Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human kidney organoids: progress and remaining challenges

Abstract

Kidney organoids are regarded as important tools with which to study the development of the normal and diseased human kidney. Since the first reports of human pluripotent stem cell-derived kidney organoids 5 years ago, kidney organoids have been successfully used to model glomerular and tubular diseases. In parallel, advances in single-cell RNA sequencing have led to identification of a variety of cell types in the organoids, and have shown these to be similar to, but more immature than, human kidney cells in vivo. Protocols for the in vitro expansion of stem cell-derived nephron progenitor cells (NPCs), as well as those for the selective induction of specific lineages, especially glomerular podocytes, have also been reported. Although most current organoids are based on the induction of NPCs, an induction protocol for ureteric buds (collecting duct precursors) has also been developed, and approaches to generate more complex kidney structures may soon be possible. Maturation of organoids is a major challenge, and more detailed analysis of the developing kidney at a single cell level is needed. Eventually, organotypic kidney structures equipped with nephrons, collecting ducts, ureters, stroma and vascular flow are required to generate transplantable kidneys; such attempts are in progress.

Key points

  • Kidney organoids are useful for modelling early onset diseases that affect glomeruli and renal tubules.

  • A better understanding of the gene expression changes that occur at a single-cell level during development of the human embryonic kidney is necessary to guide further maturation of kidney organoids; technologies such as single-cell RNA-sequencing represent powerful tools for this purpose.

  • The induction of branching ureteric buds can be achieved using a protocol that differs from that used for the induction of nephron progenitor cells.

  • Notable challenges to the use of organoids for regenerative medicine remain, including approaches to the generation of higher-order structures, organoid maturation, vascularization and single-ureter formation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Interactions between the nephron progenitor, ureteric bud and stromal lineages during kidney development.
Fig. 2: Distinct developmental paths of nephron progenitor cells and the ureteric bud during mouse kidney development in vivo and in vitro.
Fig. 3: Disease modelling using human induced pluripotent stem cells.
Fig. 4: An approach to generate higher-order structure of the kidney in vitro.
Fig. 5: Strategies for the reconstruction of kidneys in large animals.

References

  1. Grobstein, C. Inductive interaction in the development of the mouse metanephros. J. Exp. Zool. 130, 319–339 (1955).

    Google Scholar 

  2. Auerbach, R. & Grobstein, C. Inductive interaction of embryonic tissues after dissociation and reaggregation. Exp. Cell Res. 15, 384–397 (1958).

    CAS  PubMed  Google Scholar 

  3. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Osafune, K., Takasato, M., Kispert, A., Asashima, M. & Nishinakamura, R. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133, 151–161 (2006).

    CAS  PubMed  Google Scholar 

  5. Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996).

    CAS  PubMed  Google Scholar 

  6. Moore, M. W. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79 (1996).

    CAS  PubMed  Google Scholar 

  7. Sanchez, M. P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    CAS  PubMed  Google Scholar 

  8. Schuchardt, A., D’Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    CAS  PubMed  Google Scholar 

  9. Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 18, 698–712 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Carroll, T. J., Park, J.-S., Hayashi, S., Majumdar, A. & McMahon, A. P. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005).

    CAS  PubMed  Google Scholar 

  11. Barak, H., Huh, S., Chen, S. & Jeanpierre, C. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev. Cell 22, 1191–1207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Self, M. et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 25, 5214–5228 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Torres, M., Gómez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065 (1995).

    CAS  PubMed  Google Scholar 

  14. Nishinakamura, R. et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128, 3105–3015 (2001).

    CAS  PubMed  Google Scholar 

  15. Kanda, S. et al. Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J. Am. Soc. Nephrol. 25, 2584–2595 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Magella, B. et al. Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf. Dev. Biol. 434, 36–47 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Rosselot, C. et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137, 283–292 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bagherie-Lachidan, M. et al. Stromal Fat4 acts non-autonomously with Dachsous1/2 to restrict the nephron progenitor pool. Development 142, 2564–2573 (2015).

    CAS  PubMed  Google Scholar 

  19. Mao, Y., Francis-West, P. & Irvine, K. D. A. Fat4-Dchs1 signal between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 142, 2574–2585 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, J. et al. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136, 161–171 (2009).

    CAS  PubMed  Google Scholar 

  21. Mugford, J. W., Sipilä, P., McMahon, J.a & McMahon, A. P. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev. Biol. 324, 88–98 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    CAS  PubMed  Google Scholar 

  23. Taguchi, A. & Nishinakamura, R. Nephron reconstitution from pluripotent stem cells. Kidney Int. 87, 894–900 (2015).

    CAS  PubMed  Google Scholar 

  24. Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    CAS  PubMed  Google Scholar 

  25. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS  PubMed  Google Scholar 

  26. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Przepiorski, A. et al. A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Reports 11, 470–484 (2018).

    CAS  Google Scholar 

  29. Morizane, R. & Bonventre, J. V. Kidney organoids: a translational journey. Trends Mol. Med. 23, 246–263 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Little, M. H., Kumar, S. V. & Forbes, T. Recapitulating kidney development: progress and challenges. Semin. Cell Dev. Biol. 91, 153–168 (2018).

    PubMed  Google Scholar 

  31. Phipson, B. et al. Evaluation of variability in human kidney organoids. Nat. Methods 16, 79–87 (2019).

    CAS  PubMed  Google Scholar 

  32. Taguchi, A. & Nishinakamura, R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21, 730–746 (2017).

    CAS  PubMed  Google Scholar 

  33. Volpato, V. et al. Reproducibility of molecular phenotypes after long-term differentiation to human iPSC-derived neurons: a multi-site omics study. Stem Cell Reports 11, 897–911 (2018).

    CAS  Google Scholar 

  34. Potter, S. S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 14, 479–492 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, H. et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881 (2018).

    CAS  PubMed  Google Scholar 

  36. Combes, A. N., Zappia, L., Er, P. X., Oshlack, A. & Little, M. H. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med. 11, 3 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Lindström, N. O. et al. Conserved and divergent features of mesenchymal progenitor cell types within the cortical nephrogenic niche of the human and mouse kidney. J. Am. Soc. Nephrol. 29, 806–824 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Lindström, N. O. et al. Progressive recruitment of mesenchymal progenitors reveals a time-dependent process of cell fate acquisition in mouse and human nephrogenesis. Dev. Cell 45, 651–660 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Wang, P. et al. Dissecting the global dynamic molecular profiles of human fetal kidney development by single-cell RNA sequencing. Cell Rep. 24, 3554–3567 (2018).

    CAS  PubMed  Google Scholar 

  40. Menon, R. et al. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development 145, dev164038 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Miyoshi, T., Hiratsuka, K., Garcia Saiz, E. & Morizane, R. Kidney organoids in translational medicine: disease modeling and regenerative medicine. Dev. Dyn. https://doi.org/10.1002/dvdy.22 (2019).

    Article  PubMed  Google Scholar 

  42. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23–32 (2018).

    PubMed  Google Scholar 

  43. Tanigawa, S. et al. Organoids from nephrotic disease-derived iPSCs identify impaired NEPHRIN localization and slit diaphragm formation in kidney podocytes. Stem Cell Reports 11, 727–740 (2018).

    CAS  Google Scholar 

  44. Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Forbes, T. A. et al. Patient-iPSC-derived kidney organoids show functional validation of a ciliopathic renal phenotype and reveal underlying pathogenetic mechanisms. Am. J. Hum. Genet. 102, 816–831 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, Y. K. et al. Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cells 35, 2366–2378 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cruz, N. M. et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat. Mater. 16, 1112–1119 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pei, Y. A. ‘two-hit’ model of cystogenesis in autosomal dominant polycystic kidney disease? Trends Mol. Med. 7, 151–156 (2001).

    CAS  PubMed  Google Scholar 

  49. Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lackland, D. T., Bendall, H. E., Osmond, C., Egan, B. M. & Barker, D. J. P. Low birth weights contribute to the high rates of early-onset chronic renal failure in the southeastern United States. Arch. Intern. Med. 160, 1472 (2000).

    CAS  PubMed  Google Scholar 

  51. Karner, C. M. et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138, 1247–1257 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Blank, U., Brown, A., Adams, D. C., Karolak, M. J. & Oxburgh, L. BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism. Development 136, 3557–3566 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Brown, A. et al. Role for compartmentalization in nephron progenitor differentiation. Proc. Natl Acad. Sci. USA 110, 4641–4645 (2013).

    Google Scholar 

  54. Brown, A. C., Muthukrishnan, S. D. & Oxburgh, L. A synthetic niche for nephron progenitor cells. Dev. Cell 34, 229–241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanigawa, S., Taguchi, A., Sharma, N., Perantoni, A. O. & Nishinakamura, R. Selective in vitro propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell Rep. 15, 801–813 (2016).

    CAS  PubMed  Google Scholar 

  56. Li, Z. et al. 3D culture supports long-term expansion of mouse and human nephrogenic progenitors. Cell Stem Cell 19, 516–529 (2016).

    CAS  PubMed  Google Scholar 

  57. Chen, S. et al. Intrinsic age-dependent changes and cell-cell contacts regulate nephron progenitor lifespan. Dev. Cell 35, 49–62 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Mundel, P. et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp. Cell Res. 236, 248–258 (1997).

    CAS  PubMed  Google Scholar 

  59. Saleem, M. A. et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol. 13, 630–638 (2002).

    CAS  Google Scholar 

  60. Chittiprol, S., Chen, P., Petrovic-Djergovic, D., Eichler, T. & Ransom, R. F. Marker expression, behaviors, and responses vary in different lines of conditionally immortalized cultured podocytes. Am. J. Physiol. Ren. Physiol. 301, F660–F671 (2011).

    CAS  Google Scholar 

  61. Song, B. et al. The directed differentiation of human iPS cells into kidney podocytes. PLOS ONE 7, e46453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ciampi, O. et al. Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Res. 17, 130–139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Yoshimura, Y. et al. Manipulation of nephron-patterning signals enables selective induction of podocytes from human pluripotent stem cells. J. Am. Soc. Nephrol. 30, 304–321 (2019).

    CAS  PubMed  Google Scholar 

  65. Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 (2016).

    CAS  PubMed  Google Scholar 

  66. Unbekandt, M. & Davies, J. A. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 77, 407–416 (2010).

    PubMed  Google Scholar 

  67. Ganeva, V., Unbekandt, M. & Davies, J. A. An improved kidney dissociation and reaggregation culture system results in nephrons arranged organotypically around a single collecting duct system. Organogenesis 7, 83–87 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. Kaku, Y. et al. PAX2 is dispensable for in vitro nephron formation from human induced pluripotent stem cells. Sci. Rep. 7, 4554 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Soofi, A., Levitan, I. & Dressler, G. R. Two novel EGFP insertion alleles reveal unique aspects of Pax2 function in embryonic and adult kidneys. Dev. Biol. 365, 241–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Naiman, N. et al. Repression of interstitial identity in nephron progenitor cells by Pax2 establishes the nephron-interstitium boundary during kidney development. Dev. Cell 41, 349–365 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kobayashi, A. et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Reports 3, 650–662 (2014).

    CAS  Google Scholar 

  73. Lemos, D. R. et al. Interleukin-1 β activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Combes, A. N. et al. Single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand-receptor crosstalk. Development 146, dev.178673 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yokote, S. et al. Urine excretion strategy for stem cell-generated embryonic kidneys. Proc. Natl Acad. Sci. USA 112, 12980–12985 (2015).

    CAS  PubMed  Google Scholar 

  76. Serluca, F. C., Drummond, I. A. & Fishman, M. C. Endothelial signaling in kidney morphogenesis. Curr. Biol. 12, 492–497 (2002).

    CAS  PubMed  Google Scholar 

  77. Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Reports 10, 751–765 (2018).

    Google Scholar 

  79. Bantounas, I. et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Reports 10, 766–779 (2018).

    Google Scholar 

  80. Murakami, Y. et al. Reconstitution of the embryonic kidney identifies a donor cell contribution to the renal vasculature upon transplantation. Sci. Rep. 9, 1172 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Munro, D. A. D., Hohenstein, P. & Davies, J. A. Cycles of vascular plexus formation within the nephrogenic zone of the developing mouse kidney. Sci. Rep. 7, 3273 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Munro, D. A. D. & Davies, J. A. Vascularizing the kidney in the embryo and organoid: questioning assumptions about renal vasculogenesis. J. Am. Soc. Nephrol. 29, 1593–1595 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Goto, T. et al. Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat. Commun. 10, 451 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. Yamaguchi, T. et al. Interspecies organogenesis generates autologous functional islets. Nature 542, 191–196 (2017).

    CAS  PubMed  Google Scholar 

  85. Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yamanaka, S. et al. Generation of interspecies limited chimeric nephrons using a conditional nephron progenitor cell replacement system. Nat. Commun. 8, 1719 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Howden, S. E., Vanslambrouck, J. M., Wilson, S. B., Tan, K. S. & Little, M. H. Reporter-based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation. EMBO Rep. 20, e47483 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

I thank A. Taguchi, S. Tanigawa and all the other members of the Nishinakamura laboratory for their contributions to the establishment of kidney organoid protocols and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Nishinakamura.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks M. Little, R. Morizane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Induced pluripotent stem cells

(iPSCs). Generated by the forced expression of several transcription factors in somatic cells and can differentiate into a variety of cell types.

Nephron progenitor cell

A population in the embryonic kidney that can differentiate into glomerular podocyte, Bowman’s capsule, renal tubule and loop of Henle.

Metanephric mesenchyme

A population of cells accumulated around the ureteric bud tips. It contains nephron progenitors and stromal progenitors.

Ureteric bud

A population of cells in the embryonic kidney that undergoes extensive branching and differentiates into collecting ducts and ureters.

Bowman’s capsule

An epithelial sac surrounding the glomerulus. A structure consisting of Bowman’s capsule and a glomerulus is referred to as a renal corpuscle.

Mesonephros

The embryonic kidney that develops earlier and more anteriorly than the metanephros. After forming Wolffian ducts, most parts of the mesonephros degenerate during development.

Metanephros

The embryonic kidney that appears last and develops into the permanent kidney.

Wolffian duct

Also known as the mesonephric duct. The epithelial duct of the mesonephros that elongates in an anterior-to-posterior direction. A portion close to the posterior end sprouts to form the ureteric bud.

Primitive streak

An elongated furrow formed along the axis of gastrulation-stage embryos. Mesodermal and endodermal cells are generated from the primitive streak.

Renal coloboma syndrome

A condition that manifests as kidney and eye abnormalities. It is mainly caused by PAX2 mutations.

Angiogenesis

The branching of existing vessels.

Vasculogenesis

The de novo formation of vessels from mesodermal precursors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishinakamura, R. Human kidney organoids: progress and remaining challenges. Nat Rev Nephrol 15, 613–624 (2019). https://doi.org/10.1038/s41581-019-0176-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0176-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing