Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ubiquitin–proteasome system in kidney physiology and disease

Abstract

Intracellular proteins continuously turn over by degradation and synthesis in all organ tissues. Owing to its irreversible nature, protein degradation is a highly selective process to avoid irreparable breakdown of cellular constituents, thereby disrupting cellular stability, integrity and signalling. The majority of intracellular proteins are degraded by the ubiquitin–proteasome system (UPS), a multi-enzyme process that involves the covalent conjugation of ubiquitin to a substrate protein and its recognition and degradation by the core multicomponent proteolytic complex of the UPS, the proteasome. In addition to labelling misfolded, damaged, aggregation-prone and intact but unneeded proteins for proteasomal degradation, ubiquitylation regulates a multitude of cellular processes, such as transcription, translation, endocytosis, and receptor activity and subcellular localization. In addition, the proteasome generates peptides for antigen presentation in the immune system and for further degradation by peptidases to provide amino acids for protein biosynthesis and gluconeogenesis. Alterations of the UPS or of protein substrates that render them more or less susceptible to degradation are responsible for disorders associated with renal cell dysfunction. In this Review, we provide insight into the elegant and complex nature of UPS-mediated proteostasis and focus on its established and potential roles in renal cell physiology and pathophysiology.

Key points

  • The ubiquitin–proteasome system (UPS) selectively degrades the majority of the intracellular proteins in an ATP-consuming manner and closely interacts with the autophagosomal–lysosomal system in physiological and pathophysiological situations.

  • The UPS regulates important physiological processes along the entire length of nephron, including glomerular cell identity and function, erythropoiesis, glucose reabsorption and salt and water balance.

  • Mutations in genes encoding enzymes of the UPS result in renal disease, and mutations in kidney-specific genes result in ubiquitin–proteasome dysfunction that leads to renal disease.

  • As part of general disease processes, the UPS regulates renal fibrosis and renal inflammation, affects acute kidney injury and is involved in chronic kidney disease-associated muscle atrophy.

  • Proteasomal inhibitors inhibit catalytic proteasomal subunits with differential potency and have both beneficial and disease-exacerbating effects in different pathophysiological settings.

  • Specific targeting of deubiquitylating enzymes or E3 ubiquitin ligase enzymes that are involved in well-characterized disease processes will enable the development of specific new treatment options in renal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crosstalk between the UPS and the autophagosomal–lysosomal system.
Fig. 2: Ubiquitylation and deubiquitylation.
Fig. 3: Proteasome activity, composition and subtypes.
Fig. 4: The UPS in the glomerulus.
Fig. 5: The UPS in the proximal tubule and tubulointerstitium.
Fig. 6: The UPS in the distal tubules and collecting ducts.
Fig. 7: The UPS in glomerular pathology.

Similar content being viewed by others

References

  1. Mitch, W. E. & Goldberg, A. L. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N. Engl. J. Med. 335, 1897–1905 (1996).

    CAS  PubMed  Google Scholar 

  2. Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363–3371 (1999).

    CAS  PubMed  Google Scholar 

  3. Murata, S., Takahama, Y., Kasahara, M. & Tanaka, K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat. Immunol. 19, 923–931 (2018).

    CAS  PubMed  Google Scholar 

  4. Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9–23 (2014).

    CAS  PubMed  Google Scholar 

  5. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Collins, G. A. & Goldberg, A. L. The logic of the 26S proteasome. Cell 169, 792–806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mevissen, T. E. T. & Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192 (2017).

    CAS  PubMed  Google Scholar 

  8. Komander, D., Clague, M. J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

    CAS  PubMed  Google Scholar 

  9. Bhogaraju, S. et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167, 1636–1649 (2016).

    CAS  PubMed  Google Scholar 

  10. Lu, Y., Lee, B. H., King, R. W., Finley, D. & Kirschner, M. W. Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science 348, 1250834 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Meyer, H. J. & Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell 157, 910–921 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, H. et al. Conserved sequence preferences contribute to substrate recognition by the proteasome. J. Biol. Chem. 291, 14526–14539 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Huber, E. M. et al. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148, 727–738 (2012).

    CAS  PubMed  Google Scholar 

  14. Seifert, U. et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142, 613–624 (2010).

    CAS  PubMed  Google Scholar 

  15. Aki, M. et al. Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J. Biochem. 115, 257–269 (1994).

    CAS  PubMed  Google Scholar 

  16. Driscoll, J., Brown, M. G., Finley, D. & Monaco, J. J. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365, 262–264 (1993).

    CAS  PubMed  Google Scholar 

  17. Cascio, P. PA28alphabeta: the enigmatic magic ring of the proteasome? Biomolecules 4, 566–584 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Finley, D., Chen, X. & Walters, K. J. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41, 77–93 (2016).

    CAS  PubMed  Google Scholar 

  19. Iwanczyk, J. et al. Structure of the Blm10-20 S proteasome complex by cryo-electron microscopy. Insights into the mechanism of activation of mature yeast proteasomes. J. Mol. Biol. 363, 648–659 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt, M. et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol. 12, 294–303 (2005).

    CAS  PubMed  Google Scholar 

  21. Ustrell, V., Hoffman, L., Pratt, G. & Rechsteiner, M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 21, 3516–3525 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibatani, T. et al. Global organization and function of mammalian cytosolic proteasome pools: implications for PA28 and 19S regulatory complexes. Mol. Biol. Cell 17, 4962–4971 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanahashi, N. et al. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J. Biol. Chem. 275, 14336–14345 (2000).

    CAS  PubMed  Google Scholar 

  24. Brehm, A. et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 125, 4196–4211 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Brehm, A. & Kruger, E. Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Semin. Immunopathol. 37, 323–333 (2015).

    CAS  PubMed  Google Scholar 

  26. McDermott, A., Jacks, J., Kessler, M., Emanuel, P. D. & Gao, L. Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int. J. Dermatol. 54, 121–129 (2015).

    PubMed  Google Scholar 

  27. Asano, S. et al. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347, 439–442 (2015).

    CAS  PubMed  Google Scholar 

  28. Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N. & Ciechanover, A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 26, 869–885 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Steffen, J., Seeger, M., Koch, A. & Kruger, E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 40, 147–158 (2010).

    CAS  PubMed  Google Scholar 

  30. Koizumi, S. et al. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife 5, e18357 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Sotzny, F. et al. TCF11/Nrf1-mediated induction of proteasome expression prevents cytotoxicity by rotenone. Antioxid. Redox Signal. 25, 870–885 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwak, M. K., Wakabayashi, N., Greenlaw, J. L., Yamamoto, M. & Kensler, T. W. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell. Biol. 23, 8786–8794 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bingol, B. et al. Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140, 567–578 (2010).

    CAS  PubMed  Google Scholar 

  34. Ranek, M. J., Terpstra, E. J., Li, J., Kass, D. A. & Wang, X. Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128, 365–376 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, X. et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat. Cell Biol. 18, 202–212 (2016).

    CAS  PubMed  Google Scholar 

  36. Lokireddy, S., Kukushkin, N. V. & Goldberg, A. L. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc. Natl Acad. Sci. USA 112, E7176–E7185 (2015).

    CAS  PubMed  Google Scholar 

  37. Chu, B. W. et al. The E3 ubiquitin ligase UBE3C enhances proteasome processivity by ubiquitinating partially proteolyzed substrates. J. Biol. Chem. 288, 34575–34587 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bulteau, A. L., Petropoulos, I. & Friguet, B. Age-related alterations of proteasome structure and function in aging epidermis. Exp. Gerontol. 35, 767–777 (2000).

    CAS  PubMed  Google Scholar 

  39. Marshall, R. S., Li, F., Gemperline, D. C., Book, A. J. & Vierstra, R. D. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58, 1053–1066 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Friguet, B. & Szweda, L. I. Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett. 405, 21–25 (1997).

    CAS  PubMed  Google Scholar 

  41. Piotrowski, J. et al. Inhibition of the 26 S proteasome by polyubiquitin chains synthesized to have defined lengths. J. Biol. Chem. 272, 23712–23721 (1997).

    CAS  PubMed  Google Scholar 

  42. Dayal, S. et al. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J. Biol. Chem. 284, 5030–5041 (2009).

    CAS  PubMed  Google Scholar 

  43. Livnat-Levanon, N. et al. Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep. 7, 1371–1380 (2014).

    CAS  PubMed  Google Scholar 

  44. Kaelin, W. G. Jr. How oxygen makes its presence felt. Genes Dev. 16, 1441–1445 (2002).

    CAS  PubMed  Google Scholar 

  45. Pioli, P. A. & Rigby, W. F. The von Hippel-Lindau protein interacts with heteronuclear ribonucleoprotein a2 and regulates its expression. J. Biol. Chem. 276, 40346–40352 (2001).

    CAS  PubMed  Google Scholar 

  46. Okuda, H. et al. The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J. Biol. Chem. 276, 43611–43617 (2001).

    CAS  PubMed  Google Scholar 

  47. Hartleben, B. et al. aPKClambda/iota and aPKCzeta contribute to podocyte differentiation and glomerular maturation. J. Am. Soc. Nephrol. 24, 253–267 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Satoh, D. et al. aPKClambda maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J. Biochem. 156, 115–128 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ronzaud, C. & Staub, O. Ubiquitylation and control of renal Na+ balance and blood pressure. Physiology (Bethesda) 29, 16–26 (2014).

    CAS  Google Scholar 

  50. Shibata, S. 30 years of the mineralocorticoid receptor: mineralocorticoid receptor and NaCl transport mechanisms in the renal distal nephron. J. Endocrinol. 234, T35–T47 (2017).

    CAS  PubMed  Google Scholar 

  51. Boyden, L. M. et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482, 98–102 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, Q. et al. CHIP regulates aquaporin-2 quality control and body water homeostasis. J. Am. Soc. Nephrol. 29, 936–948 (2018).

    CAS  PubMed  Google Scholar 

  53. Li, P. et al. E3 ligase CHIP and Hsc70 regulate Kv1.5 protein expression and function in mammalian cells. J. Mol. Cell. Cardiol. 86, 138–146 (2015).

    CAS  PubMed  Google Scholar 

  54. Medvar, B., Raghuram, V., Pisitkun, T., Sarkar, A. & Knepper, M. A. Comprehensive database of human E3 ubiquitin ligases: application to aquaporin-2 regulation. Physiol. Genomics 48, 502–512 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kamsteeg, E. J. et al. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc. Natl Acad. Sci. USA 103, 18344–18349 (2006).

    CAS  PubMed  Google Scholar 

  56. Khositseth, S. et al. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus. Kidney Int. 91, 1070–1087 (2017).

    CAS  PubMed  Google Scholar 

  57. Khositseth, S. et al. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus. Sci. Rep. 5, 18311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rinschen, M. M. et al. Quantitative deep mapping of the cultured podocyte proteome uncovers shifts in proteostatic mechanisms during differentiation. Am. J. Physiol. Cell Physiol. 311, C404–C417 (2016).

    PubMed  Google Scholar 

  59. Schroeter, C. B. et al. Protein half-life determines expression of proteostatic networks in podocyte differentiation. FASEB J. 32, 4696–4713 (2018).

    CAS  PubMed  Google Scholar 

  60. Rinschen, M. M. et al. The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes. Hum. Mol. Genet. 25, 1328–1344 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kietzmann, L. et al. MicroRNA-193a regulates the transdifferentiation of human parietal epithelial cells toward a podocyte phenotype. J. Am. Soc. Nephrol. 26, 1389–1401 (2015).

    CAS  PubMed  Google Scholar 

  62. Gebeshuber, C. A. et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 19, 481–487 (2013).

    CAS  PubMed  Google Scholar 

  63. Guhr, S. S. et al. The expression of podocyte-specific proteins in parietal epithelial cells is regulated by protein degradation. Kidney Int. 84, 532–544 (2013).

    CAS  PubMed  Google Scholar 

  64. Wieder, N. & Greka, A. Calcium, TRPC channels, and regulation of the actin cytoskeleton in podocytes: towards a future of targeted therapies. Pediatr. Nephrol. 31, 1047–1054 (2016).

    PubMed  Google Scholar 

  65. Tossidou, I., Himmelseher, E., Teng, B., Haller, H. & Schiffer, M. SUMOylation determines turnover and localization of nephrin at the plasma membrane. Kidney Int. 86, 1161–1173 (2014).

    CAS  PubMed  Google Scholar 

  66. Tossidou, I. et al. CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes. J. Biol. Chem. 285, 25285–25295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Scott, R. P. et al. Podocyte-specific loss of Cdc42 leads to congenital nephropathy. J. Am. Soc. Nephrol. 23, 1149–1154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Asanuma, K. et al. Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat. Cell Biol. 8, 485–491 (2006).

    CAS  PubMed  Google Scholar 

  69. Buvall, L. et al. Proteasomal degradation of Nck1 but not Nck2 regulates RhoA activation and actin dynamics. Nat. Commun. 4, 2863 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Meyer-Schwesinger, C. et al. Rho-kinase inhibition prevents proteinuria in immune-complex-mediated antipodocyte nephritis. Am. J. Physiol. Renal Physiol. 303, F1015–F1025 (2012).

    CAS  PubMed  Google Scholar 

  71. Li, J. et al. Immunoproteasome inhibition prevents chronic antibody-mediated allograft rejection in renal transplantation. Kidney Int. 93, 670–680 (2018).

    CAS  PubMed  Google Scholar 

  72. Fukasawa, H. The role of the ubiquitin-proteasome system in kidney diseases. Clin. Exp. Nephrol. 16, 507–517 (2012).

    CAS  PubMed  Google Scholar 

  73. Bonni, S. et al. TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat. Cell Biol. 3, 587–595 (2001).

    CAS  PubMed  Google Scholar 

  74. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    CAS  PubMed  Google Scholar 

  75. Liu, F. Y., Li, X. Z., Peng, Y. M., Liu, H. & Liu, Y. H. Arkadia regulates TGF-beta signaling during renal tubular epithelial to mesenchymal cell transition. Kidney Int. 73, 588–594 (2008).

    CAS  PubMed  Google Scholar 

  76. Oliva, J. Proteasome and organs ischemia-reperfusion injury. Int. J. Mol. Sci. 19, E106 (2017).

    PubMed  Google Scholar 

  77. Itoh, M., Takaoka, M., Shibata, A., Ohkita, M. & Matsumura, Y. Preventive effect of lactacystin, a selective proteasome inhibitor, on ischemic acute renal failure in rats. J. Pharmacol. Exp. Ther. 298, 501–507 (2001).

    CAS  PubMed  Google Scholar 

  78. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78, 773–785 (1994).

    CAS  PubMed  Google Scholar 

  79. Kezic, A., Stajic, N. & Thaiss, F. Innate immune response in kidney ischemia/reperfusion injury: potential target for therapy. J. Immunol. Res. 2017, 6305439 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Quehenberger, P. et al. Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes 49, 1561–1570 (2000).

    CAS  PubMed  Google Scholar 

  81. Xu, H., You, M., Shi, H. & Hou, Y. Ubiquitin-mediated NFkappaB degradation pathway. Cell. Mol. Immunol. 12, 653–655 (2015).

    CAS  PubMed  Google Scholar 

  82. Lecker, S. H. et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18, 39–51 (2004).

    CAS  PubMed  Google Scholar 

  83. Deger, S. M. et al. Systemic inflammation is associated with exaggerated skeletal muscle protein catabolism in maintenance hemodialysis patients. JCI Insight 2, 95185 (2017).

    PubMed  Google Scholar 

  84. Wang, X. H. & Mitch, W. E. Mechanisms of muscle wasting in chronic kidney disease. Nat. Rev. Nephrol. 10, 504–516 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ikizler, T. A. et al. Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am. J. Physiol. Endocrinol. Metab. 282, E107–E116 (2002).

    CAS  PubMed  Google Scholar 

  86. Bilodeau, P. A., Coyne, E. S. & Wing, S. S. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am. J. Physiol. Cell Physiol. 311, C392–C403 (2016).

    PubMed  Google Scholar 

  87. Wang, X. H. et al. Caspase-3 cleaves specific 19 S proteasome subunits in skeletal muscle stimulating proteasome activity. J. Biol. Chem. 285, 21249–21257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Du, J. et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J. Clin. Invest. 113, 115–123 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sharma, B. & Dabur, R. Role of pro-inflammatory cytokines in regulation of skeletal muscle metabolism: a systematic review. Curr. Med. Chem. https://doi.org/10.2174/0929867326666181129095309 (2018).

    Article  PubMed  Google Scholar 

  90. Tarade, D. & Ohh, M. The HIF and other quandaries in VHL disease. Oncogene 37, 139–147 (2018).

    CAS  PubMed  Google Scholar 

  91. Bangs, F. & Anderson, K. V. Primary cilia and mammalian hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9, a028175 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Maskey, D. et al. Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length. EMBO J. 34, 2424–2440 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kasahara, K. et al. Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat. Commun. 5, 5081 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Massa, F. et al. The deubiquitinating enzyme USP14 controls ciliogenesis and hedgehog signalling. Hum. Mol. Genet. 28, 764–777 (2019).

    Google Scholar 

  95. Chen, P. C. et al. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29, 10909–10919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Liang, G. et al. Polycystin-2 is regulated by endoplasmic reticulum-associated degradation. Hum. Mol. Genet. 17, 1109–1119 (2008).

    CAS  PubMed  Google Scholar 

  97. Tian, Y. et al. TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol. Cell. Biol. 27, 6383–6395 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yim, H., Sung, C. K., You, J., Tian, Y. & Benjamin, T. Nek1 and TAZ interact to maintain normal levels of polycystin 2. J. Am. Soc. Nephrol. 22, 832–837 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rui, L., Fisher, T. L., Thomas, J. & White, M. F. Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J. Biol. Chem. 276, 40362–40367 (2001).

    CAS  PubMed  Google Scholar 

  100. Rui, L., Yuan, M., Frantz, D., Shoelson, S. & White, M. F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem. 277, 42394–42398 (2002).

    CAS  PubMed  Google Scholar 

  101. Yi, J. S. et al. MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling. Nat. Commun. 4, 2354 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. Nakao, R. et al. Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol. Cell. Biol. 29, 4798–4811 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Shi, J., Luo, L., Eash, J., Ibebunjo, C. & Glass, D. J. The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev. Cell 21, 835–847 (2011).

    PubMed  Google Scholar 

  104. Xu, X. et al. The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol. Cell 30, 403–414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Beeken, M. et al. Alterations in the ubiquitin proteasome system in persistent but not reversible proteinuric diseases. J. Am. Soc. Nephrol. 25, 2511–2525 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Aghdam, S. Y., Gurel, Z., Ghaffarieh, A., Sorenson, C. M. & Sheibani, N. High glucose and diabetes modulate cellular proteasome function: implications in the pathogenesis of diabetes complications. Biochem. Biophys. Res. Commun. 432, 339–344 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Portero-Otin, M. et al. Diabetes induces an impairment in the proteolytic activity against oxidized proteins and a heterogeneous effect in nonenzymatic protein modifications in the cytosol of rat liver and kidney. Diabetes 48, 2215–2220 (1999).

    CAS  PubMed  Google Scholar 

  108. Luo, Z. F. et al. Prevention of diabetic nephropathy in rats through enhanced renal antioxidative capacity by inhibition of the proteasome. Life Sci. 88, 512–520 (2011).

    CAS  PubMed  Google Scholar 

  109. Gao, C. et al. MG132 ameliorates kidney lesions by inhibiting the degradation of Smad7 in streptozotocin-induced diabetic nephropathy. J. Diabetes Res. 2014, 918396 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Huang, W. et al. The proteasome inhibitor, MG132, attenuates diabetic nephropathy by inhibiting SnoN degradation in vivo and in vitro. Biomed. Res. Int. 2014, 684765 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Yadranji Aghdam, S. & Mahmoudpour, A. Proteasome activators, PA28alpha and PA28beta, govern development of microvascular injury in diabetic nephropathy and retinopathy. Int. J. Nephrol. 2016, 3846573 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Papale, M. et al. Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care 33, 2409–2415 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dihazi, H. et al. Characterization of diabetic nephropathy by urinary proteomic analysis: identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clin. Chem. 53, 1636–1645 (2007).

    CAS  PubMed  Google Scholar 

  114. Bontscho, J. et al. Myeloperoxidase-specific plasma cell depletion by bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J. Am. Soc. Nephrol. 22, 336–348 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 14, 748–755 (2008).

    CAS  PubMed  Google Scholar 

  116. Cybulsky, A. V. The intersecting roles of endoplasmic reticulum stress, ubiquitin- proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 84, 25–33 (2013).

    CAS  PubMed  Google Scholar 

  117. Meyer-Schwesinger, C. et al. A new role for the neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) in podocyte process formation and podocyte injury in human glomerulopathies. J. Pathol. 217, 452–464 (2009).

    CAS  PubMed  Google Scholar 

  118. Liu, Y. et al. UCH-L1 expression of podocytes in diseased glomeruli and in vitro. J. Pathol. 217, 642–653 (2009).

    CAS  PubMed  Google Scholar 

  119. Lohmann, F. et al. UCH-L1 induces podocyte hypertrophy in membranous nephropathy by protein accumulation. Biochim. Biophys. Acta 1842, 945–958 (2014).

    CAS  PubMed  Google Scholar 

  120. Meyer-Schwesinger, C. et al. Ubiquitin C-terminal hydrolase-l1 activity induces polyubiquitin accumulation in podocytes and increases proteinuria in rat membranous nephropathy. Am. J. Pathol. 178, 2044–2057 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kitzler, T. M., Papillon, J., Guillemette, J., Wing, S. S. & Cybulsky, A. V. Complement modulates the function of the ubiquitin-proteasome system and endoplasmic reticulum-associated degradation in glomerular epithelial cells. Biochim. Biophys. Acta 1823, 1007–1016 (2012).

    CAS  PubMed  Google Scholar 

  122. Sareen-Khanna, K., Papillon, J., Wing, S. S. & Cybulsky, A. V. Role of the deubiquitinating enzyme ubiquitin-specific protease-14 in proteostasis in renal cells. Am. J. Physiol. Renal Physiol. 311, F1035–F1046 (2016).

    CAS  PubMed  Google Scholar 

  123. Bierzynska, A., Soderquest, K. & Koziell, A. Genes and podocytes - new insights into mechanisms of podocytopathy. Front. Endocrinol. (Lausanne) 5, 226 (2014).

    Google Scholar 

  124. Drozdova, T., Papillon, J. & Cybulsky, A. V. Nephrin missense mutations: induction of endoplasmic reticulum stress and cell surface rescue by reduction in chaperone interactions. Physiol. Rep. 1, e00086 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. Serrano-Perez, M. C. et al. Endoplasmic reticulum-retained podocin mutants are massively degraded by the proteasome. J. Biol. Chem. 293, 4122–4133 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kaplan, J. M. et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    CAS  PubMed  Google Scholar 

  127. Yao, J. et al. Alpha-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLOS Biol. 2, e167 (2004).

    PubMed  PubMed Central  Google Scholar 

  128. Yee, A. et al. Proteostasis as a therapeutic target in glomerular injury associated with mutant alpha-actinin-4. Am. J. Physiol. Renal Physiol. 315, F954–F966 (2018).

    CAS  PubMed  Google Scholar 

  129. Shahidul Makki, M., Cristy Ruteshouser, E. & Huff, V. Ubiquitin specific protease 18 (Usp18) is a WT1 transcriptional target. Exp. Cell Res. 319, 612–622 (2013).

    CAS  PubMed  Google Scholar 

  130. Basters, A., Knobeloch, K. P. & Fritz, G. USP18 - a multifunctional component in the interferon response. Biosci. Rep. 38, BSR20180250 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Zhou, L. et al. Mutual antagonism of Wilms’ tumor 1 and beta-catenin dictates podocyte health and disease. J. Am. Soc. Nephrol. 26, 677–691 (2015).

    CAS  PubMed  Google Scholar 

  132. Zhang, J. Y. et al. UBD modifies APOL1-induced kidney disease risk. Proc. Natl Acad. Sci. USA 115, 3446–3451 (2018).

    CAS  PubMed  Google Scholar 

  133. Hipp, M. S., Kalveram, B., Raasi, S., Groettrup, M. & Schmidtke, G. FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol. Cell. Biol. 25, 3483–3491 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chade, A. R. et al. Effects of proteasome inhibition on the kidney in experimental hypercholesterolemia. J. Am. Soc. Nephrol. 16, 1005–1012 (2005).

    CAS  PubMed  Google Scholar 

  135. Merin, N. M. & Kelly, K. R. Clinical use of proteasome inhibitors in the treatment of multiple myeloma. Pharmaceuticals (Basel) 8, 1–20 (2014).

    Google Scholar 

  136. Wanchoo, R. et al. Renal toxicities of novel agents used for treatment of multiple myeloma. Clin. J. Am. Soc. Nephrol. 12, 176–189 (2017).

    CAS  PubMed  Google Scholar 

  137. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu, K., den Brave, F. & Jentsch, S. Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation. Nat. Cell Biol. 19, 732–739 (2017).

    CAS  PubMed  Google Scholar 

  139. Lu, K., den Brave, F. & Jentsch, S. Pathway choice between proteasomal and autophagic degradation. Autophagy 13, 1799–1800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cohen-Kaplan, V. et al. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl Acad. Sci. USA 113, E7490–E7499 (2016).

    CAS  PubMed  Google Scholar 

  141. Grice, G. L. & Nathan, J. A. The recognition of ubiquitinated proteins by the proteasome. Cell. Mol. Life Sci. 73, 3497–3506 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).

    CAS  PubMed  Google Scholar 

  143. Waters, S., Marchbank, K., Solomon, E., Whitehouse, C. & Gautel, M. Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett. 583, 1846–1852 (2009).

    CAS  PubMed  Google Scholar 

  144. Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu, H. & Matouschek, A. Recognition of client proteins by the proteasome. Annu. Rev. Biophys. 46, 149–173 (2017).

    CAS  PubMed  Google Scholar 

  146. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).

    CAS  PubMed  Google Scholar 

  147. Hjerpe, R. et al. UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 166, 935–949 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Seibenhener, M. L. et al. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24, 8055–8068 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. N’Diaye, E. N. et al. PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep. 10, 173–179 (2009).

    PubMed  PubMed Central  Google Scholar 

  150. Nanduri, P., Hao, R., Fitzpatrick, T. & Yao, T. P. Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance. J. Biol. Chem. 290, 9455–9464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bustamante, H. A. et al. Interplay between the autophagy-lysosomal pathway and the ubiquitin-proteasome system: a target for therapeutic development in Alzheimer’s disease. Front. Cell. Neurosci. 12, 126 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. Zheng, Q. et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci. 8, 303 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author apologizes to all those researchers whose work could not be cited owing to space limitations. The author thanks the Deutsche Forschungsgemeinschaft (SFB 1192) and the Else Kröner Fresenius Stiftung for continuous support.

Reviewer information

Nature Reviews Nephrology thanks A. Cybulsky, E. Krüger and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Meyer-Schwesinger.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Endoplasmic reticulum-associated degradation (ERAD)

A cellular pathway in which newly translated misfolded proteins of the endoplasmic reticulum are ubiquitylated and shuttled into the cytoplasm for proteasomal degradation.

Mono-ubiquitylation

The attachment of one ubiquitin moiety to the substrate protein.

Polyubiquitylation

The formation of a ubiquitin chain on a single lysine residue on the substrate protein.

MHC class I-mediated antigen presentation

The presentation of mostly intracellular peptides processed by the proteasome via MHC class I proteins to the immune system (cytotoxic T cells).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer-Schwesinger, C. The ubiquitin–proteasome system in kidney physiology and disease. Nat Rev Nephrol 15, 393–411 (2019). https://doi.org/10.1038/s41581-019-0148-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0148-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing