Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetics and epigenomics in diabetic kidney disease and metabolic memory

Abstract

The development and progression of diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, are influenced by both genetic and environmental factors. DKD is an important contributor to the morbidity of patients with diabetes mellitus, indicating a clear need for an improved understanding of disease aetiology to inform the development of more efficacious treatments. DKD is characterized by an accumulation of extracellular matrix, hypertrophy and fibrosis in kidney glomerular and tubular cells. Increasing evidence shows that genes associated with these features of DKD are regulated not only by classical signalling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation and non-coding RNAs. These mechanisms can respond to changes in the environment and, importantly, might mediate the persistent long-term expression of DKD-related genes and phenotypes induced by prior glycaemic exposure despite subsequent glycaemic control, a phenomenon called metabolic memory. Detection of epigenetic events during the early stages of DKD could be valuable for timely diagnosis and prompt treatment to prevent progression to end-stage renal disease. Identification of epigenetic signatures of DKD via epigenome-wide association studies might also inform precision medicine approaches. Here, we highlight the emerging role of epigenetics and epigenomics in DKD and the translational potential of candidate epigenetic factors and non-coding RNAs as biomarkers and drug targets for DKD.

Key points

  • Diabetic kidney disease (DKD), involving the accumulation of extracellular matrix, hypertrophy and fibrosis in kidney glomerular and tubular cells, can lead to end-stage renal disease.

  • Genes associated with DKD are regulated not only by classical signalling pathways and transcription factors but also by epigenetic mechanisms, including chromatin histone modifications, DNA methylation and non-coding RNAs.

  • Metabolic memory is a phenomenon characterized by the persistent expression of DKD-related genes and phenotypes induced by glycaemic exposure despite subsequent glycaemic control.

  • Persistent epigenetic changes (DNA methylation and histone modifications) and signalling circuitry mediated by non-coding RNAs may be involved in metabolic memory.

  • Targeting epigenetic factors (using small molecules or locus-specific epigenetic editing via the CRISPR–Cas9 system) or non-coding RNAs (using chemically modified antisense oligonucleotides) are potential approaches to prevent or treat DKD and erase metabolic memory.

  • Epigenetic profiling through epigenome-wide association studies and RNA (transcriptome) profiling of patient samples (blood, urine and biopsy samples) might facilitate a precision (personalized) medicine approach for the treatment of DKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular mechanisms of diabetic kidney disease.
Fig. 2: The effects of epigenetic modifications on chromatin structure.
Fig. 3: Epigenetic mechanisms of metabolic memory.
Fig. 4: Contribution of signalling circuits to persistent long non-coding RNA expression.
Fig. 5: Approaches to generate locus-specific genetic changes as a therapy for diabetic kidney disease.
Fig. 6: Locus-specific epigenetic changes as potential therapy for diabetic kidney disease.
Fig. 7: Epigenetic and RNA profiling to support precision medicine.

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 387, 1513–1530 (2016).

    Article  Google Scholar 

  2. Zimmet, P. Z., Magliano, D. J., Herman, W. H. & Shaw, J. E. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2, 56–64 (2014).

    Article  PubMed  Google Scholar 

  3. Nathan, D. M. Long-term complications of diabetes mellitus. N. Engl. J. Med. 328, 1676–1685 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Rask-Madsen, C. & King, G. L. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 17, 20–33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Forbes, J. M. & Cooper, M. E. Mechanisms of diabetic complications. Physiol. Rev. 93, 137–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Shah, M. S. & Brownlee, M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ. Res. 118, 1808–1829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nathan, D. M. Diabetes: advances in diagnosis and treatment. JAMA 314, 1052–1062 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990–2010. N. Engl. J. Med. 370, 1514–1523 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Alicic, R. Z., Rooney, M. T. & Tuttle, K. R. Diabetic kidney disease: challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 12, 2032–2045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fineberg, D., Jandeleit-Dahm, K. A. M. & Cooper, M. E. Diabetic nephropathy: diagnosis and treatment. Nat. Rev. Endocrinol. 9, 713–723 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Jones, C. A. et al. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 67, 1684–1691 (2005).

    Article  PubMed  Google Scholar 

  12. Park, C. W. Diabetic kidney disease: from epidemiology to clinical perspectives. Diabetes Metab. J. 38, 252–260 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kanwar, Y. S., Sun, L., Xie, P., Liu, F. Y. & Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol. 6, 395–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kato, M. & Natarajan, R. Diabetic nephropathy—emerging epigenetic mechanisms. Nat. Rev. Nephrol. 10, 517–530 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meng, X.-M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Reidy, K., Kang, H. M., Hostetter, T. & Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333–2340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Russo, V. E., Martienssen, R. A. & Riggs, A. D. Epigenetic Mechanisms of Gene Regulation (Cold Spring Harbor Laboratory Press, 1996).

  18. Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keating, S. T., van Diepen, J. A., Riksen, N. P. & El-Osta, A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia 61, 6–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Susztak, K. Understanding the epigenetic syntax for the genetic alphabet in the kidney. J. Am. Soc. Nephrol. 25, 10–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, S., Jim, B. & Ziyadeh, F. N. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin. Nephrol. 23, 532–543 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Qian, Y., Feldman, E., Pennathur, S., Kretzler, M. & Brosius, F. C. III. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57, 1439–1445 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Pagtalunan, M. E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99, 342–348 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruggenenti, P., Cravedi, P. & Remuzzi, G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol. 6, 319–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Abboud, H. E. Role of platelet-derived growth factor in renal injury. Annu. Rev. Physiol. 57, 297–309 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Sharma, K. & Ziyadeh, F. N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 44, 1139–1146 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E. & Border, W. A. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc. Natl Acad. Sci. USA 90, 1814–1818 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kato, M. et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11, 881–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kato, M. et al. Role of the Akt/FoxO3a pathway in TGF-beta1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J. Am. Soc. Nephrol. 17, 3325–3335 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Kato, M. et al. TGF-beta induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci. Signal. 6, ra43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kato, M. et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat. Commun. 7, 12864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sedeek, M. et al. Oxidative stress, Nox isoforms and complications of diabetes—potential targets for novel therapies. J. Cardiovasc. Transl Res. 5, 509–518 (2012).

    Article  PubMed  Google Scholar 

  33. Inagi, R., Ishimoto, Y. & Nangaku, M. Proteostasis in endoplasmic reticulum—new mechanisms in kidney disease. Nat. Rev. Nephrol. 10, 369–378 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Kropski, J. A. & Blackwell, T. S. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J. Clin. Invest. 128, 64–73 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Deshpande, S. et al. Reduced autophagy by a microrna-mediated signaling cascade in diabetes-induced renal glomerular hypertrophy. Sci. Rep. 8, 6954 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Komorowsky, C. V., Brosius, F. C. III, Pennathur, S. & Kretzler, M. Perspectives on systems biology applications in diabetic kidney disease. J. Cardiovasc. Transl Res. 5, 491–508 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brosius, F. C. III & Alpers, C. E. New targets for treatment of diabetic nephropathy: what we have learned from animal models. Curr. Opin. Nephrol. Hypertens. 22, 17–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brosius, F. C., Tuttle, K. R. & Kretzler, M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 59, 1624–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tuttle, K. R. et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant. 33, 1950–1959 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pena, M. J. et al. The effects of atrasentan on urinary metabolites in patients with type 2 diabetes and nephropathy. Diabetes Obes. Metab. 19, 749–753 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Nathan, D. M. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643–2653 (2005).

    Article  PubMed  Google Scholar 

  44. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290, 2159–2167 (2003).

    Article  Google Scholar 

  45. de Boer, I. H. et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N. Engl. J. Med. 365, 2366–2376 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. de Boer, I. H. & DCCT/EDIC Research Group. Kidney Disease and Related Findings in the Diabetes Control and Complications trial/Epidemiology of Diabetes Interventions and Complications study. Diabetes Care 37, 24–30 (2014).

    Article  CAS  Google Scholar 

  47. Nathan, D. M. The Diabetes Control and Complications trial/Epidemiology of Diabetes Interventions and Complications study at 30 years: overview. Diabetes Care 37, 9–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Colagiuri, S., Cull, C. A. & Holman, R. R. Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes? UK Prospective Diabetes study 61. Diabetes Care 25, 1410–1417 (2002).

    Article  PubMed  Google Scholar 

  49. Thomas, M. C., Groop, P. H. & Tryggvason, K. Towards understanding the inherited susceptibility for nephropathy in diabetes. Curr. Opin. Nephrol. Hypertens. 21, 195–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Sandholm, N. et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLOS Genet. 8, e1002921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sandholm, N. et al. The genetic landscape of renal complications in type 1 diabetes. J. Am. Soc. Nephrol. 28, 557–574 (2017).

    Article  PubMed  Google Scholar 

  52. van Zuydam, N. R. et al. A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes 67, 1414–1427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cooper, M. E. & El-Osta, A. Epigenetics: mechanisms and implications for diabetic complications. Circ. Res. 107, 1403–1413 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feinberg, A. The key role of epigenetics in human disease. N. Engl. J. Med. 379, 400–401 (2018).

    Article  PubMed  Google Scholar 

  56. Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qiu, C. et al. Renal compartment–specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Simmons, R. Epigenetics and maternal nutrition: nature v. nurture. Proc. Nutr. Soc. 70, 73–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Woroniecki, R., Gaikwad, A. B. & Susztak, K. Fetal environment, epigenetics, and pediatric renal disease. Pediatr. Nephrol. 26, 705–711 (2011).

    Article  PubMed  Google Scholar 

  64. Wanner, N. et al. DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation. J. Am. Soc. Nephrol. 30, 63–78 (2019).

    Article  PubMed  Google Scholar 

  65. Rosen, E. D. et al. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes 67, 1923–1931 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rakyan, V. K. et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLOS Genet. 7, e1002300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Davegardh, C., Garcia-Calzon, S., Bacos, K. & Ling, C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol. Metab. 14, 12–25 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schaefer, M. et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590–1595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wanner, N. & Bechtel-Walz, W. Epigenetics of kidney disease. Cell Tissue Res. 369, 75–92 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tampe, B. et al. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J. Am. Soc. Nephrol. 25, 905–912 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hasegawa, K. et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med. 19, 1496–1504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hayashi, K. et al. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J. Clin. Invest. 124, 2523–2537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marumo, T. et al. Diabetes induces aberrant DNA methylation in the proximal tubules of the kidney. J. Am. Soc. Nephrol. 26, 2388–2397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sharma, I., Dutta, R. K., Singh, N. K. & Kanwar, Y. S. High glucose-induced hypomethylation promotes binding of Sp-1 to myo-inositol oxygenase: implication in the pathobiology of diabetic tubulopathy. Am. J. Pathol. 187, 724–739 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, L. et al. DNA methyltransferase 1 may be a therapy target for attenuating diabetic nephropathy and podocyte injury. Kidney Int. 92, 140–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, L. et al. Effect of TET2 on the pathogenesis of diabetic nephropathy through activation of transforming growth factor beta1 expression via DNA demethylation. Life Sci. 207, 127–137 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Oba, S. et al. Aberrant DNA methylation of Tgfb1 in diabetic kidney mesangial cells. Sci. Rep. 8, 16338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bell, C. G. et al. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med. Genomics 3, 33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sapienza, C. et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 6, 20–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Bomotti, S. M. et al. Epigenetic markers of renal function in African Americans. Nurs. Res. Pract. 2013, 687519 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Dirks, R. A., Stunnenberg, H. G. & Marks, H. Genome-wide epigenomic profiling for biomarker discovery. Clin. Epigenetics 8, 122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ko, Y. A. et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 14, R108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Smyth, L. J., McKay, G. J., Maxwell, A. P. & McKnight, A. J. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 9, 366–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Swan, E. J., Maxwell, A. P. & McKnight, A. J. Distinct methylation patterns in genes that affect mitochondrial function are associated with kidney disease in blood-derived DNA from individuals with type 1 diabetes. Diabet Med. 32, 1110–1115 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Wing, M. R. et al. DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study. Nephrol. Dial. Transplant. 29, 864–872 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Block, T. & El-Osta, A. Epigenetic programming, early life nutrition and the risk of metabolic disease. Atherosclerosis 266, 31–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Gautier, J. F. et al. Kidney dysfunction in adult offspring exposed in utero to type 1 diabetes is associated with alterations in genome-wide DNA methylation. PLOS ONE 10, e0134654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chu, A. Y. et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat. Commun. 8, 1286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qiu, C. et al. Cytosine methylation predicts renal function decline in American Indians. Kidney Int. 93, 1417–1431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, Y.-Z. et al. Specific expression network analysis of diabetic nephropathy kidney tissue revealed key methylated sites. J. Cell. Physiol. 233, 7139–7147 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu, M. C. & Kuan, P. F. A. Guide to Illumina BeadChip data analysis. Methods Mol. Biol. 1708, 303–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0093-7 (2019).

    Article  PubMed  Google Scholar 

  97. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of single-nucleus over single-cell rna sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23–32 (2019).

    Article  PubMed  Google Scholar 

  99. Karaiskos, N. et al. A Single-cell transcriptome atlas of the mouse glomerulus. J. Am. Soc. Nephrol. 29, 2060–2068 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. EncodeProjectConsortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  102. Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Jin, F., Li, Y., Ren, B. & Natarajan, R. Enhancers: multi-dimensional signal integrators. Transcription 2, 226–230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Reinberg, D. & Vales, L. D. Chromatin domains rich in inheritance. Science 361, 33–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Klose, R. J. & Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell. Biol. 8, 307–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Marmorstein, R. & Zhou, M. M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 6, a018762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, H. & Pollin, T. I. Epigenetics variation and pathogenesis in diabetes. Curr. Diab. Rep. 18, 121 (2018).

    Article  PubMed  Google Scholar 

  111. Smith, C. J. & Ryckman, K. K. Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab. Syndr. Obes. 8, 295–302 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. Yuan, H. et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-beta1-mediated gene transcription in mesangial cells. Am. J. Physiol. Renal Physiol. 304, F601–F613 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Sun, G. et al. Epigenetic histone methylation modulates fibrotic gene expression. J. Am. Soc. Nephrol. 21, 2069–2080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yuan, H. et al. Epigenetic histone modifications involved in profibrotic gene regulation by 12/15-lipoxygenase and its oxidized lipid products in diabetic nephropathy. Antioxid. Redox Signal. 24, 361–375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chung, A. C., Huang, X. R., Meng, X. & Lan, H. Y. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317–1325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kato, M. et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl Acad. Sci. USA 104, 3432–3437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Reddy, M. A. et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 85, 362–373 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Komers, R. et al. Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes. Lab. Invest. 93, 543–552 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Majumder, S. et al. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J. Clin. Invest. 128, 483–499 (2018).

    Article  PubMed  Google Scholar 

  120. Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 107, 1058–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Miao, F., Gonzalo, I. G., Lanting, L. & Natarajan, R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 279, 18091–18097 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Miao, F. et al. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J. Biol. Chem. 282, 13854–13863 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Miao, F. et al. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57, 3189–3198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, Y. et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J. Biol. Chem. 283, 26771–26781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Okabe, J. et al. Endothelial transcriptome in response to pharmacological methyltransferase inhibition. ChemMedChem 9, 1755–1762 (2014).

    CAS  PubMed  Google Scholar 

  126. Miao, F. et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 63, 1748–1762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, Z. et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc. Natl Acad. Sci. USA 113, E3002–E3011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shalev, A. Thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Mol. Endocrinol. 28, 1211–1220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Walaszczyk, E. et al. DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: a systematic review and replication in a case–control sample of the Lifelines study. Diabetologia 61, 354–368 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Villeneuve, L. M. et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc. Natl Acad. Sci. USA 105, 9047–9052 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Villeneuve, L. M. et al. Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes 59, 2904–2915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. El-Osta, A. et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205, 2409–2417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tonna, S., El-Osta, A., Cooper, M. E. & Tikellis, C. Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms. Nat. Rev. Nephrol. 6, 332–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Brasacchio, D. et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58, 1229–1236 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Okabe, J. et al. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ. Res. 110, 1067–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Reddy, M. A., Zhang, E. & Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58, 443–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Heyn, H. & Esteller, M. An adenine code for DNA: a second life for N6-methyladenine. Cell 161, 710–713 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Bertero, A. et al. The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 555, 256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Harvey, S. J. et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J. Am. Soc. Nephrol. 19, 2150–2158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ho, J. et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J. Am. Soc. Nephrol. 19, 2069–2075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shi, S. et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J. Am. Soc. Nephrol. 19, 2159–2169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nagalakshmi, V. K. et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 79, 317–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Zhdanova, O. et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int. 80, 719–730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Putta, S. et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 23, 458–469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Deshpande, S. D. et al. Transforming growth factor-beta-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62, 3151–3162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kato, M. & Natarajan, R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann. NY Acad. Sci. 1353, 72–88 (2015).

    Article  PubMed  Google Scholar 

  150. Trionfini, P. & Benigni, A. MicroRNAs as master regulators of glomerular function in health and disease. J. Am. Soc. Nephrol. 28, 1686–1696 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Trionfini, P., Benigni, A. & Remuzzi, G. MicroRNAs in kidney physiology and disease. Nat. Rev. Nephrol. 11, 23–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Cheng, T. L. et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev. Cell 28, 547–560 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Oh, H. J. et al. Inhibition of the processing of miR-25 by HIPK2-Phosphorylated-MeCP2 induces NOX4 in early diabetic nephropathy. Sci. Rep. 6, 38789 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wapinski, O. & Chang, H. Y. Long noncoding RNAs and human disease. Trends Cell Biol. 21, 354–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M. & Mattick, J. S. Non-coding RNAs: regulators of disease. J. Pathol. 220, 126–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Moran, V. A., Perera, R. J. & Khalil, A. M. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 40, 6391–6400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wilusz, J. E., Sunwoo, H. & Spector, D. L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23, 1494–1504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Moran, I. et al. Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 16, 435–448 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Leung, A., Amaram, V. & Natarajan, R. Linking diabetic vascular complications with LncRNAs. Vascul. Pharmacol. https://doi.org/10.1016/j.vph.2018.01.007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Leung, A. et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ. Res. 113, 266–278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Das, S. et al. A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ. Res. 123, 1298–1312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Das, S. et al. Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells. Nat. Commun. 8, 1467 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Alvarez, M. L. & DiStefano, J. K. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLOS ONE 6, e18671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hanson, R. L. et al. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 56, 975–983 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Alvarez, M. L., Khosroheidari, M., Eddy, E. & Kiefer, J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLOS ONE 8, e77468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhou, Q. et al. Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am. J. Pathol. 184, 409–417 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Long, J. et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J. Clin. Invest. 126, 4205–4218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sun, S. F. et al. Novel lncRNA Erbb4-IR Promotes diabetic kidney injury in db/db mice by targeting miR-29b. Diabetes 67, 731–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Bai, X. et al. Long noncoding RNA LINC01619 regulates microRNA-27a/forkhead box protein o1 and endoplasmic reticulum stress-mediated podocyte injury in diabetic nephropathy. Antioxid. Redox Signal. 29, 355–376 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Li, A. et al. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling. Cell Death Dis. 9, 461 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, X. et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp. Cell Res. 350, 327–335 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Wang, X. et al. Aberrant expression of long non-coding RNAs in newly diagnosed type 2 diabetes indicates potential roles in chronic inflammation and insulin resistance. Cell Physiol. Biochem. 43, 2367–2378 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Reddy, M. A. et al. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes 63, 4249–4261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Das, S. et al. Diabetes mellitus-induced long noncoding RNA Dnm3os regulates macrophage functions and inflammation via nuclear mechanisms. Arterioscler. Thromb. Vasc. Biol. 38, 1806–1820 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, H. et al. Deep RNA Sequencing uncovers a repertoire of human macrophage long intergenic noncoding RNAs modulated by macrophage activation and associated with cardiometabolic diseases. J. Am. Heart Assoc. 6, e007431 (2017).

    PubMed  PubMed Central  Google Scholar 

  177. Lorenzen, J. M. & Thum, T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat. Rev. Nephrol. 12, 360–373 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Fassett, R. G. et al. Biomarkers in chronic kidney disease: a review. Kidney Int. 80, 806–821 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Husseiny, M. I., Kaye, A., Zebadua, E., Kandeel, F. & Ferreri, K. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death. PLOS ONE 9, e94591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lehmann-Werman, R. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl Acad. Sci. USA 113, E1826–E1834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Szeto, C. C. et al. Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis. Markers 33, 137–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Neal, C. S. et al. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol. Dial. Transplant. 26, 3794–3802 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Luk, C. C. et al. Urinary biomarkers for the prediction of reversibility in acute-on-chronic renal failure. Dis. Markers 34, 179–185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yang, Y. et al. Urine miRNAs: potential biomarkers for monitoring progression of early stages of diabetic nephropathy. Med. Hypotheses 81, 274–278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ichii, O. et al. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int. 81, 280–292 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. DiStefano, J. K., Taila, M. & Alvarez, M. L. Emerging roles for miRNAs in the development, diagnosis, and treatment of diabetic nephropathy. Curr. Diab. Rep. 13, 582–591 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Cai, X. et al. Serum microRNAs levels in primary focal segmental glomerulosclerosis. Pediatr. Nephrol. 28, 1797–1801 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Karpman, D., Ståhl, A.-l & Arvidsson, I. Extracellular vesicles in renal disease. Nat. Rev. Nephrol. 13, 545 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Barutta, F. et al. Urinary exosomal micrornas in incipient diabetic nephropathy. PLOS ONE 8, e73798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Li, K. et al. Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight 3, 98942 (2018).

    Article  PubMed  Google Scholar 

  191. Argyropoulos, C. et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLOS ONE 8, e54662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Higuchi, C. et al. Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism 64, 489–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Pezzolesi, M. G. et al. Circulating TGF-beta1-regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes. Diabetes 64, 3285–3293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Satake, E. et al. Circulating miRNA profiles associated with hyperglycemia in patients with type 1 diabetes mellitus. Diabetes 67, 1013–1023 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Baker, M. A. et al. Tissue-specific microRNA expression patterns in four types of kidney disease. J. Am. Soc. Nephrol. 28, 2985–2992 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gao, J., Wang, W., Wang, F. & Guo, C. LncRNA-NR_033515 promotes proliferation, fibrogenesis and epithelial-to-mesenchymal transition by targeting miR-743b-5p in diabetic nephropathy. Biomed. Pharmacother. 106, 543–552 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Jones, P. A., Issa, J. P. & Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Rafehi, H. et al. Systems approach to the pharmacological actions of HDAC inhibitors reveals EP300 activities and convergent mechanisms of regulation in diabetes. Epigenetics 12, 991–1003 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Advani, A. et al. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am. J. Pathol. 178, 2205–2214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Huang, K. et al. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-beta1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic. Biol. Med. 65, 528–540 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Hong, Q. et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93, 1330–1343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhou, X. et al. Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining smad7 and phosphatase and tensin homolog expression. J. Am. Soc. Nephrol. 27, 2092–2108 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Zhou, X. et al. Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J. 32, 5976–5989 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  205. Lindow, M. & Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol. 199, 407–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Kato, M. et al. A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int. 80, 358–368 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhong, X. et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56, 663–674 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl Med. 4, 121ra18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kölling, M. et al. Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol. Ther. 25, 165–180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Dey, N. et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J. Biol. Chem. 286, 25586–25603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Long, J., Wang, Y., Wang, W., Chang, B. H. & Danesh, F. R. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J. Biol. Chem. 286, 11837–11848 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab. 27, 714–739 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Rupaimoole, R. & Slack, F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Liao, H.-K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1–13 (2017).

    Article  CAS  Google Scholar 

  220. Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Gaudelli, N. M. et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nat. Methods 12, 401 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Verma, N. et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat. Genet. 50, 83–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Morita, S. et al. Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. WareJoncas, Z. et al. Precision gene editing technology and applications in nephrology. Nat. Rev. Nephrol. 14, 663–677 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Cardenas, A. et al. Validation of a DNA methylation reference panel for the estimation of nucleated cells types in cord blood. Epigenetics 11, 773–779 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the US National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases and National Heart, Lung, and Blood Institute), the Wanek Family Project to Cure Type 1 Diabetes at City of Hope and the Juvenile Diabetes Research Foundation. The authors thank S. T. Wilkinson and K. Higa (Office of Faculty and Institutional Support, Beckman Research Institute of City of Hope) for help editing the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article, discussing the article’s content, writing the article and reviewing and editing the manuscript before submission.

Corresponding authors

Correspondence to Mitsuo Kato or Rama Natarajan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

DATABASES

Nephroseq database: https://www.nephroseq.org/

Gene Expression Omnibus (GEO) database: https://www.ncbi.nlm.nih.gov/geo/

Glossary

Non-coding RNAs

(ncRNAs). An RNA molecule that is not translated into protein; ncRNAs can regulate gene expression at the transcriptional and post-transcriptional levels.

Genome-wide association studies

(GWAS). Cataloguing of genetic variants across the genomes of multiple individuals that are associated with a specific phenotype.

Enhancers

Short (50–1,500 bp) regions of DNA that can be bound by transcriptional activators to increase the transcription of a particular gene. An enhancer may be located upstream or downstream of the gene it regulates and does not have to be close to the transcription initiation site.

DNA methylation

An epigenetic modification that adds a methyl (CH3) group to DNA, typically at the 5′-cytosine (C) of CpG dinucleotides.

Histone post-translational modifications

(PTMs). Covalent modifications (for example, methylation, phosphorylation and acetylation) on histone residues that facilitate epigenetic regulation of gene expression by altering chromatin structure or recruiting chromatin modifiers.

Genomic imprinting

A phenomenon whereby maternal and paternal chromosomes (or genes) are differentially marked and either maternal or paternal genes are selectively suppressed. DNA methylation is a key mark for genomic imprinting.

Elongation

A process of copying DNA into the growing RNA chain by RNA polymerase during the elongation phase of transcription.

Alternative splicing

A process that allows multiple mRNAs to be transcribed from a single gene. Usually, certain exons of a gene are included or excluded from the final processed mRNA.

Histone deacetylase

(HDAC). Enzyme that removes the acetyl group from histones.

Epigenome-wide association studies

(EWAS). Cataloguing of epigenetic marks (typically focused on DNA methylation) across the genomes of multiple individuals that are associated with a specific phenotype.

ENCODE

(Encyclopedia of DNA Elements). A public research consortium funded by the National Human Genome Research Institute to systematically identify all functional elements in the human and mouse genomes.

Methylated DNA immunoprecipitation sequencing

(Me-DIP-seq). A method to identify the profile of genome-wide DNA methylation by sequencing DNA immunoprecipitated with antibody to 5-methylcytosine (5mC).

Reduced representation bisulfite sequencing

(RRBS-seq). A technique for analysing the genome-wide DNA methylation profiles with single-nucleotide resolution at relatively low cost. It combines restriction enzyme and bisulfite sequencing to enrich (~1% of genome) for areas of the genome with a high CpG content.

Whole-genome bisulfite sequencing

The gold standard method for the analysis of DNA methylation of single cytosines at base resolution in the whole genome. It involves next-generation sequencing of bisulfite-converted DNA. Sodium bisulfite converts unmethylated cytosine into uracil, which eventually will appear as thymine after sequencing. Methylated cytosines appear as cytosine.

Epigenotype

Encompasses a set of epigenetic marks (DNA methylation and histone modifications) unique to specific cells or individuals that determine their cell fate or phenotypes (disease susceptibility), respectively.

Chromatin immunoprecipitation (ChIP) followed by sequencing

(ChIP–seq). A method to analyse protein interactions with DNA. ChIP–seq combines ChIP using specific antibodies to a target protein followed by high-throughput DNA sequencing to identify the binding sites of DNA-associated proteins in a genome-wide fashion.

Mediator complexes

A multiprotein complex that is required for gene transcription by RNA polymerase II and functions as a transcriptional co-activator in eukaryotes. Subunits of the complex relay information from signals and transcription factors to the RNA polymerase II machinery to control the expression of specific genes.

Poised promoters

Promoters that are defined by the simultaneous presence of histone modifications associated with both gene activation and repression (bivalent). They are frequently found at the promoters and enhancers of developmental and lineage-specific genes.

Pyroptosis

A process of pro-inflammatory programmed cell death that is also a form of regulated necrosis, a lytic type of cell death inherently associated with inflammation.

Foam cells

Lipid-laden macrophages that serve as the hallmark of early-stage atherosclerotic lesion formation.

Exosomes

Cell-derived vesicles that are present in biofluids, including blood, urine, cerebrospinal fluid and conditioned medium of cultured cells. The diameter of exosomes is 30–100 nm.

Locked nucleic acid

(LNA). A modified RNA nucleotide in which the ribose moiety is modified with an extra bridge connecting the 2′ oxygen and 4′ carbon. The bridge ‘locks’ the ribose in the 3′-endo conformation, which is often found in the A-form duplexes. LNA nucleotides are very stable and have high affinity for target DNA or RNA residues, to which they hybridize.

Antagomirs

Small synthetic RNAs that are designed to silence endogenous microRNAs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, M., Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 15, 327–345 (2019). https://doi.org/10.1038/s41581-019-0135-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0135-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing