Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure and function of polycystins: insights into polycystic kidney disease

Abstract

Mutations in the polycystins PC1 or PC2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled renal cysts that disrupt renal architecture and function, ultimately leading to kidney failure in the majority of patients. Although the genetic basis of ADPKD is now well established, the physiological function of polycystins remains obscure and a matter of intense debate. The structural determination of both the homomeric PC2 and heteromeric PC1–PC2 complexes, as well as the electrophysiological characterization of PC2 in the primary cilium of renal epithelial cells, provided new valuable insights into the mechanisms of ADPKD pathogenesis. Current findings indicate that PC2 can function independently of PC1 in the primary cilium of renal collecting duct epithelial cells to form a channel that is mainly permeant to monovalent cations and is activated by both membrane depolarization and an increase in intraciliary calcium. In addition, PC2 functions as a calcium-activated calcium release channel at the endoplasmic reticulum membrane. Structural studies indicate that the heteromeric PC1–PC2 complex comprises one PC1 and three PC2 channel subunits. Surprisingly, several positively charged residues from PC1 occlude the ionic pore of the PC1–PC2 complex, suggesting that pathogenic polycystin mutations might cause ADPKD independently of an effect on channel permeation. Emerging reports of novel structural and functional findings on polycystins will continue to elucidate the molecular basis of ADPKD.

Key points

  • The channel activity of polycystin 2 (PC2) at the primary cilium of renal collecting duct cells is independent of PC1.

  • Opening of PC2 is controlled by an internal hydrophobic gate; it is enhanced by membrane depolarization and an increase in intraciliary calcium.

  • PC1 and PC2 assemble in a 1:3 ratio in the PC1–PC2 complex.

  • PC1 might prevent cation permeation through the heteromeric PC1–PC2 complex by occluding the pore with three positively charged residues.

  • Extracellular polycystin domains in PC1 and PC2 are hot spots for pathogenic mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The PC1–PC2 heteromeric complex.
Fig. 2: Closed and open states of PC2.
Fig. 3: Proposed mechanistic models for the gating of PC2.
Fig. 4: Ion channel function of PC2 at the primary cilium and the ER.

Similar content being viewed by others

References

  1. Harris, P. C. & Torres, V. E. Polycystic kidney disease. Annu. Rev. Med. 60, 321–337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Arnaout, M. A. Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease. Annu. Rev. Med. 52, 93–123 (2001).

    CAS  PubMed  Google Scholar 

  3. Torres, V. E. & Harris, P. C. Mechanisms of disease: autosomal dominant and recessive polycystic kidney diseases. Nat. Clin. Pract. Nephrol. 2, 40–55; quiz 55 (2006).

    CAS  PubMed  Google Scholar 

  4. Patel, A. & Honore, E. Polycystins and renovascular mechanosensory transduction. Nat. Rev. Nephrol. 6, 530–538 (2010).

    CAS  PubMed  Google Scholar 

  5. Hughes, J. et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat. Genet. 10, 151–160 (1995).

    CAS  PubMed  Google Scholar 

  6. Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339–1342 (1996).

    CAS  PubMed  Google Scholar 

  7. Wilson, P. D. Polycystic kidney disease. N. Engl. J. Med. 350, 151–164 (2004).

    CAS  PubMed  Google Scholar 

  8. Kim, I. et al. Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J. Biol. Chem. 283, 31559–31566 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Outeda, P. et al. A novel model of autosomal recessive polycystic kidney questions the role of the fibrocystin C-terminus in disease mechanism. Kidney Int. 92, 1130–1144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kottgen, M. et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J. Cell Biol. 182, 437–447 (2008). This study shows that PC2 interacts with another TRP channel subunit to form a heteromer.

    PubMed  PubMed Central  Google Scholar 

  11. Kobori, T., Smith, G. D., Sandford, R. & Edwardson, J. M. The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J. Biol. Chem. 284, 35507–35513 (2009). This work demonstrates an interaction between PC2 and TrpC1.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Anyatonwu, G. I., Estrada, M., Tian, X., Somlo, S. & Ehrlich, B. E. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc. Natl Acad. Sci. USA 104, 6454–6459 (2007).

    CAS  PubMed  Google Scholar 

  13. Li, Y. et al. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J. Biol. Chem. 284, 36431–36441 (2009). This study indicates that PC2 allows the amplification of the InsP 3 -dependent calcium release from the ER.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, Y., Wright, J. M., Qian, F., Germino, G. G. & Guggino, W. B. Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J. Biol. Chem. 280, 41298–41306 (2005).

    CAS  PubMed  Google Scholar 

  15. Peyronnet, R. et al. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep. 14, 1143–1148 (2013). This article presents evidence that PC2 inhibits PIEZO1 opening in renal epithelial cells through a cytoskeleton-mediated mechanoprotection mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lantinga-van Leeuwen, I. S. et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum. Mol. Genet. 13, 3069–3077 (2004). This study demonstrates that a hypomorphic effect on the Pkd1 somatic allele is sufficient to cause ADPKD.

    CAS  PubMed  Google Scholar 

  17. Piontek, K., Menezes, L. F., Garcia-Gonzalez, M. A., Huso, D. L. & Germino, G. G. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat. Med. 13, 1490–1495 (2007). This report shows that loss of Pkd1 before postnatal day 13 results in severely cystic kidneys.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, G. et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177–188 (1998).

    CAS  PubMed  Google Scholar 

  19. Delmas, P. Polycystins: from mechanosensation to gene regulation. Cell 118, 145–148 (2004).

    CAS  PubMed  Google Scholar 

  20. Choi, Y. H. et al. Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases. Proc. Natl Acad. Sci. USA 108, 10679–10684 (2011).

    CAS  PubMed  Google Scholar 

  21. Yamaguchi, T., Hempson, S. J., Reif, G. A., Hedge, A. M. & Wallace, D. P. Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J. Am. Soc. Nephrol. 17, 178–187 (2006).

    CAS  PubMed  Google Scholar 

  22. Yamaguchi, T. et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J. Biol. Chem. 279, 40419–40430 (2004).

    CAS  PubMed  Google Scholar 

  23. Hanaoka, K. et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408, 990–994 (2000). This study demonstrates that, in transfected CHO cells, PC1 interacts with PC2 at the plasma membrane to form a cationic channel.

    CAS  PubMed  Google Scholar 

  24. Delmas, P. et al. Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J. 18, 740–742 (2004). This report demonstrates that, when overexpressed in sympathetic neurons, the PC1–PC2 complex can be activated at the plasma membrane by a PC1-targeting antibody.

    CAS  PubMed  Google Scholar 

  25. Liu, X. et al. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 7, e33183 (2018). This research provides evidence by patch clamp recordings of PC2 opening at the primary cilium of renal cells.

    PubMed  PubMed Central  Google Scholar 

  26. Kleene, S. J. & Kleene, N. K. The native TRPP2-dependent channel of murine renal primary cilia. Am. J. Physiol. Renal Physiol. 312, F96–F108 (2017). This study demonstrates that PC2 at the primary cilium is activated by both depolarization and an increase in intraciliary calcium.

    CAS  PubMed  Google Scholar 

  27. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003). This report shows that the PC1–PC2 complex mediates flow-dependent activation of the primary cilium in renal cells.

    CAS  PubMed  Google Scholar 

  28. Aboualaiwi, W. A. et al. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ. Res. 104, 860–869 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nauli, S. M. et al. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117, 1161–1171 (2008). This research demonstrates that activation of PC1–PC2 by shear stress increases the release of NO by the endothelium.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Delling, M. et al. Primary cilia are not calcium-responsive mechanosensors. Nature 531, 656–660 (2016). This study shows that stimulation of the primary cilium by flow does not induce an increase in intraciliary calcium.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen, P. S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763–773 (2016). This report presents the first structural determination of PC2 by cryo-EM.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Grieben, M. et al. Structure of the polycystic kidney disease TRP channel polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24, 114–122 (2017). This study provides evidence that a large polycystin domain sits on top of the PC2 channel and is mutated in ADPKD.

    CAS  PubMed  Google Scholar 

  33. Su, Q. et al. Structure of the human PKD1–PKD2 complex. Science 361, eaat9819 (2018). This report presents the first structural determination of the PC1–PC2 complex.

    PubMed  Google Scholar 

  34. Wilkes, M. et al. Molecular insights into lipid-assisted Ca(2+) regulation of the TRP channel polycystin-2. Nat. Struct. Mol. Biol. 24, 123–130 (2017).

    CAS  PubMed  Google Scholar 

  35. Zheng, W. et al. Hydrophobic pore gates regulate ion permeation in polycystic kidney disease 2 and 2L1 channels. Nat. Commun. 9, 2302 (2018). This study shows that Leu777 in the S6 of PC2 acts as a hydrophobic gate.

    PubMed  PubMed Central  Google Scholar 

  36. Delmas, P. et al. Polycystins, calcium signaling, and human diseases. Biochem. Biophys. Res. Commun. 322, 1374–1383 (2004).

    CAS  PubMed  Google Scholar 

  37. Harris, P. C. & Torres, V. E. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J. Clin. Invest. 124, 2315–2324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Qian, F. et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat. Genet. 16, 179–183 (1997).

    CAS  PubMed  Google Scholar 

  39. Koulen, P. et al. Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol. 4, 191–197 (2002). This research demonstrates that PC2 at the ER membrane is a calcium release channel.

    CAS  PubMed  Google Scholar 

  40. Kip, S. N. et al. [Ca2+]i reduction increases cellular proliferation and apoptosis in vascular smooth muscle cells: relevance to the ADPKD phenotype. Circ. Res. 96, 873–880 (2005).

    CAS  PubMed  Google Scholar 

  41. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    CAS  PubMed  Google Scholar 

  42. Hulse, R. E., Li, Z., Huang, R. K., Zhang, J. & Clapham, D. E. Cryo-EM structure of the polycystin 2-l1 ion channel. eLife 7, e36931 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Su, Q. et al. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Nat. Commun. 9, 1192 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Cai, Y. et al. Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. J. Biol. Chem. 279, 19987–19995 (2004).

    CAS  PubMed  Google Scholar 

  45. Celic, A. S. et al. Calcium-induced conformational changes in C-terminal tail of polycystin-2 are necessary for channel gating. J. Biol. Chem. 287, 17232–17240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuo, I. Y. et al. The number and location of EF hand motifs dictates the calcium dependence of polycystin-2 function. FASEB J. 28, 2332–2346 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Allen, M. D., Qamar, S., Vadivelu, M. K., Sandford, R. N. & Bycroft, M. A high-resolution structure of the EF-hand domain of human polycystin-2. Protein Sci. 23, 1301–1308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schumann, F. et al. Ca2+-dependent conformational changes in a C-terminal cytosolic domain of polycystin-2. J. Biol. Chem. 284, 24372–24383 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Petri, E. T. et al. Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity. Proc. Natl Acad. Sci. USA 107, 9176–9181 (2010).

    CAS  PubMed  Google Scholar 

  50. Hofherr, A., Wagner, C., Fedeles, S., Somlo, S. & Kottgen, M. N-Glycosylation determines the abundance of the transient receptor potential channel TRPP2. J. Biol. Chem. 289, 14854–14867 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Giamarchi, A. et al. The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep. 7, 787–793 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Arif Pavel, M. et al. Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. Proc. Natl Acad. Sci. USA 113, E2363–E2372 (2016).

    PubMed  Google Scholar 

  53. Yu, S. et al. Essential role of cleavage of polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc. Natl Acad. Sci. USA 104, 18688–18693 (2007).

    CAS  PubMed  Google Scholar 

  54. Yu, Y. et al. Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc. Natl Acad. Sci. USA 106, 11558–11563 (2009).

    CAS  PubMed  Google Scholar 

  55. Kim, S. et al. The polycystin complex mediates Wnt/Ca(2+) signalling. Nat. Cell Biol. 18, 752–764 (2016). This report shows that Wnt binds to PC1 and activates PC2 in the complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma, R. et al. PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol. Cell. Biol. 25, 8285–8298 (2005). This study provides evidence that EGF activates PC2 currents in renal cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Harris, P. C. et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 17, 3013–3019 (2006).

    CAS  PubMed  Google Scholar 

  58. Raychowdhury, M. K. et al. Characterization of single channel currents from primary cilia of renal epithelial cells. J. Biol. Chem. 280, 34718–34722 (2005).

    CAS  PubMed  Google Scholar 

  59. Geng, L. et al. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J. Cell Sci. 119, 1383–1395 (2006). This report demonstrates that PC2 is targeted to the primary cilium independently of PC1.

    CAS  PubMed  Google Scholar 

  60. Sharif Naeini, R. et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139, 587–596 (2009). This study shows that the PC1:PC2 ratio regulates the opening of the PIEZO1-dependent mechanosensitive channels in arterial myocytes.

    CAS  PubMed  Google Scholar 

  61. Bai, C. X. et al. Activation of TRPP2 through mDia1-dependent voltage gating. EMBO J. 27, 1345–1356 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nauli, S. M. & Zhou, J. Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26, 844–856 (2004).

    CAS  PubMed  Google Scholar 

  63. Nauli, S. M., Pala, R. & Kleene, S. J. Calcium channels in primary cilia. Curr. Opin. Nephrol. Hypertens. 25, 452–458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, K. L. et al. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 4, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Jin, X. et al. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell. Mol. Life Sci. 71, 2165–2178 (2014).

    CAS  PubMed  Google Scholar 

  66. Su, S. et al. Genetically encoded calcium indicator illuminates calcium dynamics in primary cilia. Nat. Methods 10, 1105–1107 (2013).

    CAS  PubMed  Google Scholar 

  67. Yuan, S., Zhao, L., Brueckner, M. & Sun, Z. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Curr. Biol. 25, 556–567 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010). This article reports on the discovery of the mechanosensitive PIEZO channels.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ranade, S. S. et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc. Natl Acad. Sci. USA 111, 10347–10352 (2014).

    CAS  PubMed  Google Scholar 

  70. Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bichet, D., Peters, D., Patel, A. J., Delmas, P. & Honore, E. Cardiovascular polycystins: insights from autosomal dominant polycystic kidney disease and transgenic animal models. Trends Cardiovasc. Med. 16, 292–298 (2006).

    CAS  PubMed  Google Scholar 

  72. Wang, S. et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J. Clin. Invest. 126, 4527–4536 (2016). This study shows that opening of PIEZO1 mediates flow-dependent arterial dilation.

    PubMed  PubMed Central  Google Scholar 

  73. Nonomura, K. et al. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc. Natl Acad. Sci. USA 115, 12817–12822 (2018).

    CAS  PubMed  Google Scholar 

  74. Martins, J. R. et al. Piezo1-dependent regulation of urinary osmolarity. Pflugers Arch. 468, 1197–1206 (2016).

    CAS  PubMed  Google Scholar 

  75. Sammels, E. et al. Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J. Biol. Chem. 285, 18794–18805 (2010). This research demonstrates that opening of PC2 at the ER membrane amplifies the release of calcium through the InsP 3 R.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Peyronnet, R. et al. Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels. Cell Rep. 1, 241–250 (2012). This study provides evidence that PC2 inhibits two-pore domain potassium channel TREK-2 opening by membrane stretch.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shen, P. S. The 2017 Nobel Prize in Chemistry: cryo-EM comes of age. Anal. Bioanal. Chem. 410, 2053–2057 (2018).

    CAS  PubMed  Google Scholar 

  78. McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 61–73 (2003).

    CAS  PubMed  Google Scholar 

  79. Pennekamp, P. et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol. 12, 938–943 (2002). This report shows that loss of PKD2 causes embryonic laterality defects.

    CAS  PubMed  Google Scholar 

  80. Yoshiba, S. et al. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338, 226–231 (2012). This study demonstrates that flow-induced PC2 opening in nodal cells is responsible for left–right asymmetry.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Karcher, C. et al. Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73, 425–432 (2005).

    CAS  PubMed  Google Scholar 

  82. Field, S. et al. Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2. Development 138, 1131–1142 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vogel, P. et al. Situs inversus in Dpcd/Poll−/−, Nme7−/−, and Pkd1l1−/− mice. Vet. Pathol. 47, 120–131 (2009).

    Google Scholar 

  84. Vetrini, F. et al. Bi-allelic mutations in PKD1L1 are associated with laterality defects in humans. Am. J. Hum. Genet. 99, 886–893 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kamura, K. et al. Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis. Development 138, 1121–1129 (2011).

    CAS  PubMed  Google Scholar 

  86. Grimes, D. T. et al. Genetic analysis reveals a hierarchy of interactions between polycystin-encoding genes and genes controlling cilia function during left-right determination. PLOS Genet. 12, e1006070 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Human Frontier Science Program, the Fondation pour la Recherche Médicale and the Agence Nationale de la Recherche for support.

Reviewer information

Nature Reviews Nephrology thanks S. Nauli and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

E.H. wrote the manuscript, D.D. performed the structural modelling and A.P. edited the manuscript.

Corresponding author

Correspondence to Eric Honoré.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ADPKD mutation database: http://pkdb.mayo.edu

HOLE program: http://www.holeprogram.org

Glossary

Primary cilium

Single non-motile cilium that lacks a central pair of microtubules present in all mammalian cells, except immune cells.

Permeation

Permeability of ions through channels.

Gating mechanism

Molecular mechanism of channel opening and closing.

Coiled-coil domains

Structural motifs in proteins in which 2–7 α-helices are coiled together and mediate protein–protein interaction.

Lipid nanodiscs

Lipid bilayer mimetics that function as synthetic model membranes in which purified proteins can be reconstituted for structural determination with cryo-electron microscopy.

Selectivity filter

Segment within the pore of an ion channel that controls its ionic permeability.

Voltage sensor

Charged domain of an ion channel (segment 4 (S4)) that confers voltage sensitivity.

Cation sink

Negative charges present at the extracellular side of the channel that attract cations towards the selectivity filter.

Conduction pathway

The pore of the ion channel.

EF-hand motif

Motif with a helix–loop–helix topology to which calcium ions bind.

Vestibule

The entrance of the ion channel pore.

Amphipathic

Contains both hydrophobic and hydrophilic groups.

Hydrophobic gate

Hydrophobic residue that repels water and prevents ion permeation through an ion channel.

π helix

Helix with 4.4 amino acids per turn; α-helices have 3.6 amino acids per turn.

Non-selective cationic channel

A channel permeable to all cations, including sodium, potassium and calcium.

Ratiometric calcium indicator

A calcium-imaging method based on the use of a ratio between two fluorescent intensities (for example, the Fura-2 calcium probe).

Mechanoprotection

Inhibition of mechanosensitive ion channels by the cytoskeleton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douguet, D., Patel, A. & Honoré, E. Structure and function of polycystins: insights into polycystic kidney disease. Nat Rev Nephrol 15, 412–422 (2019). https://doi.org/10.1038/s41581-019-0143-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0143-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing