., Hirota, K. & Semenza, G. L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675–2686 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Freedman, S. J. et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc. Natl Acad. Sci. USA 99, 5367–5372 (2002).

    CAS  PubMed  Google Scholar 

  77. Dames, S. A., Martinez-Yamout, M., De Guzman, R. N., Dyson, H. J. & Wright, P. E. Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response. Proc. Natl Acad. Sci. USA 99, 5271–5276 (2002).

    CAS  PubMed  Google Scholar 

  78. Galbraith, M. D. et al. HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell 153, 1327–1339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Choudhry, H. et al. Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep. 15, 70–76 (2014).

    CAS  PubMed  Google Scholar 

  80. Bracken, C. P. et al. Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J. Biol. Chem. 281, 22575–22585 (2006).

    CAS  PubMed  Google Scholar 

  81. Schödel, J. et al. Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells. Kidney Int. 78, 857–867 (2010).

    PubMed  Google Scholar 

  82. Dayan, F., Roux, D., Brahimi-Horn, M. C., Pouyssegur, J. & Mazure, N. M. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res. 66, 3688–3698 (2006).

    CAS  PubMed  Google Scholar 

  83. Koivunen, P., Hirsila, M., Gunzler, V., Kivirikko, K. I. & Myllyharju, J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279, 9899–9904 (2004).

    CAS  PubMed  Google Scholar 

  84. Ehrismann, D. et al. Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochem. J. 401, 227–234 (2007).

    CAS  PubMed  Google Scholar 

  85. Tian, Y. M. et al. Differential sensitivity of hypoxia inducible factor hydroxylation sites to hypoxia and hydroxylase inhibitors. J. Biol. Chem. 286, 13041–13051 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Elkins, J. M. et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha. J. Biol. Chem. 278, 1802–1806 (2003).

    CAS  PubMed  Google Scholar 

  87. Masson, N. et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 13, 251–257 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cockman, M. E. et al. Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl Acad. Sci. USA 103, 14767–14772 (2006).

    CAS  PubMed  Google Scholar 

  89. Cockman, M. E., Webb, J. D., Kramer, H. B., Kessler, B. M. & Ratcliffe, P. J. Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Mol. Cell. Proteomics 8, 535–546 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, M. et al. Asparagine and aspartate hydroxylation of the cytoskeletal ankyrin family is catalyzed by factor-inhibiting hypoxia-inducible factor. J. Biol. Chem. 286, 7648–7660 (2011).

    CAS  PubMed  Google Scholar 

  91. Yang, M. et al. Factor-inhibiting hypoxia-inducible factor (FIH) catalyses the post-translational hydroxylation of histidinyl residues within ankyrin repeat domains. FEBS J. 278, 1086–1097 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Coleman, M. L. et al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J. Biol. Chem. 282, 24027–24038 (2007).

    CAS  PubMed  Google Scholar 

  93. Schmierer, B., Novak, B. & Schofield, C. J. Hypoxia-dependent sequestration of an oxygen sensor by a widespread structural motif can shape the hypoxic response–a predictive kinetic model. BMC Syst. Biol. 4, 139 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Kelly, L., McDonough, M. A., Coleman, M. L., Ratcliffe, P. J. & Schofield, C. J. Asparagine beta-hydroxylation stabilizes the ankyrin repeat domain fold. Mol. Biosyst. 5, 52–58 (2009).

    CAS  PubMed  Google Scholar 

  95. Zhang, N. et al. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell. Metab. 11, 364–378 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sim, J. et al. The factor inhibiting HIF asparaginyl hydroxylase regulates oxidative metabolism and accelerates metabolic adaptation to hypoxia. Cell. Metab. 27, 898–913 e897 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zurlo, G., Guo, J., Takada, M., Wei, W. & Zhang, Q. New insights into protein hydroxylation and its important role in human diseases. Biochim. Biophys. Acta 1866, 208–220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cockman, M. E. et al. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. e-Life (in the press).

  99. Myllyharju, J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann. Med. 40, 402–417 (2008).

    CAS  PubMed  Google Scholar 

  100. Grosfeld, A. et al. Interaction of hydroxylated collagen IV with the von Hippel-Lindau tumor suppressor. J. Biol. Chem. 282, 13264–13269 (2007).

    CAS  PubMed  Google Scholar 

  101. Kurban, G. et al. Collagen matrix assembly is driven by the interaction of von Hippel-Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2. Oncogene 27, 1004–1012 (2008).

    CAS  PubMed  Google Scholar 

  102. Koivunen, P. et al. An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J. Biol. Chem. 282, 30544–30552 (2007).

    CAS  PubMed  Google Scholar 

  103. Laitala, A. et al. Transmembrane prolyl 4-hydroxylase is a fourth prolyl 4-hydroxylase regulating EPO production and erythropoiesis. Blood 120, 3336–3344 (2012).

    CAS  PubMed  Google Scholar 

  104. Leinonen, H. et al. Lack of P4H-TM in mice results in age-related retinal and renal alterations. Hum. Mol. Genet. 25, 3810–3823 (2016).

    CAS  PubMed  Google Scholar 

  105. Walport, L. J., Hopkinson, R. J. & Schofield, C. J. Mechanisms of human histone and nucleic acid demethylases. Curr. Opin. Chem. Biol. 16, 525–534 (2012).

    CAS  PubMed  Google Scholar 

  106. Ge, W. et al. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nat. Chem. Biol. 8, 960–962 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Singleton, R. S. et al. OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Proc. Natl Acad. Sci. USA 111, 4031–4036 (2014).

    CAS  PubMed  Google Scholar 

  108. Loenarz, C. et al. Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proc. Natl Acad. Sci. USA 111, 4019–4024 (2014).

    CAS  PubMed  Google Scholar 

  109. Katz, M. J. et al. Sudestada1, a drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proc. Natl Acad. Sci. USA 111, 4025–4030 (2014).

    CAS  PubMed  Google Scholar 

  110. Feng, T. et al. Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Mol. Cell 53, 645–654 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Pollard, P. J. et al. Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem. J. 416, 387–394 (2008).

    CAS  PubMed  Google Scholar 

  112. Xia, X. et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc. Natl Acad. Sci. USA 106, 4260–4265 (2009).

    CAS  PubMed  Google Scholar 

  113. Hancock, R. L., Masson, N., Dunne, K., Flashman, E. & Kawamura, A. The activity of JmjC histone lysine demethylase KDM4A is highly sensitive to oxygen concentrations. ACS Chem. Biol. 12, 1011–1019 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Thienpont, B. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537, 63–68 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chakraborty, A. A. et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science 363, 1217–1222 (2019).

    CAS  PubMed  Google Scholar 

  116. Batie, M. et al. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 363, 1222–1226 (2019).

    CAS  PubMed  Google Scholar 

  117. Bonello, S. et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler. Thromb. Vasc. Biol. 27, 755–761 (2007).

    CAS  PubMed  Google Scholar 

  118. Niu, G. et al. Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol. Cancer Res. 6, 1099–1105 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Koshikawa, N., Hayashi, J., Nakagawara, A. & Takenaga, K. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway. J. Biol. Chem. 284, 33185–33194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Page, E. L., Robitaille, G. A., Pouyssegur, J. & Richard, D. E. Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J. Biol. Chem. 277, 48403–48409 (2002).

    CAS  PubMed  Google Scholar 

  121. Isoe, T. et al. High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int. 78, 48–59 (2010).

    CAS  PubMed  Google Scholar 

  122. Kuschel, A., Simon, P. & Tug, S. Functional regulation of HIF-1alpha under normoxia – is there more than post-translational regulation? J. Cell. Physiol. 227, 514–524 (2012).

    CAS  PubMed  Google Scholar 

  123. Takeda, N. et al. Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24, 491–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wada, T., Shimba, S. & Tezuka, M. Transcriptional regulation of the hypoxia inducible factor-2alpha (HIF-2alpha) gene during adipose differentiation in 3T3-L1 cells. Biol. Pharm. Bull. 29, 49–54 (2006).

    CAS  PubMed  Google Scholar 

  125. Gregg, J. L. et al. NADPH oxidase NOX4 supports renal tumorigenesis by promoting the expression and nuclear accumulation of HIF2alpha. Cancer Res. 74, 3501–3511 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Moniz, S. et al. Cezanne regulates E2F1-dependent HIF2alpha expression. J. Cell Sci. 128, 3082–3093 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wiesener, M. S. et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 17, 271–273 (2003).

    CAS  PubMed  Google Scholar 

  128. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25, 5675–5686 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Gordan, J. D. et al. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lachance, G. et al. DNMT3a epigenetic program regulates the HIF-2alpha oxygen-sensing pathway and the cellular response to hypoxia. Proc. Natl Acad. Sci. USA 111, 7783–7788 (2014).

    CAS  PubMed  Google Scholar 

  131. Westerlund, I. et al. Combined epigenetic and differentiation-based treatment inhibits neuroblastoma tumor growth and links HIF2alpha to tumor suppression. Proc. Natl Acad. Sci. USA 114, E6137–E6146 (2017).

    CAS  PubMed  Google Scholar 

  132. De Lella Ezcurra, A. L., Bertolin, A. P., Melani, M. & Wappner, P. Robustness of the hypoxic response: another job for miRNAs? Dev. Dyn. 241, 1842–1848 (2012).

    PubMed  Google Scholar 

  133. Ivan, M. & Kaelin, W. G. Jr. The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. Mol. Cell 66, 772–779 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang, W. et al. Reciprocal regulations between miRNAs and HIF-1alpha in human cancers. Cell. Mol. Life Sci. 76, 453–471 (2019).

    CAS  PubMed  Google Scholar 

  135. Fukuda, R. et al. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J. Biol. Chem. 277, 38205–38211 (2002).

    CAS  PubMed  Google Scholar 

  136. Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    PubMed  PubMed Central  Google Scholar 

  138. Toschi, A., Lee, E., Gadir, N., Ohh, M. & Foster, D. A. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J. Biol. Chem. 283, 34495–34499 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Shen, C. et al. Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene. Cancer Discov. 1, 222–235 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ghosh, M. C. et al. Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice through translational derepression of HIF2alpha. Cell Metab. 17, 271–281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ghosh, M. C., Zhang, D. L., Ollivierre, H., Eckhaus, M. A. & Rouault, T. A. Translational repression of HIF2alpha expression in mice with chuvash polycythemia reverses polycythemia. J. Clin. Invest. 128, 1317–1325 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Kietzmann, T., Mennerich, D. & Dimova, E. Y. Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front. Cell Dev. Biol. 4, 11 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Gradin, K., Takasaki, C., Fujii-Kuriyama, Y. & Sogawa, K. The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J. Biol. Chem. 277, 23508–23514 (2002).

    CAS  PubMed  Google Scholar 

  144. Lancaster, D. E. et al. Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochem. J. 383, 429–437 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. To, K. K., Sedelnikova, O. A., Samons, M., Bonner, W. M. & Huang, L. E. The phosphorylation status of PAS-B distinguishes HIF-1alpha from HIF-2alpha in NBS1 repression. EMBO J 25, 4784–4794 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, Y. et al. Methylation-dependent regulation of HIF-1alpha stability restricts retinal and tumour angiogenesis. Nat. Commun. 7, 10347 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Cheng, J., Kang, X., Zhang, S. & Yeh, E. T. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131, 584–595 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Dioum, E. M. et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324, 1289–1293 (2009).

    CAS  PubMed  Google Scholar 

  149. Chen, R. et al. The acetylase/deacetylase couple CREB-binding protein/Sirtuin 1 controls hypoxia-inducible factor 2 signaling. J. Biol. Chem. 287, 30800–30811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Xu, M. et al. An acetate switch regulates stress erythropoiesis. Nat. Med. 20, 1018–1026 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Taylor, B. L. & Zhulin, I. B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Scheuermann, T. H. et al. Artificial ligand binding within the HIF2alpha PAS-B domain of the HIF2 transcription factor. Proc. Natl Acad. Sci. USA 106, 450–455 (2009).

    CAS  PubMed  Google Scholar 

  153. Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303–308 (2015).

    CAS  PubMed  Google Scholar 

  154. Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cho, H. et al. On-target efficacy of a HIF-2alpha antagonist in preclinical kidney cancer models. Nature 539, 107–111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Courtney, K. D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2alpha antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018).

    CAS  PubMed  Google Scholar 

  158. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03216499 (2019).

  159. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02974738 (2019).

  160. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03108066 (2019).

  161. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03401788 (2019).

  162. Nebert, D. W. Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous signals. Prog. Lipid Res. 67, 38–57 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Wu, D., Su, X., Potluri, N., Kim, Y. & Rastinejad, F. NPAS1-ARNT and NPAS3-ARNT crystal structures implicate the bHLH-PAS family as multi-ligand binding transcription factors. eLife 5, e18790 (2016).

    Google Scholar 

  164. Tanimoto, K. et al. Genome-wide identification and annotation of HIF-1alpha binding sites in two cell lines using massively parallel sequencing. Hugo J. 4, 35–48 (2010).

    PubMed  Google Scholar 

  165. Schödel, J. et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117, e207–e217 (2011).

    PubMed  PubMed Central  Google Scholar 

  166. Greenald, D. et al. Genome-wide mapping of Hif-1alpha binding sites in zebrafish. BMC Genomics 16, 923 (2015).

    PubMed  PubMed Central  Google Scholar 

  167. Smythies, J. A. et al. Inherent DNA-binding specificities of the HIF-1alpha and HIF-2alpha transcription factors in chromatin. EMBO Rep. 20, e46401 (2019).

    Google Scholar 

  168. Platt, J. L. et al. Capture-C reveals preformed chromatin interactions between HIF-binding sites and distant promoters. EMBO Rep. 17, 1410–1421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Manalo, D. J. et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005).

    CAS  PubMed  Google Scholar 

  170. Elvidge, G. P. et al. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J. Biol. Chem. 281, 15215–15226 (2006).

    CAS  PubMed  Google Scholar 

  171. Tiana, M. et al. The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia. Nucleic Acids Res. 46, 120–133 (2018).

    CAS  PubMed  Google Scholar 

  172. Lee, K. E. & Simon, M. C. From stem cells to cancer stem cells: HIF takes the stage. Curr. Opin. Cell. Biol. 24, 232–235 (2012).

    CAS  PubMed  Google Scholar 

  173. Semenza, G. L. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim. Biophys. Acta 1813, 1263–1268 (2011).

    CAS  PubMed  Google Scholar 

  174. Hubbi, M. E. & Semenza, G. L. Regulation of cell proliferation by hypoxia-inducible factors. Am. J. Physiol. Cell Physiol. 309, C775–C782 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Bishop, T. & Ratcliffe, P. J. HIF hydroxylase pathways in cardiovascular physiology and medicine. Circ. Res. 117, 65–79 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Masson, N. & Ratcliffe, P. J. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab. 2, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Palazon, A., Goldrath, A. W., Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity 41, 518–528 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Myllyharju, J. & Schipani, E. Extracellular matrix genes as hypoxia-inducible targets. Cell Tissue Res. 339, 19–29 (2010).

    CAS  PubMed  Google Scholar 

  180. Hu, C. J. et al. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol. Cell. Biol. 26, 3514–3526 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Lau, K. W., Tian, Y. M., Raval, R. R., Ratcliffe, P. J. & Pugh, C. W. Target gene selectivity of hypoxia-inducible factor-alpha in renal cancer cells is conveyed by post-DNA-binding mechanisms. Br. J. Cancer 96, 1284–1292 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Warnecke, C. et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J. 18, 1462–1464 (2004).

    CAS  PubMed  Google Scholar 

  183. Covello, K. L. et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Hu, C. J., Sataur, A., Wang, L., Chen, H. & Simon, M. C. The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol. Biol. Cell 18, 4528–4542 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Ravenna, L., Salvatori, L. & Russo, M. A. HIF3alpha: the little we know. FEBS J. 283, 993–1003 (2016).

    CAS  PubMed  Google Scholar 

  186. Wenger, R. H., Kvietikova, I., Rolfs, A., Camenisch, G. & Gassmann, M. Oxygen-regulated erythropoietin gene expression is dependent on a CpG methylation-free hypoxia-inducible factor-1 DNA-binding site. Eur. J. Biochem. 253, 771–777 (1998).

    CAS  PubMed  Google Scholar 

  187. Varley, K. E. et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23, 555–567 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Yao, X. et al. VHL deficiency drives enhancer activation of oncogenes in clear cell renal cell carcinoma. Cancer Discov. 7, 1284–1305 (2017).

    CAS  PubMed  Google Scholar 

  189. Salama, R. et al. Heterogeneous effects of direct hypoxia pathway activation in kidney cancer. PLOS ONE 10, e0134645 (2015).

    PubMed  PubMed Central  Google Scholar 

  190. Chan, M. C. et al. Tuning the transcriptional response to hypoxia by inhibiting hypoxia-inducible factor (HIF) prolyl and asparaginyl hydroxylases. J. Biol. Chem. 291, 20661–20673 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Provenzano, R. et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin. J. Am. Soc. Nephrol. 11, 982–991 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Chen, N. et al. Phase 2 studies of oral hypoxia-inducible factor prolyl hydroxylase inhibitor FG-4592 for treatment of anemia in China. Nephrol. Dial. Transplant. 32, 1373–1386 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Haase, V. H. et al. Effects of vadadustat on hemoglobin concentrations in patients receiving hemodialysis previously treated with erythropoiesis-stimulating agents. Nephrol. Dial. Transplant. 34, 90–99 (2019).

    PubMed  Google Scholar 

  194. Koury, S. T., Koury, M. J., Bondurant, M. C., Caro, J. & Graber, S. E. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74, 645–651 (1989).

    CAS  PubMed  Google Scholar 

  195. Maxwell, P. H. et al. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int. 44, 1149–1162 (1993).

    CAS  PubMed  Google Scholar 

  196. Bachmann, S., Le Hir, M. & Eckardt, K. U. Co-localization of erythropoietin mRNA and ecto-5'-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J. Histochem. Cytochem. 41, 335–341 (1993).

    CAS  PubMed  Google Scholar 

  197. Eckardt, K. U. et al. Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int. 43, 815–823 (1993).

    CAS  PubMed  Google Scholar 

  198. Luks, A. M., Johnson, R. J. & Swenson, E. R. Chronic kidney disease at high altitude. J. Am. Soc. Nephrol. 19, 2262–2271 (2008).

    CAS  PubMed  Google Scholar 

  199. Eckardt, K. U., Kurtz, A. & Bauer, C. Regulation of erythropoietin production is related to proximal tubular function. Am. J. Physiol. 256, F942–F947 (1989).

    CAS  PubMed  Google Scholar 

  200. Farsijani, N. M. et al. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. J. Clin. Invest. 126, 1425–1437 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. Mimura, I. & Nangaku, M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat. Rev. Nephrol. 6, 667–678 (2010).

    CAS  PubMed  Google Scholar 

  202. Souma, T. et al. Erythropoietin synthesis in renal myofibroblasts is restored by activation of hypoxia signaling. J. Am. Soc. Nephrol. 27, 428–438 (2016).

    CAS  PubMed  Google Scholar 

  203. Pruijm, M. et al. Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol. Dial. Transplant. 33, ii22–ii28 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Fine, L. G. & Norman, J. T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 74, 867–872 (2008).

    CAS  PubMed  Google Scholar 

  205. Maxwell, P. H., Ferguson, D. J., Nicholls, L. G., Johnson, M. H. & Ratcliffe, P. J. The interstitial response to renal injury: fibroblast-like cells show phenotypic changes and have reduced potential for erythropoietin gene expression. Kidney Int. 52, 715–724 (1997).

    CAS  PubMed  Google Scholar 

  206. Yamazaki, S. et al. A mouse model of adult-onset anaemia due to erythropoietin deficiency. Nat. Commun. 4, 1950 (2013).

    PubMed  Google Scholar 

  207. Kobayashi, H. et al. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J. Clin. Invest. 126, 1926–1938 (2016).

    PubMed  PubMed Central  Google Scholar 

  208. Imeri, F. et al. Generation of renal Epo-producing cell lines by conditional gene tagging reveals rapid HIF-2 driven Epo kinetics, cell autonomous feedback regulation, and a telocyte phenotype. Kidney Int. 95, 375–387 (2019).

    CAS  PubMed  Google Scholar 

  209. Duffield, J. S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 124, 2299–2306 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Brigandi, R. A. et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: a 28-day, phase 2A randomized trial. Am. J. Kidney Dis. 67, 861–871 (2016).

    CAS  PubMed  Google Scholar 

  211. Bernhardt, W. M. et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J. Am. Soc. Nephrol. 21, 2151–2156 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Schödel, J. et al. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am. J. Pathol. 174, 1663–1674 (2009).

    PubMed  PubMed Central  Google Scholar 

  213. Souma, T., Suzuki, N. & Yamamoto, M. Renal erythropoietin-producing cells in health and disease. Front. Physiol. 6, 167 (2015).

    PubMed  PubMed Central  Google Scholar 

  214. Rosenberger, C. et al. Up-regulation of HIF in experimental acute renal failure: evidence for a protective transcriptional response to hypoxia. Kidney Int. 67, 531–542 (2005).

    CAS  PubMed  Google Scholar 

  215. Villanueva, S., Cespedes, C. & Vio, C. P. Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R861–R870 (2006).

    CAS  PubMed  Google Scholar 

  216. Rosenberger, C. et al. Immunohistochemical detection of hypoxia-inducible factor-1alpha in human renal allograft biopsies. J. Am. Soc. Nephrol. 18, 343–351 (2007).

    CAS  PubMed  Google Scholar 

  217. Rosenberger, C. et al. Evidence for sustained renal hypoxia and transient hypoxia adaptation in experimental rhabdomyolysis-induced acute kidney injury. Nephrol. Dial. Transplant. 23, 1135–1143 (2008).

    CAS  PubMed  Google Scholar 

  218. Conde, E. et al. Hypoxia inducible factor 1-alpha (HIF-1 alpha) is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival. PLOS ONE 7, e33258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Bernhardt, W. M. et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J. Am. Soc. Nephrol. 17, 1970–1978 (2006).

    CAS  PubMed  Google Scholar 

  220. Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).

    PubMed  Google Scholar 

  221. Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Weidemann, A. et al. HIF activation protects from acute kidney injury. J. Am. Soc. Nephrol. 19, 486–494 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Ahn, J. M. et al. Hypoxia-inducible factor activation protects the kidney from gentamicin-induced acute injury. PLOS ONE 7, e48952 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Kapitsinou, P. P. et al. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F1172–F1179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Schley, G. et al. Selective stabilization of HIF-1alpha in renal tubular cells by 2-oxoglutarate analogues. Am. J. Pathol. 181, 1595–1606 (2012).

    CAS  PubMed  Google Scholar 

  226. Kapitsinou, P. P. et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J. Clin. Invest. 124, 2396–2409 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Wang, Z. et al. The protective effect of prolyl-hydroxylase inhibition against renal ischaemia requires application prior to ischaemia but is superior to EPO treatment. Nephrol. Dial. Transplant. 27, 929–936 (2012).

    CAS  PubMed  Google Scholar 

  228. Bernhardt, W. M. et al. Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc. Natl Acad. Sci. USA 106, 21276–21281 (2009).

    CAS  PubMed  Google Scholar 

  229. Tanaka, T. Expanding roles of the hypoxia-response network in chronic kidney disease. Clin. Exp. Nephrol. 20, 835–844 (2016).

    CAS  PubMed  Google Scholar 

  230. Kimura, K. et al. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am. J. Physiol. Renal Physiol. 295, F1023–F1029 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Schietke, R. E. et al. Renal tubular HIF-2alpha expression requires VHL inactivation and causes fibrosis and cysts. PLOS ONE 7, e31034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Rankin, E. B., Tomaszewski, J. E. & Haase, V. H. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res. 66, 2576–2583 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Kurt, B. et al. Deletion of von Hippel-Lindau protein converts renin-producing cells into erythropoietin-producing cells. J. Am. Soc. Nephrol. 24, 433–444 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Ding, M. et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat. Med. 12, 1081–1087 (2006).

    CAS  PubMed  Google Scholar 

  235. Brukamp, K., Jim, B., Moeller, M. J. & Haase, V. H. Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. Am. J. Physiol. Renal Physiol. 293, F1397–F1407 (2007).

    CAS  PubMed  Google Scholar 

  236. Ding, M., Coward, R. J., Jeansson, M., Kim, W. & Quaggin, S. E. Regulation of hypoxia-inducible factor 2-a is essential for integrity of the glomerular barrier. Am. J. Physiol. Renal Physiol. 304, F120–F126 (2013).

    CAS  PubMed  Google Scholar 

  237. Baumann, B., Hayashida, T., Liang, X. & Schnaper, H. W. Hypoxia-inducible factor-1alpha promotes glomerulosclerosis and regulates COL1A2 expression through interactions with Smad3. Kidney Int. 90, 797–808 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Higgins, D. F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117, 3810–3820 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Kobayashi, H. et al. Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury. J. Immunol. 188, 5106–5115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Kong, K. H. et al. Selective tubular activation of hypoxia-inducible factor-2alpha has dual effects on renal fibrosis. Sci. Rep. 7, 11351 (2017).

    PubMed  PubMed Central  Google Scholar 

  241. Bernhardt, W. M. et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am. J. Pathol. 170, 830–842 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Belibi, F. et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD). Am. J. Physiol. Renal Physiol. 300, F1235–F1243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Kraus, A. et al. HIF-1alpha promotes cyst progression in a mouse model of autosomal dominant polycystic kidney disease. Kidney Int. 94, 887–899 (2018).

    CAS  PubMed  Google Scholar 

  244. Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Nordquist, L. et al. Activation of hypoxia-inducible factors prevents diabetic nephropathy. J. Am. Soc. Nephrol. 26, 328–338 (2015).

    PubMed  Google Scholar 

  246. Ohtomo, S. et al. Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol. Dial. Transplant. 23, 1166–1172 (2008).

    CAS  PubMed  Google Scholar 

  247. Tanaka, T. et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 85, 1292–1307 (2005).

    CAS  PubMed  Google Scholar 

  248. Tanaka, T. et al. Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int. 68, 2714–2725 (2005).

    CAS  PubMed  Google Scholar 

  249. Deng, A. et al. Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade. Am. J. Physiol. Renal Physiol. 299, F1365–F1373 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Yu, X. et al. The balance of beneficial and deleterious effects of hypoxia-inducible factor activation by prolyl hydroxylase inhibitor in rat remnant kidney depends on the timing of administration. Nephrol. Dial. Transplant. 27, 3110–3119 (2012).

    CAS  PubMed  Google Scholar 

  251. Nakuluri, K., Mukhi, D., Mungamuri, S. K. & Pasupulati, A. K. Stabilization of hypoxia-inducible factor 1alpha by cobalt chloride impairs podocyte morphology and slit-diaphragm function. J. Cell. Biochem. https://doi.org/10.1002/jcb.28041 (2018).

    Google Scholar 

  252. Matoba, K. et al. Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1alpha. Kidney Int. 84, 545–554 (2013).

    CAS  PubMed  Google Scholar 

  253. Keith, B., Johnson, R. S. & Simon, M. C. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2011).

    PubMed  PubMed Central  Google Scholar 

  254. Fielding, J. W. et al. PHD2 inactivation in Type I cells drives HIF-2alpha-dependent multilineage hyperplasia and the formation of paraganglioma-like carotid bodies. J. Physiol. https://doi.org/10.1113/JP275996 (2018).

    CAS  PubMed Central  Google Scholar 

  255. Dang, C. V., Kim, J. W., Gao, P. & Yustein, J. The interplay between MYC and HIF in cancer. Nat. Rev. Cancer 8, 51–56 (2008).

    CAS  PubMed  Google Scholar 

  256. Kasper, L. H. et al. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J. 24, 3846–3858 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Gerl, K. et al. Activation of hypoxia signaling in stromal progenitors impairs kidney development. Am. J. Pathol. 187, 1496–1511 (2017).

    CAS  PubMed  Google Scholar 

  258. Haase, V. H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27, 41–53 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Yamamoto, A. et al. Systemic silencing of PHD2 causes reversible immune regulatory dysfunction. J. Clin. Invest. https://doi.org/10.1172/JCI124099 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor funtion in the nephron. Cancer Cell 1, 459–468 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Flashman, University of Oxford, for assistance in preparing figure 1. P.J.R.’s laboratory is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001501), the UK Medical Research Council (FC001501) and the Wellcome Trust (FC001501). P.J.R. is a Wellcome Trust Senior Investigator and a member of the Ludwig Institute for Cancer Research. J.S. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; Projektnummer 387509280; SFB 1350).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this manuscript.

Corresponding author

Correspondence to Peter J. Ratcliffe.

Ethics declarations

Competing interests

P.J.R. is a scientific co-founder of ReOx Ltd., an Oxford University spin-out company that seeks to promote the therapeutic development of prolyl hydroxylase inhibitors. P.J.R. has served as a member of GlaxoSmithKline’s Research Advisory Board and holds equity in the company. J.S. declares no competing interests.

Additional information

Peer review informationNature Reviews Nephrology thanks J. Myllyharju and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schödel, J., Ratcliffe, P.J. Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 15, 641–659 (2019). https://doi.org/10.1038/s41581-019-0182-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0182-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing